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Abstract: Physically-based approaches for estimating Leaf Area Index (LAI) using remote 

sensing data rely on radiative transfer (RT) models. Currently, many RT models are freely 

available, but determining the appropriate RT model for LAI retrieval is still problematic. 

This study aims to evaluate the necessity of RT model selection for LAI retrieval and to 

propose a retrieval methodology using different RT models for different vegetation types. 

Both actual experimental observations and RT model simulations were used to conduct the 

evaluation. Each of them includes needleleaf forests and croplands, which have contrasting 

structural attributes. The scattering from arbitrarily inclined leaves (SAIL) model and  

the four-scale model, which are 1D and 3D RT models, respectively, were used to simulate 

the synthetic test datasets. The experimental test dataset was established through two field 

campaigns conducted in the Heihe River Basin. The results show that the realistic 

representation of canopy structure in RT models is very important for LAI retrieval.  

If an unsuitable RT model is used, then the root mean squared error (RMSE) will increase 

from 0.43 to 0.60 in croplands and from 0.52 to 0.63 in forests. In addition, an RT model’s 

potential to retrieve LAI is limited by the availability of a priori information on RT model 
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parameters. 3D RT models require more a priori information, which makes them have 

poorer generalization capability than 1D models. Therefore, physically-based retrieval 

algorithms should embed more than one RT model to account for the availability of  

a priori information and variations in structural attributes among different vegetation types. 

Keywords: Leaf Area Index (LAI); radiative transfer (RT) model; model selection; 

structural attributes; a priori information 

 

1. Introduction 

Leaf Area Index (LAI) influences vegetation photosynthesis, transpiration and the energy balance of 

the land surface; it is therefore among the essential inputs of climate, hydrology and ecosystem 

productivity models [1]. Some LAI products have been generated based on remote sensing (RS),  

for example, the four-day/eight-day 1-km MODIS product [2], the 10-day 1-km GEOV1 product [3], 

the 10-day 1-km CYCLOPES product [4], the 16-day 0.01° JRC-TIP product [5], the eight-day  

5-km/1-km GLASS product [6] and the monthly 1-km GLOBCARBON product [7]. However, recent 

validation activities have shown that the current LAI products are still unable to meet the requirements 

of many applications [8,9]. The factors that influence the accuracy of LAI products mainly include 

radiative transfer (RT) model uncertainty, the accuracy of the inversion method, the quantity and 

uncertainty of the RS measurements and spatial heterogeneity within the footprint of pixels [10,11]. 

With the continuing improvement of the quality of reflectance products, the lack of sufficient 

observations becomes a crucial limiting factor, particularly in equatorial and high-latitude regions, 

because of high cloud coverage. The concurrent use of data from several satellite systems can increase 

the observing frequency and mitigate this limitation [12]. Therefore, RT model accuracy is important 

for further improving the accuracy of LAI products [13]. 

There are two main types of approaches to estimate LAI from RS data: empirical approaches and 

physically-based approaches [14,15]. Empirical approaches rely on the statistical relationships between 

LAI and RS data. These approaches are computationally efficient, but are site-, species-, time- and 

sensor-specific [16,17]. Physically-based approaches rely on the inversion of RT models. RT models 

summarize the knowledge of the physical processes involved in the photon transport within vegetation 

canopy [18]. Therefore, physically-based approaches can be adapted for various conditions [2,7]. 

Different strategies have been proposed for the inversion of the RT model, including conventional 

numerical optimization methods [19] and look-up table (LUT) techniques [2]. Recently, hybrid 

approaches, in which LUTs are generated to feed machine learning approaches, have been increasingly 

utilized [20,21]. These approaches are facilitated by the rapid development in the field of machine 

learning, and increasingly, more advanced machine learning approaches are applied for estimating 

LAI, such as Gaussian process regression [22,23] and dynamic Bayesian networks [24,25]. One of the 

main difficulties in physically-based approaches is the ill-posedness of the inversion. Several regularization 

methods can be implemented to reduce the drawback of ill-posedness: model coupling [26], using  

a priori information [27], spatial constraints [28,29], temporal constraints [30] and combined  

spatio-temporal constraints [31]. 
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In physically-based approaches, model uncertainty is significantly related to the manner in which 

the canopy architecture is represented in canopy RT models. According to the method used to characterize 

structural properties, canopy RT models can be grouped into two categories: (1) one-dimensional (1D) 

models that describe the canopy as a horizontally homogeneous and semi-infinite layer; and  

(2) three-dimensional (3D) models that are capable of resolving individual tree crowns [32]. The structural 

representations of different types of vegetation vary widely. To the best of our knowledge, there is no 

universal canopy RT model suitable for all canopies. Therefore, different RT models are needed for 

different types of vegetation [33]. Widlowski et al. [34] found that the reflectance simulated by 1D and 

3D models tends to converge at resolutions beyond 100 m. In this sense, when retrieving LAI using 

medium- or coarse-resolution RS data (e.g., MODIS, VEGETATION or AVHRR), 3D models may 

over-interpret the measured reflectance; because in this case, 3D RT models perform similarly to 1D 

models in accounting for the measured reflectance, but they require more a priori information. 

