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Abstract: Precision Viticulture is experiencing substantial growth thanks to the availability of 

improved and cost-effective instruments and methodologies for data acquisition and 

analysis, such as Unmanned Aerial Vehicles (UAV), that demonstrated to compete with 

traditional acquisition platforms, such as satellite and aircraft, due to low operational costs, 

high operational flexibility and high spatial resolution of imagery. In order to optimize the 

use of these technologies for precision viticulture, their technical, scientific and economic 

performances need to be assessed. The aim of this work is to compare NDVI surveys 

performed with UAV, aircraft and satellite, to assess the capability of each platform to 

represent the intra-vineyard vegetation spatial variability. NDVI images of two Italian 

vineyards were acquired simultaneously from different multi-spectral sensors onboard the 
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three platforms, and a spatial statistical framework was used to assess their degree of 

similarity. Moreover, the pros and cons of each technique were also assessed performing a 

cost analysis as a function of the scale of application. Results indicate that the different 

platforms provide comparable results in vineyards characterized by coarse vegetation 

gradients and large vegetation clusters. On the contrary, in more heterogeneous vineyards, 

low-resolution images fail in representing part of the intra-vineyard variability. The cost 

analysis showed that the adoption of UAV platform is advantageous for small areas and that 

a break-even point exists above five hectares; above such threshold, airborne and then 

satellite have lower imagery cost. 

Keywords: precision agriculture; Unmanned Aerial Vehicle (UAV); remote sensing 

 

1. Introduction 

Precision Agriculture (PA) could be defined as the site specific management of crops heterogeneity 

both at time- and spatial-scale [1] in order to enhance the efficiency of agricultural inputs to increase 

yields, quality and sustainability of productions. Precision Viticulture (PV) falls in the area of PA and 

aims at [2]: identifying within a degree of stability the inter-annual spatial variation of the grape yields 

and quality; identifying which are the causes that determine such variability and if they are related to 

some site specific management practices. For these reasons, PA and PV approaches take advantage of 

those technologies that are able to detect with high accuracy the spatial heterogeneity of vineyards that 

is driven by several intrinsic factors (soil, crop management, irrigation, vineyard nutritional state, pest 

and disease control), and external variables (climate), and that determine the inter-annual and  

intra-vineyard variability of yield and quality. Some new instruments have already demonstrated to be 

suitable for PV. The Unmanned Aerial Vehicle (UAV) remote sensing platforms are among the 

technologies that have been recently applied to remote sensing of vegetated areas [3–5] and applied to 

PV [6–8], proving a high flexibility of use, low operational costs and very high spatial resolution [9], 

down to 1 cm. 

In parallel, traditional remote sensing technologies based on satellite and aircraft platform, are 

continuously improving in terms of spatial and temporal resolution, thus enhancing their suitability for 

PV applications. Each of these technologies has pros and cons that involve technological, operational 

and economic factors. Satellite surveys can map large areas at the same time, but on the other hand still 

have coarse resolution for PV, and may suffer from cloud cover and from constraints in relating imagery 

timing to specific phenologic phases because of the fixed-timing acquisitions. Aircraft surveys can be 

planned more flexibly, but can pose difficult and costly campaign organization efforts [10]. UAVs are 

well suited for small scale and research applications, while their limited payload and short flight 

endurance still remain areas of weakness for their wide scale implementation in PV. These factors pose 

a “scale dilemma”, making the identification of the most effective technology strictly dependent on the 

spatial scale and the purpose of the survey, and calls for an improved assessment of technical, scientific 

and economical performances of the different remote sensing platforms to assess their optimal 

operational context. In all operational-oriented studies, a cost comparison between different technological 
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solutions is of vital importance to define for each of them the cost/effectiveness range of application and 

their respective limits of convenience. 

The comparison of data with different native resolution involves the application of spatial statistics, 

and requires tackling the problem of spatial autocorrelation. All maps display spatial autocorrelation, 

needing dedicated statistics that take this into account by adopting a spatial lag, in analogy to the time 

lag in time series analysis. Furthermore, although methods are becoming available to compare maps 

accounting for the spatial structures present in the data, the most practiced procedures still rely on  

cell-by-cell evaluations. 

In this paper we deployed simultaneous UAV and aircraft NDVI surveys and quasi-simultaneous 

RapidEye NDVI satellite images, acquired over two vineyards in Italy, to assess the capability of each 

system to represent the intra-vineyard vegetation patterns, to evaluate the similarities of images taken at 

different spatial resolutions and to perform a pros and cons evaluation that combines operational and 

economic factors. The final outcome of this assessment is the development of a logical framework with 

the aim of providing guidelines for the choice of the appropriate detection platform as a function of the 

scale of analysis in PV. 

