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Abstract: This paper proposes a practical split-window algorithm (SWA) for retrieving 

land surface temperature (LST) from Landsat-8 Thermal Infrared Sensor (TIRS) data. This 

SWA has a universal applicability and a set of parameters that can be applied when 

retrieving LSTs year-round. The atmospheric transmittance and the land surface emissivity 

(LSE), the essential SWA input parameters, of the Landsat-8 TIRS data are determined in 

this paper. We also analysed the error sensitivity of these SWA input parameters. The 

accuracy evaluation of the proposed SWA in this paper was conducted using the software 

MODTRAN 4.0. The root mean square error (RMSE) of the simulated LST using the  

mid-latitude summer atmospheric profile is 0.51 K, improving on the result of 0.93 K from 

Rozenstein (2014). Among the 90 simulated data points, the maximum absolute error is 

0.99 °C, and the minimum absolute error is 0.02 °C. Under the Tropical model and  

1976 US standard atmospheric conditions, the RMSE of the LST errors are 0.70 K and 

0.63 K, respectively. The accuracy results indicate that the SWA provides an LST retrieval 

method that features not only high accuracy but also a certain universality. Additionally, 
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the SWA was applied to retrieve the LST of an urban area using two Landsat-8 images. 

The SWA presented in this paper should promote the application of Landsat-8 data in the 

study of environmental evolution. 

Keywords: Landsat-8; land surface temperature (LST); split-window algorithm (SWA); 

land surface emissivity (LSE) 

 

1. Introduction 

Land surface temperature (LST) plays a significant role in environmental evolution, including heat 

energy circulation and the water cycle. Retrieving LST from remote sensing data is an important 

capability for researching the spatial evolution of the regulation of the heat environment at local and 

global scales [1–4]. Studies on the derivation of LST using satellites have been conducted primarily 

using NOAA AVHRR data [5,6] at a regional scale. Landsat Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) thermal infrared (TIR) data have been used in local-scale studies of LST 

distributions [7–9]. Data from medium-resolution thermal infrared sensors, such as MODIS and AVHRR 

with daily temporal resolution, and high-resolution thermal infrared sensors, such as the Landsat series 

that pass once every 16 days, have been supplied to the public in recent decades [10]. Many studies on 

the retrieval of LSTs from satellite TIR data have been performed since the 1990s. The methods used  

can be broadly classified into three categories: single-channel methods, multi-channel methods, and  

multi-angle methods [11]. The single-channel method, also called the mono-window algorithm, utilizes 

the radiance measured by a sensor in a single channel to retrieve LST using the general radiance transfer 

equation [12–14]. The multi-channel method, also called the split-window algorithm (SWA), uses the 

different absorptions of two TIR channels, linearizing or nonlinearizing the radiance transfer equation 

with respect to the temperature or wavelength. Many efforts have been made to extend the SWA because 

these algorithms assume that the land surface emissivity (LSE) values in both TIR channels are  

known [15–27]. The multi-angle method is in accordance with different atmospheric absorptions  

because of the differential path-lengths associated with observing the same object from various viewing 

angles [21,24,28–32]. The launch of the Landsat-8 satellite on February 11, 2013 adds to the remote 

sensing data of the Landsat family, TM and ETM+. The Landsat-8 satellite carries the Operational Land 

Imager (OLI) with nine bands and Thermal Infrared Sensor (TIRS) with band10 and band11. Using  

an SWA, the TIRS band10 and band11 provide the atmospheric rectification for the thermal infrared  

data [33,34]. Jimenez-Munoz and Sobrino et al. [35], Rozenstein et al. [10] and Du et al. [36] proposed 

three different SWAs for LST retrieval from Landsat-8 TIR data. The objective of this paper is to 

provide another SWA for retrieving LSTs from Landsat-8 data. We attempt to improve the convenience 

and accuracy of the LST retrieval of Landsat-8 TIR data and provide an alternative. Although the idea of 

the SWA presented in this paper is based on the practical split-window algorithm proposed by  