Nevertheless, it was also demonstrated in some studies [35,36] that the misrepresentation of structural 

properties within the stand scale may cause the retrieved parameters to diverge from the true values. 

Therefore, the RT model selection may have profound implications on LAI retrieval. However, for 

operational feasibility, the current LAI products are all based on a single model. For example,  

MODIS [2], GLOBCARBON [7], CYCLOPES [4] and JRC-TIP [5] LAI products use the stochastic 

radiative transfer model [37], the four-scale model [38], the scattering from arbitrarily inclined leaves 

(SAIL) model [39] and the two-stream model [40,41], respectively. The MODIS and GLOBCARBON 

retrieval algorithms also use land cover maps as a priori information to constrain the parameter space, but 

not for model selection. 

Physically-based approaches for estimating LAI rely on RT models. Currently, many RT models  

are freely available, but determining the appropriate RT model for LAI retrieval is still problematic.  

The objective of this study is to evaluate the impact of RT model selection on LAI retrieval. To this 

end, a hybrid inversion approach was developed to estimate LAI using both the SAIL and four-scale 

models. The retrieval results obtained from the two RT models were compared with the reference LAI 

to quantitatively analyze the influence of RT model selection. The paper is organized as follows:  

Section 2 describes the method used for the evaluation. The experimental and synthetic test datasets 

generated through field campaigns and RT model simulations are outlined in Section 3. Section 4 

presents the results and discusses the main findings. Finally, the conclusions are presented in Section 5. 

2. Methodology 

2.1. Retrieving LAI Using Different RT Models 

The structure of the vegetation canopy determines the magnitude and angular distribution of the 

canopy-leaving radiation; its parameterization is therefore one of the most important components of 

RT models [37]. In early RT models, the canopy structure was assumed to be horizontally 

homogeneous and mainly characterized by leaf inclination angle distribution and leaf area volume 

density [39]. However, actual vegetation generally shows different degrees of spatial heterogeneity, 

which manifests as clumping effects at multiple scales: shoot scale [35], between-crown scale [42] and 

landscape scale [10,11]. Generally, no universal RT model is suitable for characterizing all scales of 
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structural properties. Although computer simulation models [43,44] are designed for different kinds of 

scenes, they cannot be straightforwardly used for LAI retrieval, because of their computational 

intensiveness. Theoretically, 1D RT models are applied to horizontally homogeneous vegetation, 

which is treated as a plane-parallel “cloud of leaves” rather than individually distinguishable plant. 

Grasses and croplands (at the later growth stage) are generally treated as this type of vegetation [33,45]. 

In 3D RT models, the canopy is assumed to be composed of many discrete crowns. These RT models 

are appropriate for vegetation characterized by horizontal heterogeneity, for example savannas  

and forests [37,38]. 

Land cover maps have been operationally used in LAI retrieval algorithms. For model selection,  

the global land cover needs to be stratified according to canopy structural differences. Therefore, 

traditional land cover classifications based on ecological or functional metrics may be unsuitable. In 

this study, the third classification system of the MODIS land cover product (MCD 12Q1) was used to 

select appropriate RT models. In MCD 12Q1, the global vegetation is stratified into six canopy 

architectural types: grasses and cereal crops, shrubs, broadleaf crops, savannas, broadleaf forests and 

needle forests [46]. These types are structurally variable in the horizontal and vertical dimensions, but 

the structural properties of a specific type are considered similar. The use of this classification system 

implies that the landscape within the footprint of a pixel, 500 m in this study, can be translated to one 

of the six types. The early version of the classification system was used. In the latest version, 

broadleaf/needleleaf forests are subdivided into evergreen and deciduous forests, but each subcategory 

has nearly identical canopy structure properties (with different leaf optical properties) [2]. The canopy 

structural attributes and the recommended RT models of the six vegetation types are as in Table 1. 

Table 1. Canopy structural attributes of different land covers and the corresponding 

recommended RT models suitable for Leaf Area Index (LAI) retrieval. 

 
Grasses and  

Cereal Crops 
Shrubs 

Broadleaf  

Crops 
Savannas 

Broadleaf 

Forests 

Needle 

Forests 

Horizontal  

heterogeneity 
variable yes variable yes yes yes 

Ground cover 10%–100% 20%–60% 10%–100% 20%–40% >70% >70% 

Vertical heterogeneity no no no yes yes yes 

Recommended  

RT model 

1D for grasses and cereal crops 

dependent on the growth stage 
3D 

dependent on  

the growth stage 
3D 3D 3D 

(1) Grasses and cereal crops: Grasses are vertically and horizontally homogeneous, and the vegetation 

ground cover is approximately 100%. A 1D RT model is recommended. The foliage clumping 

can be accounted for by simply introducing the clumping index when forcing the RT  

model [47]. For cereal crops, large variations exist in vegetation ground cover from crop 

planting (10%) to maturity (100%). At least two types of RT models should be adopted at 

different growth stages, i.e., the row structure model for the early growth stage and a 1D RT 

model for the later growth stage [33]. 