2. Materials and Methods 

2.1. Experimental Site  

Two vineyards, hereafter referred as V1 (45°31′02′′N, 12°31′01′′E) and V2 (45°43′05′′N, 12°32′10′′E) 

were chosen as test sites in the Veneto Region alluvial plain (Italy). The two vineyards have similar 

extension (2.5 ha) and the same agronomic characteristics. Cabernet Sauvignon (Vitis Vinifera L.) vines, 

grafted on 420A rootstock, are trained to free cordon with a single horizontal wire 1.5 m high and 

downward shoots. Vines spacing is 2.5 × 1.3 m between rows and plants, respectively, while the row 

orientation is North-South with flat topography. Climatic characterization for the period 1996–2013 

made use of data collected by a nearby agrometeorological station (45°43′05′′N, 12°28′46′′E). The study 

was performed in summer 2012, one of the warmest of the long-term period and second only to 2003, 

with mean temperatures 1.5 °C higher than the historical average (June–August), and a lower cumulated 

rainfall (90 mm compared to 230 mm average). 

2.2. Remote Sensing Platforms 

Three different remote sensing platforms were employed to map the NDVI vegetation index at the 

two sites (Table 1). 

2.2.1. UAV Images 

A flight campaign was made on 18 September 2012 using a UAV platform, based on a modified 

multi-rotor Mikrokopter OktoXL (HiSystems GmbH, Moomerland, Germany) able to fly by remote 

control or autonomously with the aid of its Global Position System (GPS) receiver and its waypoint 

navigation system. The sensor utilized to acquire UAV multispectral images was a Tetracam ADC Lite 

(Tetracam Inc., Chatsworth, CA, USA), described in detail in Table 1. All images were taken between 

12:00 and 13:00 in clear sky condition, and a white reference image to compute reflectance was taken 



Remote Sens. 2015, 7 2974 

 

by framing a Teflon calibration panel just before the flight. The flight altitude has been fixed at 150 m 

(AGL), with a UAV flight speed of 4 m/s. Those settings allowed a 72% image forward overlap, while 

a waypoints route planned ad hoc ensured a 40% image side overlap, high enough to guarantee an 

optimal photogrammetric processing. 

Table 1. Remote sensing platforms. 

 UAV AIRCRAFT SATELLITE 

Platform Mikrokopter OktoXL Sky Arrow 650 TC/P68 RapidEye 

Camera 

Tetracam ADC Lite ASPIS 
REIS 

Number of channels 3 12 5 

Spectral wavebands 

520–600 nm 

630–690 nm 

760–900 nm 

415–425 nm 

526–536 nm 

545–555 nm 

565–575 nm 

695–705 nm 

710–720 nm 

745–755 nm 

490–510 nm 

670–690 nm 

770–790 nm 

790–810 nm  

890–910 nm 

440–510 nm 

520–590 nm 

630–685 nm 

690–730 nm 

760–850 nm 

Dimension 114 × 77 × 22 mm 270 × 250 × 200 mm 656 × 361 × 824 mm 

Weight 0.2 kg 10 kg 62 kg 

Resolution 2048 × 1536 pixel 2048 × 2048 pixel 
12000 pixel linear 

CCD per band 

Pixel size 3.2 μm 7.4 μm 6.5 µm 

Focal length 8.5 mm 12 mm 633 mm 

FOV 42.5° × 32.5° 12.5° × 12.5° 15.7° × 10.5° 

Output data 10 bit RAW 8 bit RAW 16 bit NITF 

Image size 6 MB 4 MB 
462 MB/25 km along track for 

5 bands. 

Flight quote AGL 150 m 2300 m 630 km 

Flight speed 4 m/s 90 knot - 

Ground resolution 0.05 m/pixel 0.5 m/pixel 5 m/pixel 

Ground image 

dimension 
116.5 × 87.5 m 1024 × 1024 m 77 × 45 km 

Total frames 100 2 1 
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PixelWrench2 software (Tetracam Inc., Chatsworth, CA, USA) was used to manage and process ADC 

images, providing a batch file conversion from RAW to TIF. Ortho-rectification of the images was 

performed by means of a 5 m resolution digital elevation model (DEM). Afterwards, the captured images 

were assembled into a mosaic by Autopano Pro 3.6 Software (Kolor SARL, Challes-les-Eaux, France). 