Mao et al. [27], we did not merely transplant Mao’s principle; we also studied the input parameter 

determination and algorithm structures. We conclude that the SWA idea proposed in this study can be 

not only applied to Landsat-8 TIR data but can also be used with other kinds of remotely sensed thermal 

infrared data, such as ASTER and MODIS.  
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In this paper, we have developed a practical SWA for Landsat-8 TIRS data from another 

perspective and subjected it to a sensitivity analysis and accuracy assessment. Additionally, a specific 

calculated case for an urban area in China is provided. Specifically, this paper will (1) describe the 

SWA model and derive the LST calculation; (2) determine the atmospheric transmittance and the 

emissivity of the ground for the Landsat-8 TIRS; (3) analyse the sensitivity of the essential input 

parameters and assess the accuracy via simulated data using MODTRAN 4.0; and (4) retrieve the LST 

of an urban area in China. 

2. The SWA for Landsat-8 TIRS 

2.1. Theoretical Derivation of the SWA 

The theoretical basis of the LST retrieval algorithm is Planck’s law, which is based on the thermal 

radiance of the ground and the heat transfer from the ground through the atmosphere to the remote 

sensor [27]. According to Planck’s law, the thermal emittance from an object can be expressed as 

Planck’s radiance function [37], as follows in Equation (1): 
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where Bn(T) denotes the object’s spectral radiance, T its absolute temperature, k the Boltzmann 

constant, h the Planck constant, and c the speed of light. The units of Bn(T) are Wm−2sr−1µm−1. The 

general radiance transfer equation [38] for the remote sensing of LST can be formulated as follows in 

Equation (2): 
( ) ( ) (1 )i i i i i s i i i iB T B T I I        (2)

where Ts is the LST, Ti is the brightness temperature in channel i, εi is the ground emissivity and τi is 

the atmospheric transmittance in band i. Bi(Ts) is the ground radiance, and Ii ↓ and Ii ↑ are the 

downward and upward path radiances, respectively. Ii ↓ and Ii ↑ can be expressed by Equations (3) and 

(4), respectively [27]: 

(1 ) ( )i i i aI B T    (3)

(1 ) ( )i i i aI B T   (4)

where aT   is the average temperature of the downward radiance of the atmosphere, and Ta is the 

average temperature of the upward radiance of atmosphere. Every term of the radiance transfer 

equation includes the Planck function. According to Qin’s [39] analysis, few differences result from 

using Ta instead of aT  . Therefore, Equation (2) can be written as follows:  

( ) ( ) (1 )(1 ) ( ) (1 ) ( )i i i i i s i i i i a i i aB T B T B T B T            (5)

which can be consolidated as follows: 

( ) ( ) (1 )(1 (1 ) ) ( )i i i i i s i i i i aB T B T B T          (6)

In Equation (6), the value of Bi(Ti) can be calculated by substituting the brightness temperature iT  

into the Planck function. The terms Bi(Ts) and Bi(Ta) need to be simplified. In this paper, considering 
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the scope of the application and the desired retrieval accuracy, we applied different simplified fitting 

methods for Bi(Ts) and Bi(Ta). Because Bi(Ts) has a greater impact on the retrieval precision and it 

contains inversion parameters, we decided to nonlinearly fit it with a quadratic function, whereas 

Bi(Ta), which has less impact on the retrieval accuracy, can be linearly fit. Then, Equation (6) can be 

written as follows: 
2( ) (1 )(1 (1 ) )( ) ( ) 0

i i i s i s i i i i i a i i i
a T b T c k T d B T              (7)

If the equation is condensed by setting 
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Then, Equation (7) can be expressed as follows: 
2 + 0i s i s i a iAT BT C T D    (8)

For Landsat-8 TIRS band10 and band11, Equation (8) generates the following equation set: 
2
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or, upon consolidation, 
2
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(10)

When this equation is solved for Ts, the result can be expressed as  

2
10 11 11 10 10 11 11 10 11 10 10 11 11 10 10 11 11 10 10 11[( )+ ( ) 4( )( )] / [2( )]sT C B C B C B C B C A C A C D C D C A C A        

(11)

which can be generalized to: 

 2
10 10 11 11( ) ( ) ( )sT B T B T        (12)

where , , ,   and  are parameters computed by 10 10 11, , ,   and 11 , respectively. 