(2) Shrubs: horizontal heterogeneity, low (20%) to intermediate (60%) vegetation ground cover.  

A 3D RT model is recommended [37,38]. 
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(3) Broadleaf crops: Large variations in vegetation ground cover from crop planting (10%) to 

maturity (100%). At least two types of RT models should be adopted at different growth stages, 

i.e., the row structure model for the early growth stage and a 1D RT model for the later  

growth stage [33]. 

(4) Savanna: Two distinct vertical layers of a grass understory and low ground cover of overstory 

trees (20%–40%); the canopy optics and structure are therefore vertically heterogeneous. A 3D 

RT model is recommended [37,38]. 

(5) Broadleaf forests: vertical and horizontal heterogeneity and high ground cover. A 3D RT model 

is recommended [37,38]. 

(6) Needleleaf forests: Most heterogeneous, with high ground cover. A 3D RT model  

is recommended [37,38]. 

To evaluate the necessity of the RT model selection, we chose two biomes with contrasting 

structural attributes: croplands and needleleaf forests. In addition, two RT models were selected in this 

study: the SAIL model [39] and the four-scale model [38]. They are representatives of 1D and 3D RT 

models, respectively. In the SAIL model, canopy structure is characterized by LAI, the average leaf 

angle inclination (ALA) and the hot spot parameter (H). The four-scale model simulates the reflectance 

based on canopy architecture at four scales: (1) crown groups; (2) crown geometry; (3) branches; and 

(4) foliage elements. The canopy structure parameters can be separated into two categories: (1) site 

parameter, including quadrat size (Qz), LAI, tree density (Td), cluster mean size (m2); and (2) tree 

architecture parameters (the crown is assumed to be a cone + a cylinder in this study), including crown 

radius (r), height of trunk (ha) and cylinders (hb), half apex angle (α), needle to shoot ratio (γE), foliage 

clumping index (ΩE), mean width of element shadows cast inside tree crowns (Ws) and leaf inclination 

angle distribution function (LIAD). 

2.2. The Neural Network Inversion Technique  

The neural network (NN) approach was selected to invert the RT models, because of its 

computational efficiency and ideal interpolation capacity [48]. Two feedforward NNs (denoted as 

SAILNN and four-scaleNN) were trained based on the corresponding training datasets. They have 

identical architectures: the input layer has five neurons, which correspond to reflectances in the red and 

near-infrared bands, solar zenith angle, sensor zenith angle and relative azimuth angle between the Sun 

and sensor, respectively. A hidden layer comprises 8 tangent sigmoid neurons. The single output is 

LAI, and the linear transfer function is used in the output layer. This architecture was established by a  

trial-and-error approach. The Levenberg–Marquardt optimization algorithm [49] was used to adjust the 

synaptic weights and neuron bias to obtain the best agreement between the output simulated by the NN 

and the corresponding value of LAI in the training dataset. After calibration, the two NNs (SAILNN 

and four-scaleNN) were applied to the MODIS daily surface reflectance products (MOD09GA) [50] to 

produce two LAI maps, denoted as SAIL LAI and four-scale LAI, respectively. 
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2.3. Evaluation Criteria 

To analyze the influence of RT model selection, we compared the retrieval results from the two RT 

models with the in situ measured LAI. The RT models’ performance was evaluated with the root mean 

squared error (RMSE) to assess accuracy and the coefficient of determination (R2) to account for the 

goodness-of-fit. To quantitatively analyze the impact of RT model selection on regional LAI spatial 

variability characterization, the Kullback–Leibler (K-L) divergence was calculated, 

 xxp
xq

xp
QPDKL d)()

)(

)(
ln()||(  

(1)

where P and Q are the probability distributions of a random variable X, i.e., LAI in this study, and p(x) 

and q(x) indicate the densities of P and Q at x. The K-L divergence of Q from P, denoted as DKL(P||Q), 

is a measure of the information loss when Q is used to approximate P [51]. A larger K-L divergence 

corresponds to greater information loss, and vice versa. 

3. Experimental and Synthetic Datasets 

The impact of RT model selection on LAI retrieval was evaluated over both experimental  

and synthetic test datasets, including the top-of-canopy (TOC) reflectance and the corresponding LAI.  

The experimental test dataset was acquired through two field campaigns (in forests and croplands, 

respectively) carried out in the Heihe River Basin, China. The synthetic test dataset was generated with 

simulations of the four-scale and SAIL models, corresponding to the experimental test dataset, to 

complement the evaluation and to analyze in a controlled environment. 

3.1. Study Area 

The Heihe River Basin, located between 97°24′–102°10′E and 37°41′–42°42′N, is China’s second 

largest inland river basin. A comprehensive watershed-scale RS campaign, called Watershed Allied 

Telemetry Experimental Research (WATER) [52], and its successor, Heihe Watershed Allied 

Telemetry Experimental Research (HiWater) [53], have been carried out in this typical inland river 

basin since 2008. These campaigns equipped the Heihe River Basin with good research facilities and 

rich datasets [54]. In WATER, three key experimental areas were identified: a cold region 

experimental area, an arid region experimental area (AREA) and a forest experimental area (FEA), to 

represent three key types of hydrologic processes. In this study, two 11 × 11 km sub-regions in the 

latter two key experimental areas were selected as our study area (Figure 1). 