Coordinates of the 50 PVC white panels (0.25 × 0.25 m) randomly located inside each vineyard were 

measured with a high-resolution (0.02 m) differential GPS Leica GS09 GNSS (Leica Geosystems A.G., 

Corporate Legal Services, Heerbrugg, Switzerland) to georeference the images. The QGIS software 

(Quantum GIS Development Team 2014, Quantum GIS Geographic Information System, Open Source 

Geospatial Foundation Project, http://qgis.osgeo.org) was used to carry out this task, utilizing ground 

referenced panels and a set of ortho-photos with a ground resolution of 0.5 m. A FieldSpec Pro 

spectroradiometer (ASD Inc., Boulder, CO, USA) was utilized to perform a radiometric calibration in 

field as described by Primicerio et al. [6], so each pixel DN (digital number) was converted first into 

spectral radiance and then into reflectance as described in Goward et al. [11]. 

2.2.2. Aircraft Images 

The aerial data of the two vineyards were acquired on the same day as UAV, in a single swipe with a 

Sky Arrow ERA platform [12] at a flight altitude of 2300 m above ground level, corresponding to  

a 0.5 m spatial resolution. The aircraft was equipped with the ASPIS (Advanced SPectroscopic Imaging 

System) remote sensing system [13] (Table 1), coupled with a Systron Donner C MIGITS III INS/GPS 

unit (Systron Donner Inertial, Concord, MA, USA) and a Riegl LD90 series laser altimeter (RIEGL 

Laser Measurement Systems GmbH, Horn, Austria). Spectral bands of red and near infrared were 

processed in order to calculate NDVI vegetation index. Radiometric correction to the sensor was applied 

by means of the proprietary software of Terrasystem srl. An atmospheric correction was carried out using 

the ENVI FLAASH module (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes, ITT 

Visual Information Solutions, USA), an algorithm developed by Spectral Sciences, Inc. (Burlington, 

MA, USA). Geometric correction, which is necessary to eliminate the internal optical distortions of the 

sensor and those caused by the altitude, was performed using the software PCI Geomatica (PCI 

Geomatics Corporate, ON, Canada), through a methodology that envisage the acquisition of ground 

control points on georeferenced high-resolution images. An aerial model was used as orthorectification 

algorithm for the aerial data. The aerial orthoimage (a mosaic of two frames) has been returned at 0.50 

m ground resolution, and georeferenced in the WGS 84-UTM 32 North reference system. 

2.2.3. Satellite Images 

A multispectral image acquired on 15 September 2012 (at 11.03 am) was provided by BlackBridge 

from the RapidEye archive. RapidEye is a constellation of five satellites that acquire multispectral data 

at a spatial resolution of 6.5 m, resampled to 5 m pixel size, in the range of the visible and near infrared. 

Images are provided in NITF 16-bit format, while temporal resolution is five to six days for nadir data 

and one day for the off-nadir. Features of the RapidEye’s spectral bands and technical specification are 

presented in Table 1. RapidEye Level 2 product embeds radiometric correction natively. As for aerial 

data, the atmospheric correction was carried out using the ENVI FLAASH module, and the geometric 

correction with PCI Geomatica software. We used the rational function orthorectification algorithm, 
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while the orthoimage (single frame) has been returned at 5 m ground resolution and then georeferenced 

in the WGS 84-UTM 32 North reference system. 

2.3. Statistical Framework 

Multispectral images acquired by UAV, aircraft and satellite platforms, were elaborated to  

calculate NDVI (Normalized Difference Vegetation Index) [14], which is a structural vegetation index 

utilized for the production of vigor maps according to the methodology extensively described by  

Matese et al. [8]. A set of statistical tools were applied to analyze the images with different purposes: 

Basic statistics and histograms for native resolution images were performed using Matlab software. 

Aircraft and UAV images have been resampled to match satellite resolution of 5 m by means of a 

block-averaging function. 

Quadrant decomposition was applied, allowing the decomposition of an image in sub-bocks based on 

their internal homogeneity: the bigger the sub-blocks, the higher the inherent homogeneity of the image. 

This method, similarly to a spectrum for a signal, enables the identification of the information that is 

contained within spatial scales. 