2.2. Determination of Coefficients  

2.2.1. Determination of the Fitting Parameters for ( )i sB T  and ( )i aB T  

This study simplified Bi(Ts) via a quadratic fitting method and Bi(Ta) via a linear simplification 

approach. To strengthen the universality of the model, the temperature range is set from 180 K–363 K 

(−90 °C–90 °C) for Landsat-8 thermal infrared bands 10 and 11. The selection of the temperature 

range is based on a full consideration of the existence of extreme surface temperature regions. The 

extreme minimum temperature was reported to have reached −71 °C in Oymyakon village in Russia, 

and the surface temperature reached as high as 82.3 °C in several desert areas in the summer. Based on 

the TIR spectral response function of Landsat-8, the effective wavelengths [40] and wavenumbers of 

these TIRS are calculated to be 10.9034 μm and 917.1417608 cm−1 for the minimum temperature, 

respectively, and 12.0028 μm and 833.1387464 cm−1 for the maximum temperature, respectively. 
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Then, the thermal radiation values can be obtained using Equation (1). The corresponding Planck 

curve is shown in Figure 1. The quadratic fitting function is shown in Table 1, the linear regression 

formula is listed in Table 2, and the fitting parameters Bi(Ts) and Bi(Ta) are listed in Table 3. 

 

Figure 1. The Planck radiance-temperature (180 K–363 K) curve of the Landsat-8 TIRS. 

Table 1. The quadratic fitting results for the Landsat-8 TIRS. 

TIRS Quadratic Fitting Expression R2 SEE 

band10 2

10
( ) 0.0006678 0.2333226 21.1666266

s s s
B T T T    0.999979 0.0309 

band11 
2

11
( ) 0.0006188 0.1990475 16.7224278

s s s
B T T T    0.999997 0.0117 

Table 2. The linear regression results for the Landsat-8 TIRS. 

TIRS Linear Regression Results R2 SEE 

band10 
10

( ) 0.1312942 26.7808503
a a

B T T   0.9465 1.6404 

band11 
11

( ) 0.1387986 27.7043284
a a

B T T   0.9584 1.5193 

Table 3. The fitting parameters of Bi(Ts) and Bi(Ta) for the Landsat-8 TIRS. 

TIRS 

Fitting Parameters 

Quadratic Fitting Parameters 
2( )

i s i s i s i
B T a T bT c    

Linear Regression Parameters 

( )
i a i a i

B T k T d   

band10 a10 = 0.0006678 b10 = −0.2333226 c10 = 21.1666266  k10 = 0.1312942 d10 = −26.7808503 

band11 a11 =  0.0006188 b11 = −0.1990475 c11 = 16.7224278  k11 = 0.1387986 d11 = −27.7043284 

2.2.2. Determination of Atmospheric Transmittance 

The atmospheric transmittance is an important factor in the split-window algorithm. According to 

previous studies, the atmospheric transmittance strongly depends on the atmospheric water vapour 
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content, especially for thermal bands [27]. This paper studied the relationship between the Landsat-8 

TIRS’ atmospheric transmittance estimates and the water vapour in the atmosphere via MORTRAN 

4.0 simulations that use the Mid-Latitude Summer atmosphere profile. The simulation data are listed in 

Table 4. Cubic polynomial fits are adopted for the relationship between the atmospheric water vapour 

content and transmittance, and the fitting expressions are shown in Table 5. The agreement is very 

satisfactory. Because the errors in the water vapour content are 0.20 g·cm−2 [41] and 0.10 g·cm−2, the 

corresponding atmospheric transmittance evaluation errors are less than 0.031 and 0.016, respectively. 

Table 4. The water vapour of the atmosphere and the corresponding atmospheric 

transmittance as simulated by MORTRAN 4.0. 