The AREA sub-region (Figure 1b) is located in the middle reaches of the Heihe River Basin. The 

terrain is very flat, with an elevation ranging from 1500 to 2000 m. The annual precipitation is less 

than 200 mm. In this sub-region, croplands are the main land cover type, and the primary crop species 

are wheat and maize. The sub-region in FEA (Figure 1c) is located in the Qilian Mountains. Forests, 

dominated by Picea crassifolia, are widely distributed at elevations between 2800 and 3500 m. 
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Figure 1. Land cover map of the upper and middle reaches of the Heihe River Basin in 

China (a) and the locations of the arid region experimental area (AREA) (b) and the forest 

experimental area (FEA) (c) sub-regions. The land cover map was downloaded from [55]. 

(b,c) False color images of ASTER/ETM+ acquired on 10 July 2012 and 28 May 2008, 

respectively. The black boxes and yellow crosses in (b) and (c) display the MODIS 500-m 

grids and field sampling plots. 

3.2. Experimental Test Dataset 

3.2.1. Ground Measurements 

Two field campaigns were carried out from 2 to 8 June 2008 and 13 July 2012 in the FEA and 

AREA sub-regions, respectively. The field sampling plots within the two 11 × 11 km areas are 

displayed in Figure 1b,c. The sampling was designed to represent the vegetation variability within each 

sub-region while minimizing field measurement efforts. There are 19 and 14 plots in FEA and AREA, 

respectively, and each plot contains 12 samples. At the plot scale, the measurements were distributed 

along two perpendicular 20-m transects (with measurement points located at 4-m intervals), as 

recommended by the Validation of Land European RS Instruments (VALERI) network [56]. Two 

LAI-2000 instruments were operated simultaneously. One was located below the canopy, and the other 

was located in an open area nearby. The measurements were obtained during overcast sky or in early 

morning or late evening to avoid sun flecks. The LAI was calculated from the canopy gap fraction 

value. The effective LAI rather than true LAI was used when establishing the experimental test dataset, 

because it is better correlated with the RS observations [57] and optical field measurements [58]. 

Although it is theoretically possible to estimate the true LAI from effective LAI, in reality, this is a 

complicated process and was not attempted in the generation of the experimental test datasets. The 

field-measured values of LAI vary between 0.8 and 3.3 in FEA and between 1.7 and 3.5 in AREA. 

Therefore, the sampling is assumed to be representative of the vegetation variability and spatial 

heterogeneity in the experimental areas. The representativeness of the sampling strategy is an 
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important source of uncertainty in the reference LAI map. A more optimal sampling strategy is needed 

to improve our study [59]. 

The soil spectrum was measured with analytical spectral devices (ASD). In addition, the structural 

parameters, including tree height, horizontal and vertical radii of the tree crown, and the position of 

each tree were measured in the FEA field campaign. 

3.2.2. Remote Sensing Data 

To establish the experimental test dataset, a series of RS data was used, including the MODIS daily 

surface reflectance product (MOD09GA), a land cover product (FROM-GLC) and fine-resolution 

satellite images (Terra/ASTER and Landsat7/ETM+). 

MOD09GA [50] provides an estimate of the surface spectral reflectance with a daily revisit 

frequency and 500-m spatial resolution. In addition to the reflectance values, the quality information is 

also embedded. MOD09GA was used to produce LAI with different RT models. Only data labeled  

as “cloud free” were used in this study. 

FROM-GLC [55] is a 30-m resolution global land cover map produced using Landsat TM and 

ETM+ data. The original product was further aggregated to drive coarser resolution land cover maps. 

The 30-m original product and 500-m aggregated product were used to identify different biomes when 

producing the fine-resolution reference LAI map and 500-m RS LAI. This approach reduces the 

uncertainty caused by scale discrepancy during the comparison between the reference and  

retrieved LAI. 

To up-scale the local ground measurements to the coarse resolution (500 m in this study), high 

spatial resolution images are needed [60]. Here, two images were used: Terra/ASTER for AREA and 

Landsat7/ETM+ for FEA acquired on 10 July 2012 and 28 May 2008, respectively. Both images  

are cloud free and temporally close to the corresponding campaigns. The radiance calibration and 

atmospheric correction were implemented using the FLAASH modal of ENVI software. The aerosol 

and water levels were determined automatically by FLAASH [61]. For the ETM+ image, a local linear 

histogram matching technique [62] was used to fill the scan gap caused by the failure of the scan-line 

corrector. To complete this process, another gap-free image (Landsat5/TM) covering the same scene 

was used, and this image was acquired on 31 May 2006, a day close to the ETM+ image acquirement 

(but in a different year) to account for the seasonal variability in forests. 

