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Abstract: Polarimetric SAR (POLSAR) provides a rich set of information about objects on land 

surfaces. However, not all information works on land surface classification. This study proposes 

a new, integrated algorithm for optimal urban classification using POLSAR data. Both 

polarimetric decomposition and time-frequency (TF) decomposition were used to mine the 

hidden information of objects in POLSAR data, which was then applied in the C5.0 decision 

tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR 

POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed 

method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the 

commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the 

overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric 

decomposition and TF decomposition all proved useful in the process. TF information played a 

great role in delineation between urban/built-up areas and vegetation. Three polarimetric features 

(entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity 

of coherence) were found most helpful in urban areas classification. This study indicates that the 

integrated use of polarimetric decomposition and TF decomposition of POLSAR data may 

provide improved feature extraction in heterogeneous urban areas. 

Keywords: urban classification; polarimetric SAR; time-frequency decomposition;  

decision tree 
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1. Introduction 

Terrain and land-use classification is an important component of synthetic aperture radar (SAR) 

image application. SAR data in early years were often collected at a single frequency and pre-determined 

polarization (H or V), which precluded the separation and mapping of terrain classes due to limited 

information obtained by these systems [1]. Polarimetric SAR (POLSAR) submits and receives fully 

polarized radar signals, containing more information on land surfaces than conventional single- or  

dual-polarization SAR systems [2]. It is reported in past studies that terrain surfaces can be classified 

more accurately from POLSAR data [3–6]. The POLSAR image classification has become an important 

research topic since POLSAR images from ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, Cosmos 

sky-med and RADARSAT-2 are made publicly available. 

A group of methods have been proposed for classifying POLSAR imagery, which can be divided into 

three schemes. The first classification scheme is based on polarimetric decomposition theory [2]. The 

decomposed polarimetric parameters are related to physical properties of natural media and thus help in 

identifying terrain classes. Example classifiers in this scheme include the Entropy/Anisotropy/Alpha [7], 

Freeman 3-component decomposition [8], and Yamaguchi 4-component decomposition [9]. The second 

classification scheme incorporates statistical data such as the polarimetric covariance matrix and the 

distance between an unknown pixel and a clustering center in feature space [10,11]. These statistical 

measures have been commonly applied in regular supervised or unsupervised (e.g., ISODATA) 

classification. The third classification scheme adopts the so-called integrated approach, which combines 

the abovementioned polarimetric decomposition and statistical classification. A representative example is 

the Entropy/Alpha-Wishart classifier [12]. In this approach, the polarimetric data are first initialized by the 

entropy/alpha decomposition, and the maximum likelihood classification is applied to extract the best-fit 

complex Wishart distribution [13] of the training samples. Besides the polarimetric decomposition 

information, this classification scheme can be improved by introducing additional features such as 

polarimetric interferometric SAR (PolInSAR) [14] and multi-polarization textural information [15–17]. 

Classifiers can be broadly divided into two categories: statistical clustering [18] and machine  

learning [19]. A well-recognized example of statistical classifier is the complex Wishart classifier [11], 

a pixel-based maximum likelihood classifier based on a complex Wishart distribution of the polarimetric 

coherency matrix [20]. It requires that the distribution of ground features follow a normal probability 

distribution function. The complex distribution of ground features, especially for those in high-resolution 

POLSAR data, often violates this premise and leads to poor classification results [21]. Example machine 

learning classifiers include support vector machine (SVM), C5.0 decision tree algorithm, neural network 

algorithm and ensemble learning methods [19,22], each with distinctive characteristics. Among these, 

however, the most effective method for classifying POLSAR data is not clear. Another concern in 

POLSAR image classification is the feature selection. Whether using the statistical clustering or machine 

learning, feature selection is a critical issue. Numerous features can be extracted from POLSAR data, some 

of which have been widely applied such as radiometric information and full-polarization decomposition 

features. Recently, new polarimetric features such as time-frequency (TF) decomposition [23] have been 

extracted but have yet to be applied in classification. Whether these newly-identified features are useful 

in classifying POLSAR data is uncertain. 
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In this study, we explored various processes of feature and classifier selection and proposed a new 

method for classifying POLSAR data by integrating polarimetric decomposition and TF decomposition. 

By evaluating the input features, the C5.0 decision tree algorithm [24] efficiently selects the most 

important features and determines the splits for final tree construction. The effectiveness and stability of 

these algorithms were demonstrated in experiments on an example C-, L- and P-band NASA/JPL 

AIRSAR dataset. 

2. Study Site and Dataset 

The study area is located in San Francisco, CA, USA. As shown in the Pauli-color coded L-band 

polarimetric image (Figure 1), it covers both natural targets and urban areas with differently oriented 

buildings. Common ground covers include sea surfaces, forests, buildings, grass fields, bare grounds, 

parking lots, and sand surfaces. In Pauli-color coded scheme, red, green and blue are Pauli-color coded 

as |HH – VV|, |HV|, and |HH + VV|, respectively. In this composition, predominantly surface-scattering 

objects have bluish tones, double bounce reflections in red and volume scatterers in green. 