The heterogeneity of a map cannot be simply described in terms of descriptive but should account for 

the spatial structure, or patchiness, of the described variable statistics [15]. CV (coefficient of variation) 

is a measure of relative variance and was calculated as the ratio of standard deviation to mean value 

expressed as percentage. For each field, NDVI values were also used to compute geo-statistical 

information, such as the variogram and the trend (gradient), that were used to assess the within field 

variability. Native resolution image data were processed using Matlab code in order to calculate the 

variograms for both the vineyards. Experimental (Semi-) Variogram function [16] calculates the 

experimental variogram and Variogramfit function [17] performs a least squares fit of various theoretical 

variograms to an experimental, isotropic variogram. Nugget (N) is the height of the jump of the 

variogram at the discontinuity at the origin, Sill (S) represent the limit of the variogram tending to infinity 

lag distances and Range (R) is the distance in which the difference of the variogram from the sill becomes 

negligible. The variogram was computed using the maximum distance, dmax = 125 m. Trend was 

calculated using gradient (F) Matlab function, where F is the image matrix and returns the x and y 

components of the two-dimensional numerical gradient. 

The degree of similarity between images can be described by means of similarity indexes able to 

capture the degree of correlation between spatial structures. In particular two similarity indices, Lee and 

Pearson, were applied in this work using the map comparison statistic software developed by the 

Research Institute for Knowledge Systems [18]. Lee’s index [19] offers an approach to calculate 

bivariate spatial association reconciliating Pearson’s r statistic as a spatial measure of bivariate 

association and Moran’s I [20] as a univariate measure of spatial association. Basically, the correlation 

found between the mean fields is corrected for the degree to which X and Y are spatially autocorrelated. 

Lee index measures the extent to which both map 1 and map 2 are spatially autocorrelated and their 

neighborhood mean fields are correlated as well. The Pearson correlation (R) was calculated on the basis 

of a cell-by cell evaluation. 
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2.4. Cost Analysis 

The direct comparison of specific costs for the three platform is nonetheless not feasible due to the 

different aggregation of their cost estimates [21], as the satellite images are a commercial product where 

all the operational and development costs are included in the price per image figure and the  

aircraft campaign utilizes an external vector for aircraft missions. In this study we chose a top-down 

approach to account for all the expenses associated to data acquisition and processing, grouped into three 

broad categories:  

 Acquisition costs (C) cover all the expenses to get the raw images. For the satellite this is the 

purchase price of the commercial image, for the aircraft it includes the cost of the flying vector 

and the expenses for the deployment of the sensor platform and payload, while for the UAV it 

includes also all the costs for organizing and conducting the acquisition campaign. 

 Georeferencing and orthorectification (P1) includes the man-hour costs to obtain a georeferred and 

orthorectified image. The price for a single man-hour was considered at 50 Euros. 

 Image processing (P2) covers all the correction and elaboration, priced in man-hour, needed to 

get the final results. The process is similar for each platform, the only difference is the different 

resolution (and hence computing time) of the three starting images, and the fact that satellite and 

usually aircraft images do not require soil filtering as their resolution do not permit distinguishing 

between vines and inter-row. Also for that phase 50 Euros per single man-hour was considered. 

3. Results and Discussion 

3.1. Histograms and Basic Statistics 

The basic statistics performed on the images at native resolution highlighted differences between the 

three platforms in their range of values. For both V1 and V2 the histogram of UAV values is broader 

and shows NDVI values between 0.2 and 0.9; values range for aircraft images is between 0.3 and 0.7 

while satellite images show a narrower NDVI interval between 0.5 and 0.65 (Figure 1a,b). 

This different behavior between the three platforms is also confirmed by the descriptive  

statistics (Table 2), where UAV images show a higher standard deviation compared to aircraft and 

satellite images. 

Table 2. Basic statistics at native resolution. 

Platform N. Values Average Standard Deviation Skewness CV (%) Trend (NDVI) 

V1–UAV 4,956,789 0.589 0.08 −0.38 14.61 0.00005 

V1–AIRCRAFT 103,199 0.601 0.06 −0.77 9.98 0.00054 

V1–SATELLITE 1012 0.624 0.02 −0.28 3.68 0.0014 

V2–UAV 8,233,791 0.536 0.09 −0.11 17.16 0.00037 

V2–AIRCRAFT 96,588 0.477 0.07 −0.77 15.93 0.00094 

V2-SATELLITE 959 0.567 0.03 0.09 5.29 0.0044 

Within each platform, the two vineyards did not show substantial differences in the range of values 

with V1 showing a higher average NDVI and a lower standard deviation, compared to V2 that also has 

a more Gaussian distribution (Figure 1). 
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CV was greater in V2 than V1 and more variation going from low (satellite) to high resolution (UAV) 

was detected. Trend was greater in V2 than V1 showing a regular horizontal drift. 