3.2.3. Development of LAI Reference Maps 

We generated two LAI reference maps as “ground truth” in FEA and AREA. An empirical 

regression modeling approach was used to derive the transfer functions and to relate the field 

measurements to the vegetation index (VI) calculated from the corresponding synchronous  

fine-resolution satellite data (ETM + in FEA and ASTER in AREA). Three VIs were tested: 

Normalized Difference Vegetation Index (NDVI) [63], the simple ratio (SR) [64] and the reduced 

simple ratio (RSR) [65]. Regression analysis was performed separately for each image and VI. The 

regression model that provided the best linear relationship was chosen to generate a fine-resolution 

LAI map. The accuracy and robustness of the statistical models decreases when the size of the calibration 

database is limited [14]. Therefore, all of the in situ measurements (19 and 14 plots in FEA and AREA, 
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respectively) were used to calibrate the regression lines to ensure their accuracy. The best linear 

regression equations to generate fine-resolution LAI maps were provided by SR in AREA and by RSR 

in FEA, with R2/RMSE equal to 0.52/0.33 and 0.56/0.71, respectively (Figure 2). Note that these linear 

relationships may not well be statistically significant. The performance of the regression lines is 

subject to the limited number and representativeness of the in situ measurements: there are only 19 and 

14 measurements in FEA and AREA, respectively, and the values of LAI concentrate between two  

and 3.5. 

(a) (b) 

Figure 2. The regression lines between VI and LAI in AREA (a) and FEA (b). The dots 

indicate the measurements described in Section 3.2.1 and were used to fit the regression 

lines. The triangles indicate the independent validation samples collected in different field 

campaigns in the same study area. 

To verify the accuracy of the regression lines, additional in situ LAI measurements collected on  

11 August and 20 September 2012 in AREA and 12 to 15 July 2012 in FEA served as an independent 

validation dataset. The RMSEs calculated from the validation dataset are 0.55 and 0.79 in AREA and 

FEA, and the accuracy is acceptable considering the variation of the LAI-VI relationship over  

time [16]. However, more accurate measurements are required to obtain more statistically-sound 

results in future studies. 

The established regression equations were applied to ASTER and ETM+ images and derived  

two fine-resolution LAI maps for the AREA and FEA sub-regions, respectively. Finally, the two  

fine-resolution LAI maps were aggregated to 500-m resolution and serve as reference LAI maps to 

assess the accuracy of the LAI maps retrieved by different RT models. 

3.3. Synthetic Test Datasets 

The SAIL and four-scale models were used to simulate reflectances with input variables varying 

within their respective definition intervals. The structural parameters of the SAIL (Table 2) and  

four-scale (Table 3) models were set according to a priori information gathered from the two field 

campaigns and other studies working within the same study area [66]. 



Remote Sens. 2015, 7 4613 

 

Table 2. Distribution of the canopy structure parameters of the scattering from arbitrarily 

inclined leaves (SAIL) model used to generate the training dataset. 

Variable Min Mean Max Std Distribution law n class 

LAI (m2/m2) 0 3.5 7 — Uniform 7 

ALA (°) 45 50 55 5 Truncated Gauss 4 

H 0.3 0.4 0.5 0.1 Truncated Gauss 2 

Table 3. Distribution of the canopy structure parameters of the four-scale model used to 

generate the training dataset. 

 Variable Min Mean Max Std Distribution law n Class 

site 

parameter 

LAI (m2/m2) 0 3.5 7 — Uniform 7 

Qz (ha) 1 1 1 0 Dirac delta 1 

Td (/ha) 1000 1250 1500 200 Truncated Gauss 1 

m2  5 5 5 — Dirac delta 1 

tree 

architecture 

parameters 

r (m) 2 3 4 1 Truncated Gauss 4 

ha (m) 1 1 1 — Dirac delta 1 

hb (m) 3.5 6.7 10 3 Truncated Gauss 4 

α (°) 13 13 13 — Dirac delta 1 

γE 1.4 1.4 1.4 — Dirac delta 1 

ΩE 0.65 0.65 0.65 — Dirac delta 1 

Ws (m) 0.035 0.035 0.035 — Dirac delta 1 

LIAD spherical 1 

The optical properties of the leaves required by the two RT models were supplied by PROSPECT-4 [67] 

as a function of the mesophyll structure parameter (N), chlorophyll (Cab), dry matter (Cdm), equivalent 

water thickness (Cw) and brown pigment (Cbp) contents. The distribution of values for each variable 

was specified based on the recommendation of [4] (Table 4), which is assumed to be globally 

representative. The soil reflectance was set as the mean of the measured soil spectrum during the two 

field campaigns (0.19 and 0.25 in the red and near-infrared bands, respectively). The specification of 

soil reflectance as a constant rather than a variable would not bring much uncertainty, considering  

the dense vegetation cover in our study area (the values of most LAI are greater than one in our study 

area). In addition, the Sun-target-sensor geometry was extracted from the MOD09GA data covering the 

study areas. 

Table 4. Distribution of the input variables of the PROSPECT-4 model used to generate 

leaf reflectance and transmittance. 