 

Figure 1. Study area in San Francisco and the AIRSAR L-band polarimetric image with 

Pauli color coding (Red: |HH – VV|, Green: |HV|, Blue: |HH + VV|). 

The POLSAR data were the Airborne Synthetic Aperture Radar (AIRSAR) fully polarimetric C-,  

L-, and P-band images downloaded from NASA Jet Propulsion Laboratory (JPL) [25]. The images were 

acquired on 15 July 1994. The look angle ranges from 21.5° at near range to 71.4° at far range. The 

ground spatial resolution is about 6.6 m in the range direction and 9.3 m in the azimuthal direction. 

Before image analysis, this POLSAR dataset was filtered using the 5 × 5 refined Lee POLSAR speckle 

filter [26]. It effectively preserves polarimetric information and retains subtle details while reducing the 

speckle effect in homogeneous areas. 
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A set of 12 classes were selected to represent land covers in the image: ocean at far range (FO), ocean 

at near range (NO), ocean centralized between far and near range (MO), lake (LK), dense forest  

(DF), trees (TS), grass (GS), bare land (BL), road (RD), orthogonal building (OB), non-orthogonal 

building (NB) and shadow (SD). Ocean surfaces were divided into far, central and near ocean areas 

according to their locations along the range direction because radar backscattering on ocean surfaces is 

affected by incident angles. In addition, classification accuracy of buildings is affected by the orientation 

of the building relative to the radar line of sight. Thus, buildings were divided into orthogonal and  

non-orthogonal classes. 

By visually interpreting these polarimetric data and referring to Google Earth images, we randomly 

extracted polygons of the 12 classes (31,929 pixels) of the study area. In order to explain the polygons 

clearly, the distribution of the samples is shown on the span image in Figure 2. These pixels were then 

randomly divided into training and validation samples (Table 1). These samples were used for training 

and accuracy assessment of the POLSAR classification. 

 
 

Far ocean Middle ocean Near ocean 

 

Lake Dense forest Trees 

 

Grass Bare land Road 

 

Orthogonal building Non-orthogonal building Shadow 

Figure 2. The distribution of the samples shown on the span image. 

Table 1. Number of Pixels Allocated to Training and Validation Samples in Image Classification. 

Class Abbr. Training (Pixels) Validation (Pixels) 
far Ocean FO 2210 2204 
near ocean NO 2119 2106 

middle ocean MO 2000 1948 
lake LK 338 271 

dense forest DF 850 884 
trees TS 1011 1128 
grass GS 1488 1561 
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Table 1. Cont. 

Class Abbr. Training (Pixels) Validation (Pixels) 
bare land BL 816 893 

road RD 1448 1564 
orthogonal building OB 1265 1302 

non-orthogonal building NB 1661 1584 
shadow SD 646 632 
Total  15,852 16,077 

3. Methodology 

This study developed a new classification approach to integrating polarimetric information and  

time-frequency (TF) decomposition in a C5.0 decision tree classifier. The framework of the 

classification scheme is shown in Figure 3. The main steps are described below. Details of each process 

are provided in the corresponding sub-sections. 

 

Figure 3. Flowchart of the classification method. 

3.1. Polarimetric Information 

The greatest advantage of POLSAR data over conventional single- or multi-polarization SAR is its 

inclusion of polarimetric information of ground features. Therefore, it offers a powerful means of 

detecting objects based on their unique electromagnetic radiation characteristics and scattering 
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mechanisms captured in the image. The polarimetric decomposition technique is an effective  

method that divides a received radar signal into several scattering responses of simpler objects.  

It simplifies the physical interpretation of objects, allowing the extraction of corresponding target types 

from POLSAR data. 

A variety of polarimetric decomposition methods have been developed to extract polarimetric 

information. We explored the following ones: Barnes, Huynen, Holm, Cloude, Freeman Two Components, 

Freeman Three Components, VanZyl Three Components, Yamaguchi Three Components, Yamaguchi 

Four Components, Neumann Two Components, Krogager, Touzi, and H/A/Alpha. Please refer to [2] for 

detailed calculation and physical interpretation of these polarimetric parameters. Moreover, derivative 

polarimetric features, such as conformity coefficient [27], scattering predominance [28], scattering 

diversity [29], degree of purity [30], and depolarization index [31], were also extracted to promote an 

optimal classification. A total of 68 polarimetric information features were obtained using 

PolSARPro_v4.2 (Table 2). 

Table 2. Polarimetric Information Features. 

