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Abstract: An efficient means to map tree plantations is needed to detect tropical land use 

change and evaluate reforestation projects. To analyze recent tree plantation expansion in 

northeastern Costa Rica, we examined the potential of combining moderate-resolution 

hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data 

(Landsat) to accurately classify (1) general forest types and (2) tree plantations by species 

composition. Following a linear discriminant analysis to reduce data dimensionality,  

we compared four Random Forest classification models: hyperspectral data (HD) alone;  

HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; 

and all three models combined. The fourth, combined model achieved overall accuracy of 

88.5%. Adding multitemporal data significantly improved classification accuracy (p < 0.0001) 
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of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral 

data alone classified six species of tree plantations with 75% to 93% producer’s accuracy; 

adding multitemporal spectral data increased accuracy only for two species with dense 

canopies. Non-native tree species had higher classification accuracy overall and made up the 

majority of tree plantations in this landscape. Our results indicate that combining 

occasionally acquired hyperspectral data with widely available multitemporal satellite 

imagery enhances mapping and monitoring of reforestation in tropical landscapes. 

Keywords: hyperspectral fusion; Landsat; Costa Rica; reforestation; secondary forests; 

payments for environmental services (PES); tree plantations; remote sensing 

 

1. Introduction 

Tree plantations and tree crops are expanding rapidly across the globe in response to rising demand 

for wood pulp, timber, fruit, and vegetable oil [1,2]. However, the current distribution of tree plantations 

and tree crops is often estimated from government documents reporting planted areas that are of variable 

accuracy and lack consistent monitoring [3–6]. Global and regional maps of tree plantations and tree crops 

using readily available satellite imagery are greatly needed to improve estimates of carbon storage and 

monitor land-cover change, particularly in tropical regions where extensive field inventories are rare [3,5]. 

In this study, we assess the potential of an integration of hyperspectral and multitemporal 

multispectral imagery to aid regional reforestation monitoring by distinguishing tropical tree plantations 

from other forest types and identifying tree plantations at the species level. Most region-scale maps of 

forest cover based on multispectral or SAR satellite imagery do not distinguish tree plantations and tree 

crops from other forest types [7,8] and often combine them with secondary forests [6,9–13]. This 

consolidation of forest types can oversimplify and mask key ecological differences that are important 

for monitoring forest change, biodiversity, and carbon stocks. Tree plantations and tree crops support 

much lower levels of biodiversity than mature and secondary forests, and potentially have higher rates 

of clearing for timber management and soil carbon emissions [14–16]. 

Different tree plantation species can also have distinct impacts on local ecosystem services and 

biodiversity. For example, Eucalyptus spp. and Pinus spp. are prone to burning in dry regions, which 

increases carbon emissions [17] and species within plantations differ in carbon sequestration rates [18]. 

Plantation species with open or structurally complex canopies can promote dense native understory 

regrowth and forest connectivity [19–21]. Conversely, fast-growing tree species with dense shade can 

function as “biological deserts” with very low biological diversity [22]. Similarly, crop species like oil 

palm, rubber, and fruit trees are often intensively managed in monoculture plantations [2,23]. 

In Costa Rica, despite an intense interest in REDD+ and substantial government investment [24],  

the degree of success of reforestation programs in increasing the cover of tree plantations is not well 

known. Government payments to establish tree plantations during the 1980s led to a large pulse of 

reforestation [9,25–30], and the recent 1996 Forestry Law (no. 7575) further encouraged tree plantation 

establishment through payments for environmental services (PES) [31–35]. Northeastern Costa Rica in 
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particular has received extensive reforestation payments, in part because of efforts to increase habitat 

connectivity in the San Juan-La Selva Biological Corridor (SJLSBC; Figure 1) [32]. 

 

Figure 1. Map of the study area in lowland Costa Rica (10.42′N–84.00′E), showing the  

San Juan-La Selva Biological Corridor (red line, 2466 km2), the hyperspectral imagery 

mosaic, and parks and wildlife refuges (shades of grey). La Selva Biological Station is 

centrally located in the imagery (a 4509 km2 mosaic). 

Previous satellite image-based land-cover maps of the SJLSBC have not successfully distinguished 

tree plantations or individual tree plantation species from other forest types at regional spatial  

extents [9,36–38]. However, high loss rates of reforestation (a land cover category including both 
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secondary forests and tree plantations) have been observed in this region [9,25,29]. As a result,  

the long-term persistence and composition of tree plantations in this landscape remains unclear [9]. 

Hyperspectral imagery may improve our ability to accurately distinguish tropical tree plantations 

from other forest types and to identify species within plantations [39]. Hyperspectral imagery has been 

used to identify tree species occurring within temperate and tropical forests [40–42]. Most subtropical 

and tropical studies to date have relied on high-resolution hyperspectral imagery to identify rainforest and 

savanna tree species at the individual tree canopy scale [39,43–47]. Moderate-resolution (10–30 m pixels) 

hyperspectral imagery has been used to successfully distinguish emergent forest canopy trees in Peru [48], 

invasive tree species in Hawaii [49], Indian tree species [50], and mangrove forest species [51]. A small 

number of studies have used high-resolution data to determine tree species within already-delineated 

timber plantations as part of timber inventories [52,53]. 