 
(a) 

 
(b) 

Figure 1. (a) V1 NDVI histogram as percentage of total values; and (b) V2 NDVI histogram. 

The larger range of values (Figure 1) and the higher coefficient of variability (CV) detected by the 

UAV platform is explained by its higher resolution, which in a highly heterogeneous crop, such as 

vineyards, enables the identification of the alternation of canopies (higher NDVI values) and  

inter-rows (lower NDVI values related to grass cover or bare soil). On the contrary, the typical vineyard 

discontinuity was not detected by the satellite resolution that averages canopy and inter-row reflectance 

values, therefore providing a narrower distribution. Aircraft data fall in between UAV and satellite in 

terms of NDVI histograms (Figure 1) and variability (Table 1), confirming that spatial resolution is the 

key parameter controlling the amount of spatial information that is effectively sampled by each instrument. 

3.2. Coarse Resolution Inter-Comparison 

The comparison of images from the three platforms after the re-scaling at the satellite resolution  

(5 m) highlights similar behaviors of vegetation patterns and their spatial structure showing also some 

differences among platforms (Figure 2a,b). 
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From a visual inspection of the V1 images, a low vigor zone can be observed in the UAV image in 

the central zone of V1 that is progressively less pronounced in the aircraft and then in satellite image 

(Figure 2a). Similarly, vineyard 2 shows a gradient in the West-East direction that is more evident in 

satellite images while it is smoother in the UAV images and the aircraft pattern shows a more abrupt 

distribution in two distinct macro zones along the same direction (Figure 2b).  

(a) 

(b) 

Figure 2. (a) V1 images rescaled at 5-m resolution for the three platforms; and (b) V2 images 

rescaled at 5-m resolution for the three platforms. 

The similarity analysis enabled a further insight of these analogies and discrepancies: higher 

correlations were observed between UAV and aircraft images for both vineyards (R = 0.635 for V1  

and R = 0.881 for V2) (Table 3), while the correlation between UAV and satellite was high for V2  

(R = 0.779) and low for V1 (R = 0.286). Similarly, aircraft vs. satellite correlation was high in V2 (0.78) 

and low in V1 (0.42). Lee’s similarity index was high for V2 between all platforms and only between 
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UAV and aircraft for V1. Overall, all the cross-platform combinations of Pearson correlation and Lee 

index had consistently larger values in V2 than V1, suggesting that the presence of gradients and spatial 

patterns, like those observed in V2 (Figure 2), tends to increase spatial correlation parameters. On the 

other hand, more homogeneous patterns like in V1 are intrinsically less correlated. In terms of statistical 

comparison, the lower resolutions seems more informative in presence of vineyards showing variability 

according to a spatial gradient (trend), with respect to more homogeneous vineyards or vineyards 

showing a more irregular vegetation distribution (lower trend). 

Table 3. Similarity analysis indices. 

 V1 V2 

 Pearson (R) Lee (L) Pearson (R) Lee (L) 

SATELLITE vs. UAV 0.286 0.246 0.799 0.701 

SATELLITE vs. AIRCRAFT 0.426 0.346 0.776 0.689 

AIRCRAFT vs. UAV 0.635 0.547 0.881 0.747 

3.3. Image Decomposition 

The analysis of image structure performed on aircraft images with the quadrant decomposition 

method highlights a substantial difference in the distribution of dimensional classes between the two 

vineyards. V2 showed a higher degree of fragmentation, in particular in the east part, while V1 is 

represented by larger blocks and has therefore more homogeneous zones (Figure 3a,b).  

 

Figure 3. (a) V1 quadrant decomposition results and (b) V2 quadrant decomposition results. 

The distribution of dimensional classes differs between the two vineyards and is consistent between 

the two platforms (UAV and aircraft).  

The decomposition of V1 showed a higher presence of larger classes, especially in the aircraft image 

decomposition, while V2 was more heterogeneous and well represented by smaller classes. The smaller 
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classes represented are those of the native resolution of each acquisition platform (0.05 and 0.5 m for 

UAV and Aircraft, respectively). 