Name Polarimetric Information 

Coherency Matrix T11 T22/T33/SPAN 

Barnes1 Barnes1_T11 Barnes1_T22 Barnes1_T33 

Barnes2 Barnes2_T11 Barnes2_T22 Barnes2_T33 

Huynen Huynen_T11 Huynen_T22 Huynen_T33 

Holm1 Holm1_T11 Holm1_T22 Holm1_T33 

Holm2 Holm2_T11 Holm2_T22 Holm2_T33 

Cloude Cloude_T11 Cloude_T22 Cloude_T33 

Freeman2 Freeman2_Vol Freeman2_Grd - 

Freeman3 Freeman_Vol Freeman_Odd Freeman_Dbl 

VanZyl3 VanZyl_Vol VanZyl_Odd VanZyl_Dbl 

Yamaguchi3 Yam3_Vol Yam3_Odd Yam3_Dbl 

Yamaguchi4  Yam4_Vol Yam4_Odd Yam4_Dbl 

 Yam4_Hlx - - 

Neumann2 Neum2_Mod Neum2_Pha - 

Krogager Krog_S Krog_D Krog_H 

Touzi Touzi_alpha Touzi_alpha1 Touzi_alpha2 

 Touzi_alpha3 Touzi_tau Touzi_tau1 

 Touzi_tau2 Touzi_tau3 - 

H/A/Alpha Entropy(H) Anisotropy(A) alpha 

 alpha1 alpha2 alpha3 

 PedestalHeight ShannonEntropy DERD 

 SERD PolarizationAsymmetry(PA) PolarizationFraction 

 RadarVegetationIndex (RVI) - 

Scattering Predominance Depolarization index Conformity Coefficient 

 Diversity Degree of purity - 

3.2. Time-Frequency Decomposition 

Through the TF technique, a POLSAR image can be decomposed into several sub-aperture images, 

each containing the unique scattering characteristics of a target viewed from different azimuthal look 

angles [23]. One advantage of this technique is its full use of “hidden” information in single-shot 
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POLSAR images. For example, when SAR Polarimetry and PolInSAR data cannot be obtained from a 

two-shot POLSAR image, the TF technique can compensate for the lack of interference information. 

The TF analysis in the azimuth direction is introduced as follows. Radar observation at a single  

pixel is the result of an area observation over a certain range of angles limited by the azimuth antenna 

pattern [2]. TF decomposition in azimuth direction results in a set of images containing different parts 

of the SAR Doppler spectrum at a reduced resolution, but corresponding to different azimuth look 

angles. These sub-aperture images can be used to detect objects with isotropic behaviors, for example 

scatterers with complex geometrical structures [7]. 

The TF decomposition can also be performed in range direction [32]. In this direction, TF 

decomposition decomposes the POLSAR image into a set of sub-aperture images with different 

observation frequencies, from which objects with frequency-sensitive responses, for example resonating 

spherical and periodic structures, can be detected [23]. Urban areas are composed of buildings with 

distinct structures and orientations, therefore radar looking directions are often more important than 

these frequency effects in urban land classification. For this reason, we only applied the azimuthal TF 

decomposition and convert the POLSAR data into two sub-aperture images. The frequency-related TF 

decomposition in range direction is not examined here. Rather, the effect of frequency on building 

extraction is evaluated from backscattering intensities of the C-, L- and P-band POLSAR images. 

The polarimetric difference and interferometric information between the two sub-aperture images are 

also explored. Both sub-aperture images are processed with polarization decomposition, and the same 

set of the decomposition components are extracted to calculate their difference in the two images. Three 

common polarization decomposition methods were applied in this step: Cloude-Pottier [33], Freeman  

3-component [8] and Yamaguchi 4-component [34] decomposition. Common interferogram information 

includes complex interferogram intensity, coherence and phase diversity [35–37]. This information was 

extracted using the interferometry models in RAT_v0.21 [38]. The 29 TF features extracted from the 

decomposition are listed in Table 3. 

Table 3. Features obtained by sub-aperture analysis. 

Name (Count) TF Features 

Polarimetric difference info. (10) ΔH, Δalpha, ΔA 

 ΔFreeman_Vol, ΔFreeman_Odd, ΔFreeman_Dbl 

 ΔYam4_Vol, ΔYam4_Odd, ΔYam4_Dbl, ΔYam4_Hlx 

Interferometric info. (19) Intensity, amplitude and phase of complex interferograms on HH, HV, VV 

 Intensity, amplitude and phase of coherence estimation on HH, HV, VV 

 Phase diversity 

3.3. C5.0 Decision Tree 

The decision tree is a classification algorithm favored for its high speed, high accuracy, simple 

generation mode and applicability to large datasets. Not requiring pre-decided data distribution, this 

algorithm is popularly used in data mining for complicated, non-linear mapping. Furthermore, this 

algorithm possesses innate feature-selection ability [26,39,40]. Here we used C5.0 decision tree [24] to 

construct the classification rules in POLSAR image classification. C5.0 decision tree is evolved from 

C4.5 decision tree that is descended from an earlier system called ID3. Compared with C4.5, C5.0 can 
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automatically winnow the attributes before a classifier is constructed, discarding those that appear to be 

only marginally relevant. Overall, the features of C5.0 are: (1) robustness to missing data and large input 

fields; (2) generation of intuitive rules, enhancing user understanding of the algorithm; (3) fast operation 

speed and efficient memory use; and (4) a powerful boosting technique, i.e., boosting and cost-sensitive 

tree building, to improve classification accuracy [23]. 