Water Vapour Content (g·cm−2) TIR10- 10  TIR11- 11  

0.5 0.93542 0.89660 

0.6 0.92903 0.88448 

0.7 0.92217 0.87220 

0.8 0.91483 0.85967 

0.9 0.90700 0.84686 

1.0 0.89869 0.83372 

1.1 0.88990 0.82021 

1.2 0.88064 0.80637 

1.3 0.87093 0.79215 

1.4 0.86076 0.77758 

1.5 0.85015 0.76266 

1.6 0.83913 0.74742 

1.7 0.82769 0.73187 

1.8 0.81588 0.71603 

1.9 0.80370 0.69993 

2.0 0.79117 0.68360 

2.1 0.77830 0.66706 

2.2 0.76514 0.65034 

2.3 0.75168 0.63347 

2.4 0.73798 0.61649 

2.5 0.72401 0.59941 

2.6 0.70983 0.58229 

2.7 0.69546 0.56512 

2.8 0.68092 0.54797 

2.9 0.66622 0.53084 

3.0 0.65140 0.51378 

Table 5. The cubic fit regression functions of the atmospheric transmittance and water 

vapour content range of 0.5–3.0 g·cm−2. 

TIRS Cubic Regression Results R2 SEE 

band10 2 3

10
0.9570356 0.0277340 0.0333734 0.0028800w w w      0.999999 0.0001 

band11 2 3

11
0.9456728 0.0857755 0.0290912 0.0032169w w w      0.999995 0.0003 
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The water vapour content w was estimated using the same daytime MODIS data. Although the times 

of MODIS and Landsat-8 cannot be strictly the same, the Terra satellite carrying MODIS transits the 

study area approximately 43 minutes earlier than Landsat-8 ((approximately 02:35 versus approximately 

03:08). The study area is ringed by mountains on three sides, and we have therefore assumed that the 

water vapour content w  is constant during this time. Kaufmann, Y. J. et al. [42] provided a method to 

compute the water vapour content in the atmosphere using the reflectance of band2 and band19 of 
MODIS; thus, we can obtain the water vapour content of the atmosphere using Equation (13). 

2

19 2ln( / )r r
w




  
  
 

 (13)

where w is the water vapour content in g·cm−2, 0.020  , 0.651  , and 19r and 2r  denote the 

reflectance of MODIS band19 and band2, respectively.  

2.2.3. Determination of the Emissivity of the Ground  

In consideration of the high signal-to-noise ratio (SNR), this study employed the NDVI threshold 

method, which considers the differing impacts of distinct land cover types (e.g., water, vegetation,  

bare soil and impervious surfaces), proposed by Sobrino et al. [43] to determine the land surface 

emissivity (LSE).  

We have also referred to the ASTER spectral database[44] to determine the emissivity values of 

water, vegetation and non-vegetation for Landsat-8 TIRS band10 and band11 (Table 6). Water pixels 

with negative NDVI values (NDVI < 0) were set to LSE values of 0.991 and 0.986 for band10 and 

band11, respectively. Fully vegetated pixels with a NDVI value greater than 0.50 were set to LSE 

values of 0.984 and 0.980. Non-water pixels with NDVI less than 0.20 are considered to be  

non-vegetated areas, and the LSE values of these pixels were set to 0.964 and 0.970. Finally, pixels 

with NDVI values greater than 0.20 and less than 0.50 are considered to be mixed pixels incorporating 

various degrees of vegetation and non-vegetation. The LSE values of these pixels were calculated 

using Equations (14) and (15) [45–47]. 
(1 ) (1 )(1 )imix iv v in v in v ivp p p F           (14)

2

max

min
v

min

NDVI NDVI
p

NDVI NDVI

 
   

(15)

where εimix is the emissivity of the mixed pixels for band10 and band11, εiv is the emissivity of the fully 

vegetated pixels for band10 and band11, εin is the emissivity of the non-water and non-vegetated pixels 

for band10 and band11, and F = 0.55 is a shape factor considering the geometrical distribution [48]. The 

parameter pv is the scaled NDVI value, in which NDVImin and NDVImax are the NDVI values for  

non-vegetated and fully vegetated land covers, respectively. Please note that, in recent years, colourful 

steel plates mainly composed of electro-galvanized steels have been installed in architectural fields, with 

blue-coloured plates being especially common. As a result, regions with blue roof plates in our study 

area are relatively prevalent. Because the corresponding NDVI of these blue colour steels is relatively 

large, generally above 0.20 and sometimes even as high as 0.53, we separated these areas from the  

0.20–0.50 range of NDVI to produce amplitude ratio values. According to the ASTER spectral database, 

the Roofing Materials--Galvanized Steel Metal category features wavelengths of 10.9009 μm and 
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12.0108 μm and corresponding reflectances of 0.041 and 0.038. Therefore, we calculated the Galvanized 

Steel Metal emissivity values in band10 and band11 to be 0.959 and 0.962, respectively. 