The analysis of the curves in Figure 4 enabled the quantification of the level of information that is 

not resolved moving from UAV and Aircraft to satellite resolution. Considering that satellite resolution  

is 5 m (represented by the dashed line in Figure 5), this spatial decomposition highlights how a relatively 

large fraction of information is represented by classes actually smaller than the satellite resolution. But 

it is worth noting that such fraction is higher in V2 with respect to V1, this means that satellite resolution 

is able to provide an appropriate representation of vineyards in those cases where the spatial structure of 

vegetation is more homogeneous.  

 

Figure 4. (a) Distribution of dimensional classes for Aircraft resolution and (b) distribution 

of dimensional classes for UAV resolution.  

3.4. Variogram Analysis 

The trend of variogram (Figure 5) variations with the spatial resolution describes the effect of spatial 

heterogeneity, providing an assessment of NDVI spatial structures within the image domain [22]. In 

general, all the variograms computed on all the images reached a sill well before dmax (maximum 

distance). The sill is an indicator of the spatial variability of the data.  

All experimental variograms computed on the images are linear at the origin, without any nugget 

effect, then increase promptly and reach almost the whole image variance at a very short range in V1 for 

UAV and AIRCRAFT (Raircraft = 3.88 m; Ruav = 0.29 m) with respect to V2 (Raircraft = 10.34 m;  

Ruav = 4.72 m), confirming that V1 is poorly structured with respect to V2 (Figure 5a–c). The degree of 

image spatial variability was attributable to the sill and for all the platforms it was higher in V2 than in 

V1 and was higher for UAV than aircraft and satellite.  
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(a) 

 
(b) 

 
(c) 

Figure 5. NDVI variograms of three platforms at native resolutions. The lines represent the 

fitted variograms models. The parameter of the variogram model are reported in the legend: 

C = sill, N = nugget, and R = range. (a) Satellite, (b) Aircraft, and (c) UAV 

The analysis of images fragmentation, performed with variograms and quadrant decomposition, 

provided a further insight highlighting the importance of the typology of vegetation structure fragmentation: 
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V1 was characterized by larger clusters of vegetation while V2 is characterized by higher heterogeneity 

and smaller vegetation sub-classes. With this approach, V1 distribution of pixels clustering, results are 

consistent between UAV and aircraft acquisition, confirming a distribution toward larger classes. For 

this vineyard (V1), all remote sensing platforms appear to be highly informative independently from 

their native resolution; in fact most of the variability falls in the bigger classes (>2 m), thus closer to the 

satellite native resolution. On the contrary, V2 vineyard was characterized by a higher variability and 

the classes of information that cluster together are placed at substantially smaller resolution and, in this 

case, the satellite platform succeeds only in part to represent the variability of the vineyard that is for 

over 50% described by classes smaller than the satellite resolution.  

The images comparative analysis acquired by the three different platforms involved the use of 

different methodologies in order to understand if when scaled to the spatial resolution of the satellite, 

these were comparable. The results show that the loss of information at lower resolution (satellite) 

relative to the aircraft and UAV are variable between vineyards, and cannot be simply described by 

pixel-based statistical indexes, such as Pearson correlation. In fact, V2 showed either a higher 

fragmentation into small spatial scales that are not resolved by the satellite platform (Figure 4b and 5b), 

and higher values of Pearson correlation and Lee indexes at the 5 m satellite resolution, with respect V1 

(Table 1). These results indicate that high Pearson correlation and Lee values at coarse resolution do not 

provide any insight of the actual amount of spatial variability that is contained in smaller classes, which 

can only be quantified with structural and variogram analysis. 

Other authors, as reported by Garrigues et al. [22], have studied many methods to quantify spatial 

heterogeneity from empirical (i.e., local variance), probabilistic (i.e., Variogram and fractal) to 

mathematical (i.e., Fourier or wavelet transform, but mainly applied to low-resolution images and 

comparing different satellite sensors). D’Oleire-Oltmanns et al. [23] compared UAV and satellite images 

for soil erosion assessment, proving an identification of gullies on different scales. Hall et al. [24] 

presented a review of remote sensing platforms, satellite and aircraft, demonstrating the high potential 

application of such technologies in precision viticulture. 