The 68 polarimetric features (Table 2) and the 29 TF parameters (Table 3) were combined into a 

multichannel image. A 97-element feature vector was then formed for each pixel (Table 1). All features 

were initially compared in the C5.0 decision tree with the following process: firstly, pruning severity 

and minimum records per child branch involved in C5.0 decision tree were set to be 75% and 2, 

respectively. Then, the information gain ratios of features [41] were calculated. The feature with the 

highest ratio was selected as the root node of the tree. Other features were hierarchically divided into 

branches by recalculating and assigning the highest ratio as this branch node. The iteration continued 

until a pre-defined threshold was satisfied. At last, the tree was pruned to prevent its overfitting.  

With this decision tree, the optimal features were determined, which were finally used to perform the 

POLSAR classification. 

4. Results 

4.1. Comparison between the Proposed Method and the Wishart Supervised Classification 

Classification results of the proposed method with the L-band image are shown in Figure 4a.  

The study area is a highly urbanized city (San Francisco, CA, USA). Urban structures, including 

buildings in different orientations and roads are fairly identified. Green covers in urban lands (e.g., parks) 

are clear. Ocean surfaces also show clear tonal differences from far range to near range. 

(a) (b) 
 

Far ocean Middle ocean Near ocean 

 

Lake Dense forest Trees 

 

Grass Bare land Road 

 

Orthogonal building Non-orthogonal Building Shadow 

Figure 4. Classification results of proposed method and Wishart supervised method on  

L-band data; (a) proposed method; (b) Wishart supervised method. 
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As a comparison, the commonly applied Wishart supervised classification [11] was also performed 

with the L-band image. The Wishart supervised classification (Figure 4b) is more greenish than that of 

the proposed method, revealing apparent overestimation of green covers. Correspondingly, urban 

structures are severely underestimated. The near ocean is misclassified as bare land (pink area in the 

upper right), while the far ocean is confused with lake and near ocean in the left and grass near the bridge 

in the upper left corner. Between Figure 4a,b, our proposed method yields the overall distributions of 

land surfaces that are similar to the original image. 

Using the validation points in Table 1, the accuracies the two classifications in Figure 4 are also 

compared with a confusion matrix approach (Tables 4 and 5). 

Table 4. Confusion Matrix of the Proposed Method (L-band). 

Classified 

Data 

Reference Data 

BL OB NB FO DF TS LK MO NO GS RD SD UA (%) 

BL 758 0 0 0 0 0 4 0 0 64 4 1 91.22 

OB 0 1290 11 0 0 9 0 0 0 0 3 0 98.25 

NB 0 10 1408 0 15 225 0 0 0 0 52 0 82.34 

FO 0 0 0 2150 0 0 5 71 0 11 0 0 96.11 

DF 0 0 19 0 838 47 0 0 0 3 13 5 90.59 

TS 0 2 124 0 22 785 0 0 0 0 33 0 81.26 

LK 1 0 0 4 0 0 209 10 0 3 1 0 91.67 

MO 0 0 0 50 0 0 41 1867 1 0 0 0 95.30 

NO 5 0 0 0 0 0 0 0 2105 0 0 0 99.76 

GS 90 0 0 0 1 0 9 0 0 1340 99 24 85.73 

RD 35 0 22 0 8 62 0 0 0 119 1343 38 82.54 

SD 4 0 0 0 0 0 3 0 0 21 16 564 92.76 

PA (%) 84.88 99.08 88.89 97.55 94.8 69.59 77.12 95.84 99.95 85.84 85.87 89.24 - 

OA (%): 91.17; kappa: 0.90. 

Table 5. Confusion Matrix of the Wishart Supervised Classification (L-band). 

Classified 

Data 

Reference Data 

BL OB NB FO DF TS LK MO NO GS RD SD UA (%) 

BL 11 0 0 0 0 0 0 14 810 12 6 0 1.29 

OB 0 720 39 0 0 1 0 0 0 0 0 0 94.74 

NB 0 552 664 0 0 365 0 0 0 0 2 0 41.95 

FO 0 0 0 1620 0 0 23 944 0 9 0 0 62.40 

DF 1 4 215 0 554 203 0 0 0 1 180 0 47.84 

TS 0 26 660 0 253 509 0 0 0 0 17 0 34.74 

LK 0 0 0 537 0 0 181 982 2 17 0 0 10.53 

MO 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

NO 85 0 0 0 0 0 0 0 1294 0 0 0 93.84 

GS 395 0 0 47 0 1 38 8 0 648 402 2 42.05 

RD 243 0 6 0 77 48 0 0 0 293 579 71 43.96 

SD 158 0 0 0 0 1 29 0 0 581 378 559 32.77 

PA (%) 1.23 55.30 41.92 73.50 62.67 45.12 66.79 0.00 61.44 41.51 37.02 88.45 - 

OA (%): 45.65; kappa: 0.41. 
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The overall accuracy (OA) of the proposed method was 91.17%, much higher than that of Wishart 

supervised classification (45.65%). The kappa value of the proposed method was 0.90, also much higher 

than 0.41 of the Wishart supervised classification. Furthermore, the producer’s (PA) and user’s (UA) 

accuracies were higher than those of the Wishart supervised classification for all classes. As an example, 

the UA and PA of bare land (BL) evaluated by the Wishart supervised classifier was 1.29% and 1.23%, 

respectively. As indicated by the confusion matrix, bare land was frequently confused with near ocean, 

grass and road. The proposed method greatly alleviated this situation, improving the UA and PA to 