Table 6. The emissivity values of water, vegetation and non-vegetation for Landsat-8 

TIRS band10, and band11. 

 εwater εvegetation εnon-vegetation  εGalvanized-Steel  

TIR-band10 0.991 0.984 0.964 0.959 
TIR-band11 0.986 0.980 0.970 0.962 

3. Steadiness Analysis and Validation of the SWA 

3.1. Steadiness Analysis of the SWA 

To assess the steadiness of the SWA proposed in the paper, we analysed the impact of misestimated 

SWA input parameters on the LST derivation error. The atmospheric transmittance calculated through 

the atmosphere’s water vapour content and the LSE play a major role in the SWA; thus, the influences 

of these two input parameters were analysed. To enable comparison with the existing SWA proposed 

by Rozenstein et al. (2014), the parameter values were kept almost consistent with that of  

Rozenstein et al. (2014). 

3.1.1. Steadiness Analysis of Atmospheric Transmittance  

The atmospheric transmittance is estimated from the water vapour content of the atmosphere. The 

impact of misestimating the input parameter of the atmosphere transmittance can be assessed by the 

water vapour content in the column, which is taken to be an important input parameter for the SWA. 

Because the LST error is related to the brightness temperatures of band10 and band11, we set  

T10 = 283.0–333.0 K, with an interval of 10.0 K, for a T10–T11 difference of −3–3 K to calculate the 

LST estimation error, assuming e10 = 0.967 and e11 = 0.971 and undervaluing the atmospheric water 

vapour content by 0.1 and 0.2 g·cm−2, as was done by Rozenstein et al. (2014) The water vapour 

content range was 1.0–4.0 g·cm−2. 

The LST estimation error is large when the atmospheric water vapour content is 4.0 g·cm−2 and T10 

is 3 K lower than T11. In addition, for constant values of the other parameters, higher T10 values 

correlate with higher LST errors. The specific error variation is shown in Figure 2A,B. In the case of 

underestimating the water vapour content by 0.1 g·cm−2 and 0.2 g·cm−2, the corresponding maximum 

LST errors are 0.56 K and 1.11 K, respectively, and the RMSEs of the LST error are 0.30 K and  

0.59 K, respectively. The contribution of the calculated atmospheric transmittance error to the 

retrieved LST is not only related to the water vapour content but also correlates with the LSEs of 

band10 and band11. The ratio of the LSEs of band10 and band11 is invariant in the analysis process. 

When the water vapour content column is undervalued by 0.1 and 0.2 g·cm−2, the corresponding 

maximum LST errors are 0.21 K and 0.41 K, respectively, and the RMSEs of the LST error are 0.10 K 

and 0.19 K, respectively, as illustrated in Figure 3A,B. 
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(A) 

 
(B) 

Figure 2. (A) The LST evaluated error (K) in the case of undervaluing the atmospheric 

water vapour content by 0.1 g·cm−2 for a water vapour content in the range of  

1.0–4.0 g·cm−2 and an interval of 1.0 g·cm−2 over six gradations of T10 = 283.0–333.0 K 

and a T10–T11 value range of −3.0–3.0K. e10 = 0.967, and e11 = 0.971. (B) The LST 

evaluation error (K) for undervaluing the atmospheric water vapour content by 0.2 g·cm−2 

under the same conditions as in (A). 
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(A) 

 
(B) 

Figure 3. The LST evaluation error (K) in the case of undervaluing the atmospheric water 

vapour content by 0.1 g·cm−2 (A) and 0.2 g·cm−2 (B) for water vapour contents in the range 

of 1.0–4.0 g·cm−2 at an interval of 1.0 g·cm−2 over six gradations of T10 = 283.0–333.0 K 

and a T10–T11 value of 1 K. The LSE variable is independent.  