3.5. Inter-Row Separation 

Remote sensing representation of vineyards presents specific peculiarities, because of the alternation 

of vertical vine canopies with a horizontal surface that can be bare soil or covered by grass. This 

characteristic implies that the remotely sensed images contain information other than the vine canopy, 

i.e., the inter-row soil and the shading produced by canopies. In this sense, while satellite resolution 

necessarily implicates the averaging of row and inter-row information, smaller resolution of the same 

order of magnitude of canopy projection, enables performing a filtering of the image with the purpose 

of excluding the information coming from the inter-row. The possibility of removing the spectral 

response of the inter-row is of particular interest in the case of grass-covered inter-rows that can result 

in a biased representation of vine canopy status. This procedure can be easily performed starting from 

UAV images by mean of establishing a region of interest (ROI) in the center of each vine row with a 

canopy buffer width [25]. A comparison of images from the three resolutions with an inter-row filtering 

applied to UAV images is provided in Figure 6.  
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Figure 6. (a) Vineyard portion of Satellite image; (b) Vineyard portion of Aircraft image;  

(c) Vineyard portion of UAV image; and (d) Vineyard portion of UAV image with  

inter-row filtering. 

3.6. Acquisition and Processing Cost Analysis 

The three different platform analyzed in this study provide data products that illustrate the capability 

of remote sensing technologies to monitor and map vineyards with different levels of accuracy, 

emphasizing the impact of spatial resolution on vineyard variability assessment and analysis. 

The cost analysis was applied at two different spatial scales related to our study: 5 ha, which was the 

area actually mapped by UAV in this study, and 50 ha, which was the area actually mapped by the 

aircraft survey. Table 4 summarizes the operational costs associated with this case study. The number of 

images required to map a certain area (N) scales exponentially from satellite to aircraft and UAV, also 

resulting an increasing cost for the image processing chain (P1 and P2). The acquisition cost was fixed 

for satellite at both scales, since the same image can cover both areas, while it increases from  

5 to 50 ha by a factor of 1.36 and 2.66 for aircraft and UAV, respectively. 

The cost/benefit analysis was calculated on the basis of a service that is offered by a third party, thus 

not including the investment cost of purchasing an aerial platform or a UAV, instrumentation, 

maintenance, etc. Overall, on small fields (5 ha) the use of UAV appears to be the most cost effective 

solution due to the low cost for the data acquisition (Figure 7). On the contrary, when the plots reach a 

larger dimension (50 ha analyzed here), the UAV solution appears to be the least economic. The satellite 

solution does not imply any significant difference, while the aircraft solution is placed in the middle, 

showing only a marginal additional cost in the data acquisition related to the slightly higher flight time, 

and some higher image processing costs, since the typical aircraft acquired image was in the order of  

8–10 ha, requiring the processing of multiple images in the 50 ha case, and only one image in the 5 ha 



Remote Sens. 2015, 7 2985 

 

case. The break-even point that can be derived from Figure 7, i.e., the point at which two or more lines 

intercept, is placed slightly above 5 ha for all three platforms, meaning that at such scale size, the three 

technologies have approximately the same acquisition and processing cost. 

Table 4. Category costs (Euro) for satellite, aircraft and UAV mapping. N is the number of 

images that compose the mosaick, C the acquisition costs, P1 the georeferencing and 

orthorectifing costs and P2 the image processing costs. 

 5 ha 50 ha 

 N C P1 P2 N C P1 P2 

Satellite 1 2500 50 100 1 2500 50 100 

Aircraft 1 2200 100 150 10 3000 500 300 

UAV 100 1500 500 200 1000 4000 1000 300 

 

Figure 7. Plot of category costs (Euro) for satellite, aircraft and UAV platform, considering 

a 5 ha and 50 ha mapping area. 

The presented techniques are promising tools for farmers to monitor their crops, but each of them, if 

analyzed individually, can often be incomplete. In fact, if on one hand the applications of UAV and 

aircraft may be optimal for a fine characterization of the fields in terms of resolution and to identify the 

intra-vineyard variability, on the other hand satellite remote sensing is capable of mapping field 

variability with a higher temporal continuity that is consistent across seasons and multiple years, 

allowing monitoring of different vegetation stages during the growing season and to derive an historic 

analysis on past seasons.  

However, a parameter that can better target farmers to choose one or the other platform, or towards a 

multiplatform approach, is represented by the real structure of the vineyard that can be assessed only by 

UAV or aircraft application. It is hard, with satellite-only images, to assess factors, such as the actual 

degree of heterogeneity of the field, the status of the inter-row area, and therefore to assess the 

uncertainties associated with the satellite representation, lacking a fine resolution truth. In the presence 

of pronounced intra-vineyard variability associated with a lack of well-defined structure and gradients, 
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drones and aircraft can provide valuable information to tailor the use of pesticides, herbicides, fertilizer 

and other applications based on how much is needed at a specific point in a field, saving the grower 

money from unnecessarily overusing resources, while at the same time reducing the amount of runoff 

that could flow into nearby rivers and streams. 