91.22% and 84.88%, respectively. For the example of non-orthogonal buildings (NB), the Wishart 

supervised classifier dramatically confused it with dense forest (DF) and trees (TS), yielding the UA and 

PA of 41.95% and 41.92%, respectively. The proposed method largely remedied the confusion and 

increased the UA and PA to 82.34% and 88.89%. Similar results were obtained for classifications with 

C- and P-band data. The results indicate a huge improvement of classification with the proposed method 

in urban lands. 

4.2. Contribution of Polarimetric and TF Features 

The contribution was assessed by performing the C5.0 decision tree classification using a specific 

type of features (polarimetric or TF) each time. Their overall accuracies and Kappa values are compared 

with the all-feature classification that we proposed in this study (Table 6). 

Classification with full features reached the highest accuracies. By using polarimetric features  

(POL-only) in the classification, the overall accuracy for each band was about 3%–5% lower than the  

full-feature classification. The kappa coefficients were also decreased. Using TF information itself  

(TF-only), the overall accuracies were dramatically reduced, with approximately 14% in the C-band, 

13% in the L-band and 17% in the P-band. The kappa coefficients also significantly decreased. 

Therefore, polarimetric features played a better role in POLSAR image classification than TF features. 

Table 6. Accuracies for classification with full features (proposed), polarimetric features 

(POL-only) and TF features (TF-only) of the three images. 

 C-Band  L-Band P-Band 

 OA (%) Kappa OA (%) Kappa OA (%) Kappa 

Proposed 90.45 0.89 91.17 0.90 84.91 0.83 

POL-only 84.74 0.83 88.29 0.87 80.85 0.79 

TF-only 76.49 0.74 78.30 0.76 67.64 0.64 

In order to investigate the contribution of TF and polarimetric features to the accuracies of different 

classes, their producer’s (PA) and user’s (UA) accuracies with L-band image are listed in Table 7. 

In comparison with our classification using full features, the PAs and UAs of different ground objects 

decreased when POL- or TF-only information was used. It indicates that both TF and polarimetric 

information are important in the proposed method. The POL-only method significantly reduced the PA 

and UA of DF (dense forest), TS (trees) and LK (lakes) (>5%), indicating that TF information is required 

for accurately classifying these ground objects. The TF-only method also considerably decreased the PA 

and UA of ground objects. The decline in PA and UA of bare land and lake exceeded 20%. Therefore, 

polarimetric information is important for accurately classifying bare land, lake and central ocean areas. 
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Table 7. PA and UA of POL-only and TF-only method on L-band. 

PA (%) UA (%) 

 Proposed POL-Only TF-Only Proposed POL-Only TF-Only 

bare land (BL) 84.88 85.89 48.49 91.22 89.60 68.62 

orthogonal building (OB) 99.08 99.08 94.39 98.25 97.95 90.30 

non-orthogonal building (NB) 88.89 84.91 76.39 82.34 77.03 72.80 

far Ocean (OFOF) 97.55 95.55 89.07 96.11 93.89 83.32 

dense forest (DF) 94.80 87.22 91.29 90.59 77.41 79.82 

trees (TS) 69.59 57.54 59.49 81.26 73.09 71.23 

lake (LK) 77.12 59.04 54.61 91.67 84.21 66.37 

middle ocean (MO) 95.84 95.23 77.41 95.30 93.78 79.45 

near ocean (NO) 99.95 99.95 99.53 99.76 99.91 96.90 

grass (GS) 85.84 85.14 67.01 85.73 84.17 60.05 

road (RD) 85.87 80.95 64.58 82.54 79.97 66.71 

shadow (SD) 89.24 87.18 74.05 92.76 92.76 81.53 

Figure 5 shows the results of POL-only and TF-only classifications on L-band data. In the absence of 

TF information (Figure 5a), higher misclassifications were observed than the proposed full-feature 

classification in Figure 4a. For example, near the bridge in the upper left corner, the far ocean was 

misclassified as bare land. In the absence of polarimetric information (Figure 5b), some green areas in 

urban lands were misclassified as buildings. Two subsets of the image (marked as the red and blue 

squares in Figure 5) were selected to show more details about the effects of polarimetric and TF 

information. In these subsets, the original image and the three classification results are visually compared 

(Figure 6). 