Variable Min Mean Max Std Distribution law n Class 

N 1 1.5 2.5 1 Truncated Gauss 4 

Cab (μg/cm) 20 45 90 30 Truncated Gauss 4 

Cdm (g/cm) 0.002 0.0075 0.02 0.0075 Truncated Gauss 4 

Cw (cm) 0.55 0.75 0.95 0.1 Truncated Gauss 4 

Cbp 0 0 1.5 0.2 Truncated Gauss 4 
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To sample the multi-dimensional parameter spaces of the SAIL and four-scale models 

representatively and efficiently, the sampling method proposed by [68] was adopted. In this sampling 

method, the definition interval of each variable was split into a given number of classes (see  

Tables 2–4). All combinations of classes were sampled only once. This allows for accounting for all of 

the interactions between variables, while having each variable sampled nearly randomly. For each 

combination of input variables, TOC reflectance was computed for each wavelength and then 

integrated according to the spectral response function of MODIS. A total of 57,344 and 114,688 cases 

were simulated for SAIL and the four-scale models, respectively. The number of simulations is defined 

by the trade-off between accuracy and computer resources. For LAI retrieval, more than 1000 

simulations are enough to train the NN [48]. 

Both datasets simulated by the SAIL and four-scale models were randomly split into three  

subsets [48]: the first one made of half the cases was used to train the NNs; the second one made of 

one fourth the cases was used to avoid the over-fitness during the learning process; and the rest of the 

cases served as the synthetic test dataset. 

4. Results and Discussion 

4.1. Robustness to Uncertainty in Reflectances 

The robustness of retrieval methods to uncertainty in reflectances is important, particularly in the 

context of the concurrent use of multi-sensor data. This was investigated by adding white Gaussian 

noise (ranging from zero, for noise-free reflectances, to 50%, for very noisy reflectances) to the 

simulated reflectances in the synthetic test datasets. Correspondingly, adding white Gaussian noise to 

the inversion methods (e.g., LUT and NN) is a common strategy to account for the measurement 

uncertainty. However, there is no consolidated criterion to specify the variance of the white Gaussian 

noise. Adding too little noise in the inversion methods means a high accuracy for noise-free 

reflectances, but it may be sensitive to potential uncertainty embed in reflectances. On the other hand, 

adding too much noise reduces the retrieval accuracy. In this study, we established two counterparts 

for SAILNN and four-scaleNN by adding 10% Gaussian noise to the corresponding training datasets, 

which are denoted as SAILNN10 and four-scaleNN10, respectively. The uncertainty level (10%) was 

determined by gradually increasing the values from 2% to 20% in 2% increments to get a good 

compromise between accuracy and robustness. The four NNs (SAILNN0, SAILNN10, four-scaleNN0 

and four-scaleNN10) were applied to the synthetic test datasets contaminated by different levels of 

Gaussian noise (ranging from 0% to 50%). 

The results derived from the synthetic test datasets from both SAIL (Figure 3a,c) and four-scale 

model (Figure 3b,d) simulations show the same trend. The measurement uncertainty degrades the 

retrieval accuracy, as manifested by the increasing RMSE and the decreasing R2. It is difficult to 

quantify the real measurement uncertainty, but it is assumed to be around 20% [69]. This value may be 

higher when considering the differences between sensor-specific characteristics in the context of the 

concurrent use of multi-sensor data. Therefore, the quality and consistency of the inputs of retrieval 

algorithms should be further confirmed. When appropriate RT models are used, i.e., using the SAIL 

model for the SAIL test dataset and using the four-scale model for the four-scale synthetic test dataset, 
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the NNs that contain noise (SAILNN10 and four-scaleNN10) get a lower accuracy compared with the 

original NNs (SAILNN0 and four-scaleNN0) for the unavailable pure measurements (with the abscissa 

values equal to 0% in Figure 3), but they were more robust to the measurement uncertainties. 

Therefore, adding a reasonable amount of noise to the training dataset can be seen as a regularization 

method [48,70]. The results in Section 4.2 and 4.3 are all derived from these two noisy NNs. 

 

 

 

(a) (b)  

 

 

(c) (d)  

Figure 3. RMSE and R2 between the estimated and actual LAI values over the SAIL (a,b) 

and four-scale (c,d) synthetic test datasets as a function of measurement uncertainty. The 

SAIL and four-scale synthetic test datasets were simulated by the SAIL and four-scale 

models, respectively. The four bars for a specific uncertainty level represent the original 

SAIL and four-scaleNN without noise (SAILNN0 and four-scaleNN0), and the SAIL and 

four-scaleNN trained using 10% Gaussian white noisy training database (SAILNN10 and 

four-scaleNN10). Measurement uncertainty represents the corresponding level of Gaussian 

noise added to the synthetic test dataset. 