3.1.2. Stability Analysis of LSE  

Due to the possibility of having separate LSE errors in both bands, the impact on the LST 

estimation error of simultaneous errors in the LSE values of both band10 and band11 is discussed in 
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the following. The LSE estimation error also generates an LST calculation error when the atmospheric 

transmittance has been precisely estimated. In general, the LST calculation error has a positive 

correlation with the T10 and T10–T11 values and has a negative correlation with LSE, as illustrated in 

Figure 4A,B. To be specific, the maximum LST calculation error, 0.44 K, occurs when T10 is 330 K, 

the T10–T11 value is 3 K and the LSE is 0.900 due to undervaluing by 0.005. In the case of 

underestimating the LSE by 0.001, the maximum LST calculation error is 0.09 K. In Figure 4A,B, the 

atmospheric water vapour content was kept constant at 1.5 g·cm−2. The sensitivity of the LSE to the 

LST estimation error was analysed as the atmospheric water vapour content varied from  

1.0–4.0 g·cm−2, as seen in Figure 5A,B. The LST calculation error has a positive correlation with the 

T10 value and has a negative correlation with LSE and water vapour content. The maximum LST 

calculation error, 0.45 K, occurs when T10 is 333 K, the water vapour content is 1.0 g·cm−2, and LSE is 

0.900 due to undervaluing by 0.005. 

Generally speaking, the SWA presented in this paper is stable with respect to the impact of 

incorrectly estimating the LSE and the atmospheric transmittance, i.e., the atmospheric water vapour 

content. Furthermore, the LST evaluation error is negatively correlated with the LSE estimate. 

 
(A) 

 
(B) 

Figure 4. The illustration of the LST calculation error (K) in the case of undervaluing LSE 

by 0.001 (A) and 0.005 (B) over four gradations of T10 = 270.0–330.0 K with an interval of 
20 K. The atmospheric water vapour content was constant at 1.5 g∙cm−2, and the T10–T11 

values were 1.0, 2.0, and 3.0 K. The LSE variable is independent. 
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(A) 

 
(B) 

Figure 5. The illustration of the LST calculation error (K) in the case of undervaluing LSE 

by 0.001 (A); and 0.005 (B) over six gradations of T10 = 283.0–333.0 K with an interval of 

10.0 K. The atmospheric water vapour content varies in the range of 1.0–4.0 g·cm−2 with 

an interval of 1.0 g·cm−2, and the T10–T11 value is 1.0 K. The LSE variable is independent. 
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3.2. Evaluation of the Accuracy of the Proposed SWA 

MODTRAN 4.0 was used to simulate a series of thermal radiation processes from the ground to the 

sensor based on the Mid-Latitude Summer atmospheric profile with specified LST, LSE and water 

vapour content values to evaluate the accuracy of the SWA. First, the simulated thermal radiance 

values were converted to brightness temperatures corresponding to the Landsat-8 TIRS, band10 and 

band11, as Ti input parameters for the SWA. Then, according to our SWA and the given input 

parameters, the LST was calculated. Finally, the LST evaluation errors were obtained by calculating 

the difference between the given and calculated LSTs. The 90 combination scenes are listed in Table 6. 

The water vapour content values were 1.0, 2.0, or 3.0 g·cm−2, the range of the assumed LST values 

was 10–60 °C, with an interval of 10.0 °C, and the range of the LSE values was 0.940–0.980, with an 

interval of 0.010. The accuracy assessment results, shown in Table 7, are satisfactory, and the RMSE 

of the LST estimation errors is 0.51 °C, outperforming the result of 0.93 °C from Rozenstein et al. 

(2014). To assess the general applicability of this SWA to different atmospheric conditions, we also 

evaluated the accuracy of this SWA under a tropical model and 1976 US standard atmospheric 

conditions. The assessment results are listed in Tables 8 and 9. The RMSEs of the LST errors under the 

tropical model and the 1976 US standard atmospheric conditions are 0.70 °C and 0.63 °C, respectively. 