(a) (b) 
 

Far ocean Middle ocean Near ocean 

 

Lake Dense forest Trees 

 

Grass Bare land Road 

 

Orthogonal building Non-orthogonal building Shadow 

Figure 5. Classification results of POL-only and TF-only on L-band data. (a) POL-only;  

(b) TF-only. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 6. Comparison of classification results in two subsets marked in Figure 5a.  

(a–d) represent the red-squired subset: (a) Pauli image (b) POL-only classification  

(c) TF-only classification (d) proposed method; Figures (e–h) represent the blue-squared subset:  

(e) Pauli image (f) POL-only classification (g) TF-only classification (h) proposed method. 

As displayed in Figure 6a, the red-squared subset is a typical dense residential area with regularly 

oriented dense buildings. Compared with the full-feature classification (Figure 6d), removing TF 

information (Figure 6b) resulted in misclassifying buildings to dense forest. The importance of TF 

information in delineating dense forest from non-orthogonal buildings has also been reported in previous 

studies [42]. On Google Earth, the blue-squared subset is a newly developed commercial and light 

industrial land. It has mixed cover of buildings, parking lots and open spaces with dense road  

networks (e.g., highways) (Figure 6e). For road classification, the TF-only classification results in coarse 

clusters (Figure 6g), while the POL-only classification (Figure 6f) is noisy. It is the combination of TF 

and polarimetric features that contributes to a reasonable classification result in Figure 6h. This 

phenomenon is in conformity with the analysis of accuracy of road classification in Table 7. 

4.3. Contribution of C5.0 Decision Tree Algorithm 

To evaluate the contribution of the C5.0 decision tree algorithm in the proposed method, the algorithm 

was replaced by various alternative classifiers [19] in L-band; neural network (NN), and SVMs with 

different kernel functions-radial basis function (SVM-RBF) and polynomial (SVM-POLY) [19]. The 

OA and kappa values of the classification results are listed in Table 8. 

From the table, the highest accuracies and kappa coefficients in each band were obtained by the 

proposed method. This indicates that the C5.0 decision tree classifier adopted in the proposed method is 

more effective than the other tested classifiers. Moreover, the Wishart supervised classifier yielded  

the lowest classification accuracy, while the classifier with multiple features achieved a relatively  

high accuracy, revealing that accurate classification requires the integration of multiple features.  

Finally, regardless of classifier, P-band data were classified with the lowest accuracy. This behavior may 
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be caused by the long wavelength of the P-band. Ground features in most urban areas are difficult to 

distinguish due to the complex scattering mechanisms of signals at longer wavelengths. 

Table 8. Classification Accuracy of Different Classifiers. 

 OA (%) Kappa 

Proposed 91.17 0.90 

Quest 71.85 0.69 

NN 86.00 0.84 

SVM-RBF 88.81 0.88 

SVM-POLY 88.41 0.87 

Wishart 45.65 0.41 

QUEST decision tree is designed to reduce the processing time required for the large decision tree 

analysis. Compared with QUEST, the rule of C5.0 decision tree is more complex, but it allows for more 

than two subgroups of segmentation many times. SVM is computationally expensive. Neural network 

has a strong ability of nonlinear fitting, but it is difficult to provide clear classification rules.  

C5.0 decision tree has a better performance on feature space optimization and feature selection, 

especially when the feature set is large [24]. 

4.4. Contribution of Multi-Frequency Dataset 

Radar signals at different wavelengths exhibit different sensitivities to ground features [43,44].  

Thus, combining multiple bands might be helpful for ground imaging. Here, POLSAR data of three 

frequencies are combined and input to C5.0 decision tree. The results of this test are shown in Figure 7 

and Table 9. 
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Figure 7. Classification results of adding C- and P-band data to L-band data. 
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Compared with other results, simultaneous use of C-, L- and P-band data further reduces the quantities 

of confused pixels between classes. For example, misclassification is diminished near the bridge in 

Figure 7, and the distribution of vegetation and buildings is more comparable to the high-resolution 

image at Google Earth. 

Table 9. Accuracy of Multi-Frequency Dataset. 

Band Selection OA (%) Kappa 

C 90.45 0.89 

L 91.17 0.90 

P 84.91 0.83 

C+L 95.56 0.95 

C+P 94.78 0.94 

L+P 94.89 0.94 

C+L+P 96.39 0.96 

In Table 9, combining any two bands dramatically increased the accuracies compared to any  

single-frequency classification. Using all of C-, L, and P-band data reached the highest OA (96.39%) 

and Kappa coefficient (0.96). In order to study the effects of single bands and band combinations of 

classification accuracy on different ground objects more clearly, PA and UA of typical classes were provided 

in Figure 8. 

 

Figure 8. PA and UA histogram of Multi-Frequency Dataset. 

From the Figure 8a, PA of trees in C-band was higher than that in L-band, while PA of orthogonal 

building in C-band was lower. Comparing the scattering mechanisms at different frequencies, the  

C-band return is primarily from volume scattering in the vegetation canopy, whereas L-band scattering 

is stronger for ground as well as double bounce in urban areas. The L-band classification plays better in 

the distinction among forest, trees, and building. At higher frequencies, POLSAR data are less sensitive 

to azimuth slope variations because electromagnetic waves at short wavelength are more sensitive and 

less penetrative to small scatterers. This may explain the poorest performance of P-band classification. 