It also can be seen from Figure 3 that model selection has a great impact on LAI retrieval. When an 

unsuitable RT model is used, the value of RMSE is unacceptably high (Figure 3a,b), and these values 

are stable as measurement uncertainty increases: the RS observations can hardly be converted to useful 

information for LAI retrieval without an appropriate RT model. Using SAILNN on the four-scale 

synthetic test dataset obtained better results than using four-scaleNN on the SAIL synthetic test 

dataset. As for the four-scale synthetic test dataset, the retrieved LAI from SAILNN is linearly well 

related to the actual LAI (SAILNN gets comparable R2 than four-scaleNN, as shown in Figure 3d), 

though they differ in magnitude (Figure 3b). This implies that, in the context of LAI retrieval, using a 
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simple RT model for a complex scenario is more appropriate than the opposite case. Although a 

complex model can always be parameterized to represent the simple model’s output, its complexity in 

canopy structure representation limits the generalization capability and results in poor retrieval 

accuracy without sufficient a priori information.  

4.2. Impact of RT Model Selection on Retrieval Accuracy 

The scatter plots of the estimated and actual values of LAI over the two synthetic test datasets are 

shown in Figure 4a,b. In these two figures, the estimated LAI was obtained by interchangeably using 

the two NNs, i.e., using four-scaleNN to invert the SAIL test dataset (Figure 4a) and using SAILNN to 

invert the four-scale test dataset (Figure 4b). The former case shows an obvious overestimation with 

the RMSE equal to 2.3. The relationship between the reference and retrieved LAI can be well stated 

with a logarithmic function (y = 2lnx + 3.6) with R2 = 0.8, but the parameters in the fitted function 

have no apparent physical meanings. When LAI is greater than 2.5, the four-scaleNN becomes less 

sensitive to the change in LAI; this is because in this case, the crown is saturated with foliage. A 

further increase in LAI has a negligible influence on the radiative transfer within the crown. In the 

latter case, the reference and retrieved LAI is highly linearly correlated (y = 0.64x), with R2 = 0.82. The 

slope of the zero-intercepted fitted line is comparable to the clumping index entered to the four-scale 

simulations (0.65, ΩE in Table 3). This result proves that with an increasing number of accurate 

clumping index maps [71,72], the LAI of a complex scenario (e.g., forests and savanna) can be 

retrieved using a 1D RT model and then post-processed with the clumping index to obtain the  

final result. 

(a) (b) 

Figure 4. Scatter plots of the estimated and actual values of LAI. Using four-scaleNN to 

invert the SAIL test dataset (a) and using SAILNN to invert the four-scale test dataset (b). 

The dashed lines are the regression lines between the estimated and actual LAI. 

To assess the influence of RT model selection more realistic, LAI maps, in our study area, retrieved 

by the SAIL and four-scale models, were compared with the corresponding 500-m reference maps. 

This inter-comparison was implemented over 3 × 3 pixel windows to minimize the uncertainty caused 

by geolocation errors and the difference in the point spread function [60]. Only windows with more 

than seven croplands or forests pixels were chosen to reduce the influence of surface heterogeneity. 
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The median of the LAI values within each window was used for the inter-comparison. The results are 

presented in Figure 5. 

 
(a) (b) 

 
(c) (d) 

Figure 5. Comparison between SAIL LAI (a) and four-scale LAI (b) in croplands and 

SAIL LAI (c) and four-scale LAI (d) in forests with the corresponding reference LAI. The 

solid lines represent the 1:1 lines, and the dotted lines represent the accuracy boundaries  

(max (0.5, 20%)) specified by the Global Climate Observation System (GCOS). 

In the cropland-dominated AREA sub-region (Figure 5a,b), the SAIL LAI shows much better 

agreement with the reference LAI (R2 = 0.45 and RMSE = 0.43) than four-scale LAI (R2 =0.33 and 

RMSE = 0.60). An obvious overestimation is observed for the four-scale LAI. This phenomenon is 

mainly caused by the canopy structure representation of the four-scale model, which assumes that the 

canopy is composed of several discrete crowns. This representation is entirely unrealistic for croplands. 

In the forest-dominated FEA sub-region, the SAILNN and four-scaleNN produce similar results, 

with four-scaleNN performing slightly better (Figure 5c,d). Theoretically, the canopy structure 

representation of the four-scale model is far more realistic than the SAIL model for forests. However, 

the high fidelity in the canopy structure representation does not necessarily imply a high inverse 

accuracy of the same magnitude. This is partly because the extensive parameterization of the four-scale 

model requires so many inputs, which are difficult to specify, that its potential to retrieve LAI is 

constrained by the lack of information. Another reason explaining this phenomenon is that the 

definition of LAI in the experimental test dataset corresponds to effective LAI. The assumption that 

underlies this definition is similar to that for the SAIL model: the foliage is randomly distributed in  

the canopy [39]. 
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Although the retrieval accuracy may be not satisfactorily high, it proves the importance of canopy 

structure representation in RT models. If an unsuitable RT model, which is unrealistic for canopy 

structure representation, is used, then the RMSE will increase from 0.43 to 0.60 in croplands and  

from 0.52 to 0.63 in forests. Therefore, physically-based retrieval algorithms should embed more than  

one RT model to account for the variations in structural attributes among different vegetation types  

(see Table 1). 

4.3. Impact on LAI Spatial Variability Quantification 

The quantification of the LAI spatial variability is very important for forcing regional land surface 

process models. Inaccurate quantification will cause scale error [73]. Figure 6 displays the distribution of 

the LAI values for each LAI map in AREA (Figure 6a) and FEA (Figure 6b). 