Table 5 is an attempt to integrate all factors considered in this study, summarizing the strengths and 

weaknesses of the three platforms used as experienced in the actual acquisition campaigns. The mission 

attributes deal with the planning and execution of the surveys, the ability to reach the site (Range), to 

deal with weather condition and scheduled practices of the farm (cloud cover and flexibility), the need 

of multiple flights to obtain the whole scene (Endurance), and the overall reliability of the platform 

installment. With respect to aircraft and satellite, UAV can operate closer to the target with more 

flexibility on scheduling, and its acquisition are non-dependent on cloud cover conditions, but has a 

much shorter range and endurance and an overall lower reliability, being still in the prototyping phase. 

Satellite images on the contrary cover much larger areas, but are subject to fixed scheduling and strongly 

depend on cloud cover. The aircraft platform sits in between these two with more flexibility than satellite 

and better endurance than UAV. 

Table 5. Comparative platform characteristics for different remote sensing platforms.  

(++ optimal, + good, o average, - poor). 

  UAV Aircraft Satellite 

Mission 

Range - + ++ 

Flexibility ++ + - 

Endurance - ++ ++ 

Cloud cover dependency ++ + - 

 Reliability o + ++ 

Processing 

Payload o + ++ 

Resolution ++ + o 

Precision ++ + o 

Mosaicking and geocoding effort - o ++ 

Processing time o + + 

The image processing attributes deal with the computational chain deployed from the raw images to 

the final products. It includes the precision and resolution attainable on the maps and the effort and 

computing time to mosaic, orthorectify and produce the outputs. The strengths of UAV acquisition are 

of course in the higher resolution and precision, but at the cost of a greater effort for mosaicking and 

geocoding. Given the low number of images in the aircraft survey, an almost automatic processing  

code was implemented, reducing time and costs of elaboration. Satellite images on the contrary  

require no mosaicking and geocoding, at the price of a much lower resolution. The lower payload of the 

UAV platform while requiring dedicated and miniaturized sensors, was not a limiting factor in our 

acquisition campaigns 

3.7. Operational Discussions 

In the context of PV, vegetation mapping serve as a base to perform variable rate applications (VRAs). 

In this sense, from an operational perspective, the different platforms might be used with different 
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purposes and provide input for different variable rate applications. One of the most interesting VRA 

applications is the Variable Rate Spraying that consist in dosing the quantity of pesticides in function of 

the canopy volume, a technique that proved to enable an overall saving of up to 58% of application 

volume [26] with consequent reduction of pollution and of operation costs. In this specific case,  

high-resolution images are likely to represent the optimal solution for an efficient dosing of treatment, 

while low-resolution satellite images risk underestimating the canopy volume and therefore drive the 

application of insufficient treatment coverage. 

On the contrary, in the case of other VRAs, such as selective harvesting, a technique that enables the 

machine selection and harvesting of grapes of different qualitative classes and with different product 

destinations [27], the use of low-resolution images would provide a sufficiently accurate representation 

of grape quality macro-classes. 

A further aspect to be considered is that the low spatial resolution cannot account for inter-row 

management practice and, as a final result, it outputs an averaged spectral reflectance of the canopy and 

inter-row, independently from the agronomic management adopted. 

4. Conclusions  

The understanding of the intra-vineyard variability is a keystone to implement effective PV practices, 

especially in Mediterranean environment where the land-use patterns are highly fragmented and 

vineyards present high heterogeneity because of soil, morphology and microclimate variability. Our 

study, based on the comparison of different remote sensing platforms, highlighted that different 

resolutions provide similar results in the case of vineyards characterized by pronounced vegetation 

gradients and large vegetation clusters. On the contrary, in vineyards characterized by small vegetation 

gradients and high vegetation patchiness, low resolution images fail in representing intra-vineyard 

variability and its patterns. Furthermore, considering the peculiarity of vineyards crop structure, our 

work points out the impossibility of distinguishing canopy and inter-rows in the case of low-resolution 

images, something that limits the applicability of this platforms in the case of variable rate spraying. 

The cost analysis shows that, beyond technical aspects, an economic break-even between UAV and 

the other platforms exists between 5 and 50 ha of area coverage, and also that aircraft remote sensing 

remains competitive with satellite above such threshold. 
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