Classification accuracies of multi-frequency dataset performed better than those of single bands.  

For instance, using the combination of C- and L-band datasets, the PA of each class was increased, 

compared with that of a single band. The PA and UA of trees, grass, and non-orthogonal buildings were 
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enhanced to a large degree. As waves at different wavelength are sensitive to various scatterers, the 

methods using the combination among different bands dataset for comprehensive utilization of this 

nature makes the classification precision improvement. Overall, the C- and L-band PolSAR data are 

more suitable for single band data classification, and multi-band classification performs much better 

than any single-band data. 

4.5. Stable Features in POLSAR Image Classification 

When all POLSAR features are included, the proposed method reaches high classification accuracy. 

However, practically, it is time consuming and inefficient to collect such a large set of features from 

POLSAR imagery. With reduced sets of features, the complexity of the C5.0 decision tree can be 

effectively decreased and the applicability improved. For this purpose, all features (100%) involved in 

the proposed method were sorted by their predictor importance (calculated by the C5.0 decision tree 

algorithm) to test the feasibility of feature reduction. The feature groups at top-ranking 50%, 40%, 30%, 

20% and 10% were selected and classified in the C5.0 approach. The accuracies are compared in  

Table 10. 

Table 10. Overall Accuracies of classification with reduced features. 

 C-Band L-Band P-Band 

100% 90.45% 91.17% 84.91% 
50% 90.10% 91.00% 84.42% 
40% 89.79% 90.66% 84.95% 
30% 89.39% 90.17% 84.72% 
20% 85.59% 88.55% 84.78% 
10% 79.64% 85.65% 81.87% 

For all images in three frequencies, the overall accuracies were similar when using 100%, top 50%, 

40%, and 30% features. Accuracies slightly changed when features used in classifications dropped to 

20%. When only 10% of features were used, however, there was a relatively large decrease of the 

accuracies. Therefore, the top-ranking 20% of features are a reasonable set of input features for 

classification. Table 11 lists the top 20% of features used in the proposed method of C-, L- and P-band 

in a descending order of their predictor importance scores. For images at different frequencies, a different 

set of features was included in each rank. Four features were always selected: three polarimetric features 

including H/A/Alpha decomposition (entropy), Shannon entropy, and T11 Coherency Matrix element 

that describes the single scattering flat surface (or odd scattering), and one TF feature that is the intensity 

of coherence of HH. These four features are highlighted in bold in Table 11. 

Using these four features as inputs, the accuracies of the proposed method and the Wishart supervised 

classification method are compared in Table 12. 

For all frequencies, the overall accuracies of the proposed methods were around 30% higher than the 

Wishart supervised method. For the C-band image, its accuracy was even higher than the top 10% 

features as listed in Table 10. Interestingly, with only four features, classification of the C-band image 

reached the highest accuracy, while that of the L-band image had the best results when more features 

were used (as shown in Table 10). The P-band image turned out to have the lowest accuracies for all 
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combination of features, which could be related to noises introduced by more complex interaction 

between longer wavelength signals and heterogeneous urban surfaces. 

Table 11. Top 20% of features in the proposed method of C-, L- and P-band. 

C-Band L-Band P-Band 

Shannon Entropy VanZyl_Vol Shannon Entropy 

(TF)Δalpha (TF)intensity of coherence of HH (TF)intensity of coherence of HH 

(TF)intensity of coherence of HH Shannon Entropy Neum2_Pha 

T11 Yam3_Vol Entropy 

ConformityCoefficient SERD Krog_H 

Krog_D Freeman_Vol (TF) Intensity interferogram of HH 

Yam3_Vol Depolarization index DERD 

PedestalHeight Yam4_Vol Holm2_T22 

(TF)Intensity interferogram of HH Yam4_Dbl Huynen_T22 

Yam3_Dbl Cloude_T33 Anisotropy 

Yam3_Odd Freeman2_Vol T11 

Entropy Touzi_tau2 Conformity Coefficient 

Holm1_T22 Freeman_Dbl Barnes2_T11 

Huynen_T22 Krog_S Huynen_T33 

Anisotropy T11 Touzi_tau1 

Cloude_T11 Touzi_alpha1 (TF)ΔYam4_Odd 

Touzi_tau1 Entropy alpha3 

VanZyl_Vol alpha2 (TF) amplitude coherence of HV 

(TF) Intensity interferogram of HV VanZyl_Odd Yam4_Hlx 

The four features in bold are the stable features which exist in the top 20% of features used in the proposed 

method of C-, L- and P-band. (TF) stands for TF feature, others are polarimetric features. 

Table 12. Overall Accuracy of Wishart supervised method and proposed method using only 

4 features. 