(a) (b) 

Figure 6. Distribution of the LAI values for each LAI map in AREA (a) and FEA (b).  

The solid, dashed and dash-doted vertical bars identify the locations of the mean values for  

the reference, SAIL and four-scale LAI, respectively. 

In AREA, the reference LAI presents an approximate normal distribution. The distribution pattern 

of the SAIL LAI is very similar to that of the reference LAI, with nearly identical mean values (2.2). 

However, the four-scale LAI shows an unrealistic positive skew and overestimation, with a very high 

peak at around 3.0 and mean at around 2.5. For FEA, all of the three LAI maps display turbulent 

distributions. The SAIL LAI histogram has a similar shape to the four-scale LAI histogram, but with  

a shift to high values. A discrepancy between the two retrieved LAI and reference LAI is observed,  

but the four-scale LAI is more similar to the reference LAI, as revealed by its mean LAI value (1.5), 

which is more similar to that of the reference LAI (1.4) than the SAIL LAI (1.8). 

To quantitatively analyze the impact of RT model selection on the regional LAI spatial variability 

characterization, we calculated the K-L divergence (Equation (1)). In AREA, DKL(LAIref||LAISAIL) and 

DKL(LAIref||LAIfour-scale) are 0.18 and 0.61, respectively. In FEA, these values are 0.43 and 0.17. 

Therefore, when retrieving LAI, the croplands and forests respectively prefer SAIL and four-scale 

models in terms of information fidelity. However, using the SAIL model in forests results in less 

information loss than using the four-scale model in croplands (0.43 vs. 0.61 for K-L divergence). 
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Therefore, the effect of RT model selection is not only related to the bidirectional reflectance 

distribution function (BRDF) fitting capacity, but it is also subject to the availability of a priori 

information on RT model parameters. Generally, a complex RT model requires more a priori 

information to avoid unreasonable variable combinations and to constrain the solution to a sufficiently 

small interval in parameter space. Therefore, 3D RT models may not be appropriate in the case of  

a priori information insufficiency. Note that the complexity in canopy structure and the high 

sensitivity of RT models to a priori information can partly explain the lower accuracy of LAI retrieved 

over forests than over other land cover types. In reality, simplicity alone can be seen as a criterion for 

judging models in the context of LAI retrieval, and RT model selection is carried out by trading off 

goodness-of-fit and simplicity. 

Therefore, when a priori information is sufficient, RT models that can realistically characterize 

structural properties are preferable (see Table 1). Without sufficient a priori information, the 1D RT 

models that are simpler in terms of structural parameterization would perform better than 3D models. 

Furthermore, the a priori information is preferably expressed in an explicitly spatial manner rather 

than by distribution/co-distributions of RT model parameters. The explicitly spatial manner may be 

benefited from the availability of new biophysical parameters retrieved from RS, e.g., clumping index 

and tree height. With the emergence of such biophysical products, the advantage of 3D over 1D RT 

models in complex scenarios will be further explored in the future. 

5. Conclusions 

The major aim of this study is to assess the impact of RT model selection on LAI retrieval.  

In general, the fidelity in canopy structure representation of RT models has remarkable implications on 

LAI retrieval. If an unsuitable RT model, which is unrealistic in terms of structure representation, is 

used, the RMSE will increase from 0.43 to 0.60 in croplands and from 0.52 to 0.63 in forests. 

Nevertheless, the structural fidelity is not the only determinant in RT model selection, and the potential 

of an RT model to retrieve LAI is also limited by the availability of a priori information. 3D RT 

models rely more on a priori information, resulting in poorer generalization capacity. The problem of 

RT model selection is finding an appropriate compromise between goodness-of-fit and simplicity. 

Therefore, 1D RT models are recommended when a priori information is insufficient, even for forests, 

and the retrieved result can be post-processed using freely available clumping index products. As the 

emergence of some new biophysical products, e.g., clumping index and tree height, the advantage of 

3D over 1D RT models in complex scenarios will be further explored in the future. 

To establish an operational retrieval approach suitable for LAI inversion at the global scale, the 

analysis in this paper should be expanded. Firstly, only the most widely-used red and near-infrared 

bands were involved in the inversion approach. It may be valuable to assess the feasibility of other 

bands to improve the LAI accuracy. Secondly, only two types of test datasets (representing the 

structural properties of croplands and needle leaf forests) and two RT models (SAIL and four-scale) 

were tested. To refine and confirm the results, more models should be assessed by using more 

representative test datasets. Thirdly, input noise and inconsistency degrade the retrieval accuracy and 

restrain the advantage of appropriable RT models, which have highly realistic canopy structure 

representation. Therefore, an improved pre-processing algorithm of reflectance is required particularly 
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when multi-sensor data are concurrently used. Finally, the architecture of NN was established by a  

trial-and-error approach that may impact the final robustness of the trained NN. Other more advanced 

regression methods are needed to improve our study, and the use of the Automated Radiative Transfer 

Models Operator (ARTMO) toolbox [74,75] will greatly facilitate future improvements. 
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