Table 7. Estimation errors of LST for different simulated combinations of specified LST, 

LSE, and water vapour content values based on the Mid-Latitude Summer atmospheric profile. 

Water Vapour Content  

(g·cm−2) 
LST (°C) LSE = 0.980 LSE = 0.970 LSE = 0.960 LSE = 0.950 LSE = 0.940 

1 

10 0.3710 0.3641 0.3561 0.3492 0.3413 

20 0.3384 0.3302 0.3220 0.3138 0.3056 

30 0.3993 0.3914 0.3921 0.3691 0.3700 

40 0.5339 0.5348 0.5221 0.5232 0.5103 

50 0.7360 0.7350 0.7268 0.7186 0.7178 

60 0.9933 0.9870 0.9926 0.9864 0.9731 

2 

10 0.3235 0.2868 0.2550 0.2231 0.1897 

20 0.2835 0.2605 0.2238 0.2007 0.1635 

30 0.3388 0.3250 0.2833 0.2586 0.2450 

40 0.4810 0.4671 0.4374 0.4075 0.3936 

50 0.6935 0.6682 0.6520 0.6264 0.6102 

60 0.9515 0.9278 0.9177 0.8939 0.8611 

3 

10 0.1532 0.0701 −0.0164 −0.1170 −0.2146 

20 0.1456 0.0527 −0.0281 −0.1099 −0.1927 

30 0.2104 0.1390 0.0603 −0.0194 −0.0933 

40 0.3684 0.2865 0.2227 0.1388 0.0734 

50 0.5708 0.5059 0.4403 0.3739 0.3067 

60 0.8190 0.7716 0.7073 0.6423 0.5933 
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Table 8. Estimation errors of LST for different simulated combinations of specified LST, 

LSE, and water vapour content values based on the Tropical model atmospheric profile, 

RMSE = 0.70 °C. 

Water Vapour Content  

(g·cm−2) 
LST (°C) LSE = 0.980 LSE = 0.960 LSE = 0.940 

1.0 

20 0.3130  0.2958  0.2766  

40 0.5476  0.5326  0.5163  

60 1.0371  1.0250  1.0122  

2.0 

20 0.3078  0.2415  0.1730  

40 0.5845  0.5282  0.4723  

60 1.1176  1.0713  1.0220  

3.0 

20 0.2281  0.0416  −0.1486  

40 0.6080  0.4500  0.2914  

60 1.2313  1.0958  0.9587  

Table 9. Estimation errors of LST for different simulated combinations of specified LST, 

LSE, and water vapour content values based on the 1976 US Standard atmospheric profile, 

RMSE = 0.63 °C. 

Water Vapour Content 

(g·cm−2) 
LST (°C) LSE = 0.980 LSE = 0.960 LSE = 0.940 

1.0 

20 0.3893  0.3836  0.3762  

40 0.5563  0.5511  0.5439  

60 0.9996  0.9940  0.9893  

2.0 

20 0.3129  0.2704  0.2288  

40 0.4576  0.4206  0.3851  

60 0.8739  0.8440  0.8145  

3.0 

20 0.2749  0.1358  −0.0071  

40 0.5500  0.4310  0.3118  

60 1.0849  0.9823  0.8787  

4. A Case Study of an Urban Area in China 

4.1. Study Area  

The city of Taiyuan-Yuci, China, was chosen as the urban study area. This urban area is located in 

north-central China, between 37°24'–38°04'N and 112°09'–113°06'E. Taiyuan-Yuci covers a land area 

of 3336 km2 and has approximately 4.41 million inhabitants (China, the data of the Sixth Population 

Census, 2010). The region features a warm continental monsoon climate. 

4.2. Data Used  

Two cloud-free Landsat-8 images, acquired at UTC 03:08:38 on June 27, 2013 and UTC 03:06:26 

on June 30, 2014, were rectified to a Universal Transverse Mercator (UTM) projection with WGS-84 

datum and UTM zone 49. Two daytime MODIS-Terra images acquired at 02:35 and 04:10 on June 27, 

2013 and June 30, 2014, respectively, are also used in this paper to calculate the water vapour content 
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of the atmosphere. Because the MODIS and Landsat-8 acquisition times on the same day were not 

rigidly consistent, we used the average value of the two temporal MODIS water vapour content 

estimates to calculate the water vapour content of the atmosphere when the Landsat-8 satellite passed 

over the study area.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Workflow for retrieving LST from Landsat-8 data. 