 C-Band L-Band P-Band 

Wishart supervised 56.44% 45.65% 43.20% 

Proposed method 82.22% 79.38% 73.20% 

5. Discussion 

The proposed method mines the information inherent in POLSAR images, and achieves relatively 

high classification accuracies without support from other data. For example, repeat-pass interferometry 

improves the classification of ground features, such as buildings [40]. However, a polarimetric 

interference dataset is difficult to obtain, and incurs high cost. In the absence of a repeat-pass 

interferometric dataset, the proposed method obtains interferometric information between different  

sub-aperture images using the TF technique. 

The benefit of the proposed method is revealed in several ways. First, the data are processed  

images without the need of complex pre-processes as needed for raw data. Second, the model adopts the 

well-established TF and polarization decomposition techniques and the C5.0 decision tree algorithm, 

which can be easily implemented and integrated. Third, the proposed method is compatible with different 
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POLSAR features and classifiers. Accordingly, our procedure is adaptable to new features or classifiers. 

For example, the QUEST algorithm [45] is less accurate than the C5.0 algorithm, but its tree depth can be 

controlled to decrease the complexity of the classification rules. Hence, the C5.0 could be replaced by this 

algorithm if a simple decision tree is sufficient. Finally, the classical Wishart supervised classification 

assumes a Gaussian distribution of ground features. This assumption is suitable for natural environments 

with relatively homogeneous land covers, but not viable in urban areas. Therefore, the Wishart supervised 

classification yields low accuracy in the present study. In contrast, the proposed method is decision tree-

based and does not require a hypothesized statistical distribution, and is applicable to various land covers. 

Different from black box algorithms, such as neural networks, the proposed method is a white box. The 

given classification rule in each branch reveals the ground objects associated with specific POLSAR 

features. Therefore, the proposed method can yield a clear physical explanation. 

Among the rich set of POLSAR features, three polarimetric features (H/A/Alpha entropy, Shannon 

entropy, T11) and one TF feature (HH coherence intensity) are found always holding high importance 

in urban classification of the test site. T11 stands for single or odd-bounce scattering, entropy measures 

the degree of the randomness of the scattering process, for which entropy→0 corresponds to a pure 

target, whereas entropy→1 means the target is a distributed one. Shannon entropy [46] is a way of 

quantifying the disorder of random variables, it is the sum of two contributions related to intensity and 

polarimetry of PolSAR data. So it can determine which fraction of the disorder quantified by the entropy 

comes from intensity fluctuations from depolarization, and from incoherence. The fluctuating random 

variables have high value of Shannon entropy, while the quasi-deterministic random variables have 

relatively low value. Intensity of coherence of HH is the coherence generated by PolInSAR technique 

using the two sub-aperture images from the full-resolution POLSAR data. These features played 

different roles in urban classification. For example, TF information (HH coherence intensity) could be 

very helpful in distinguishing dense forest and slant-buildings. Generally, buildings have the typical 

characteristics of double-bounce scattering, and dense forest has the typical characteristics of volume 

scattering. However, some buildings have specific orientations not aligned in the azimuth direction or 

have complex structures, which may cause significant depolarization and produce high cross-polar levels 

that can appear as volume scattering. Consequently, those buildings were classified as a volume class, 

and then misinterpreted as dense forest (Figure 3b). But in the two sub-aperture images, buildings, unlike 

dense forest, are high-coherence targets, thus TF information can separate buildings from dense forest. The 

selection of POLSAR features is related to physical properties of ground objects and their distributions. 

Better understanding of these features is thus important in advancing POLSAR applications. 

As demonstrated in this study, accuracies of POLSAR image classification also vary using data 

acquired in different frequencies. One may notice that C- and L-band data achieve higher accuracies 

than P-band (Table 8). The possible reason is that the shorter wavelength (C, L) can get more spatial 

information than the longer (P-band) in high-density urban area. But multi-frequency information has 

strong mutual complementariness. For example, the long wavelength of P-band supplies electromagnetic 

scattering information that is unobservable in the C- or L-band, but reveals less detailed spatial 

information. By combining the P-band data with those of the C- and L-bands, the electromagnetic and 

spatial details can be fully utilized to enhance the delineation of ground objects. Additionally, some 

studies have shown that other features, such as the object-oriented spatial information, are also useful in 
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POLSAR image classification [40]. More experiments will be conducted in the future to investigate the 

contribution of these new features in urban mapping. 

6. Conclusions 

This study integrates time-frequency information, polarimetric information and C5.0 decision tree 

into a novel approach to performing POLSAR image classification in an urban area. The integrated 

results achieved an overall classification accuracy around 90% on C- and L-band data, and 85% on  

P-band data, much higher than the Wishart supervised classification. Polarimetric information better 

distinguished among bare land, lake and ocean, while TF information reduced the confusion between 

urban/built-up areas and vegetation. Four stable features, entropy, Shannon entropy, T11 and HH 

intensity of coherence, are found more useful than other POLSAR features in urban classification.  

This approach provides a superior way of classifying urban areas from multi-band POLSAR imagery. 
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