4.3. LST Retrieval  

Using the SWA proposed in this paper, the LST of the urban area was retrieved via the workflow 
shown in Figure 6. Three sets of input parameters, 10 10( )B T  and 11 11( )B T , 10  and 11 , and 10  and 11 , 

need to be calculated. The spectral radiance values, 10 10( )B T  and 11 11( )B T , can be computed from the 

brightness temperatures 10T  and 11T  using Planck’s radiance function. The atmospheric water vapour 

content images were produced by using the MOD021KM datasets in conjunction with Equation (13). 

The obtained water vapour images were then resampled to 30 m × 30 m in accordance with the 

daytime Landsat-8 images. According to the cubic fit functions of the atmospheric transmittance and 
water vapour content, the atmospheric transmittance values, 10  and 11 , were confirmed. Using 

Landsat-8 OLI datasets, NDVI images were retrieved. The LSE, 10  and 11  can be confirmed with the 

NDVI images and Equations (14) and (15), and the emissivity values are listed in Table 6. The three 

input parameters have now all been confirmed and entered into the SWA formula, and the LST images 

have been produced. Figure 7 shows the LST estimated from the Landsat-8 TIR data. The LST on June 

27, 2013, ranges from 296.6 K–323.8 K, with a mean value of 304.5 K and a standard deviation of 

2.953 K. The LST on June 30, 2014, ranges from 292.4 K–322.9 K, with a mean value of 303.7 K and 

a standard deviation of 3.490 K.  

MODIS Landsat-8 OLI 

Geometric 
correction

Water vapor 
content 

Transmittance 
of atmosphere 

estimation 

Atmospheric 
correction 

NDVI
calculation

Land
classification

Landsat-8 TIRS 

Brightness 
temperature 
computing Land Surface Emissivity determination 

Radiometric 
calibration 

The SWA for Landsat-8 

Retrieved LST



Remote Sens. 2015, 7 4386 

 

 
(A) 

 
(B) 

Figure 7. The LST Spatial distribution of the study urban area retrieved from Landsat-8: 

(A) on June 27, 2013, and (B) on June 30, 2014. 

5. Conclusions 

A practical SWA for Landsat-8 TIRS data was proposed in this paper. The analysis of sensitivity 

shows that the SWA has good stability. In five sensitivity analysis scenarios using the Mid-Latitude 

Summer atmospheric profile, the minimum LST error is −0.839 K, and the maximum LST error is 

0.786 K. In general, the LST error is very sensitive when the water vapour content and T10–T11 change 

together, as is seen in Figure 2B, especially when the water vapour content is 0.5–1.0 gcm−2. Based on 

the validation results of the simulation data generated by MODTRAN 4.0, the SWA performs very 

well. The verification result is satisfactory in that the maximum and minimum LST errors are 0.993 K 

and 0.016 K, respectively, and the LST error RMSE is 0.51 K under Mid-Latitude Summer atmospheric 

conditions. The LST error RMSEs under Tropical and 1976 US standard atmospheric conditions are 

0.70 K and 0.63 K, respectively. The assessment results demonstrate that the SWA is not only steady 

and accurate but also universal for different atmospheric conditions.  

In this paper, we offer a strategy for evaluating the atmospheric water vapour content using MODIS 

data and for determining the relationship between the atmospheric transmissivity and water vapour 

content from Landsat-8 TIRS data using simulation data from MODTRAN 4. An exploratory attempt 

was performed on a corresponding LSE estimation based on Landsat-8 TIRS data, presented by the 

LSE of three classic earth surfaces and one new earth surface (galvanized coloured roofs), which 

further improved the SWA’s integrality and practicality. Additionally, a complete application was 
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performed by retrieving the LST of a study area. The proposed SWA in this paper will contribute to 

the completion of the inversion algorithm system of LST and will promote the application of remote 

sensing technology in the research of the thermal environment of the Earth. 
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