Despite the potential for identifying forest species with hyperspectral imagery, the degree to which 

tropical forest types and tree plantation species composition can be mapped remains unclear. The relatively 

few studies that have attempted to distinguish tropical secondary forests from mature tropical forests 

using hyperspectral data have had variable accuracy [54–56]. Distinguishing tree plantations from other 

forest types may present an additional challenge. Spectral reflectance of tree plantations can be quite 

variable even within the same tree species, changing with plantation nutrition and disease status [57], 

degree of canopy disturbance [58], underlying soil type [59], and plantation age [52]. Tree plantation 

classification accuracy across landscapes is highly variable in the multispectral sensor literature, with 

frequent confusion between plantations and both secondary and mature forests, respectively [9,60–67]. 

Some non-native species, such as pine, acacia, and eucalyptus, have been classified with high overall 

accuracy (>80%) using multispectral data [60–62], implying that accurate plantation discrimination may 

be less challenging when tree plantations and tree crops are not comprised of or mixed with native 

species or when spectral contrast with local native vegetation or agriculture is high. In northeastern Costa 

Rica, Fagan et al. [9] were able to classify non-native tree plantations with high accuracy using 

multispectral data, but native tree plantations were typically confused with secondary forests (<65% 

accuracy). Sesnie et al. [37], working in the same region, was able to classify a general tree plantation 

class with ~90% accuracy using Landsat and ancillary data and a labor-intensive image-subsetting 

technique; however, class accuracy decreased to 55% when implemented at larger image extents. 

Spectral confusion with native vegetation is a well-known challenge in agroforestry and tree crop 

systems, particularly in mapping shade coffee [68,69], oil palm [70–73], and evergreen rubber tree 

plantations [74,75]. 

In this study we developed a cross-sensor approach to map forest types that combines infrequent 

airborne hyperspectral imagery with multitemporal satellite imagery. Hyperspectral data has frequently 

been fused with LiDAR, and to a lesser extent SAR, [41,47,76,77] to conduct single-date mapping of 

forest types. However, this approach is often constrained by data availability and cost to relatively small 

areas. Incorporating multitemporal, inter-annual data on forest disturbance and spectral change into 

classifications may help to distinguish tree plantations and secondary forests from less disturbed mature 

forests across large areas. Currently, the data source with the longest temporal record and global 

coverage is the freely-available imagery collected by the moderate-resolution multispectral Landsat 

sensors [77]. Landsat data has been effectively used to map and age tropical reforestation [12,78], and 

single-band spectral chronologies have been used to track disturbance to forests and forest recovery over 
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time [79,80]. Although frequent cloud cover can lower the utility of multitemporal approaches by 

decreasing image frequency [81], less frequent image intervals may still contain valuable information 

for distinguishing undisturbed primary forest from reforestation in recently disturbed sites [78,81,82]. 

The principle objectives of this study were to: (1) test whether integrating hyperspectral imagery with 

multitemporal Landsat information increases discrimination of tree plantations, secondary, and mature 

forest types, compared to hyperspectral imagery alone; and (2) examine whether this integration also 

improved mapping of tree plantation species composition. We hypothesized that accurate plantation 

discrimination would be more difficult when tree plantations are comprised of native species. We further 

hypothesized that integrating Landsat multitemporal data with hyperspectral data would improve the 

overall single-date classification accuracy of tree plantations in northeastern Costa Rica. 

2. Experimental Section 

2.1. Study Area 

The study area encompasses principal reforestation areas in the lowlands of northeastern Costa Rica, 

covering a total of 4509 km2 (Figure 1). We selected this region for study because of the extensive 

availability of satellite and airborne remote sensing data, a history of large-scale reforestation efforts, 

and the presence of an established PES program (1996) that subsidizes tree planting and maintenance 

among landowners. Ongoing partnerships between American and Canadian space agencies and the  

Costa Rican government have led to numerous aerial missions in the last decade to collect hyperspectral, 

LiDAR, SAR, and high-resolution multispectral data across much of the country [83,84]. The long-term 

rainforest monitoring plots, experimental tree plantations, and secondary forests at La Selva Biological 

Station have been the particular target of remotely sensed data collection. 

The northeastern lowlands are an agricultural frontier whose settlement expanded rapidly in the late 

1960s leading to widespread deforestation [29,30,85,86] that slowed after 2001 [9,25,34]. The study area 

has moderate variability in annual rainfall (3.2 ± 0.8 m/year) and elevation (108 ± 98 m), with central 

ranges of low hills cut by broad river valleys giving way to coastal plains to the east. Despite loss of 

over half of the area’s forest cover, the Atlantic lowlands retain large patches of old-growth forest outside 

protected areas [9,87]. The SJLSBC was established in 1997 to maintain and re-establish forest connectivity 

between Costa Rica’s montane parks and Nicaragua’s lowland Indio Maiz Biological Reserve [88]. 

To evaluate the extent of reforestation in this landscape, we mapped the narrow central waist of the 

San Juan-La Selva Biological Corridor and adjacent areas using aerial hyperspectral imagery (Figure 1). 

Adjacent areas outside the SJLSBC were mapped to the northwest and southeast (along flight lines) 

within Costa Rica (hereafter, the “study region”; Figure 1). 

Common tree species planted within this region include Tectona grandis, Gmelina arborea, Vochysia 

guatemalensis, Terminalia amazonia, Hieronyma alchorneoides, and occasionally Dipteryx panamensis, 

Terminalia ivorensis, or Vochysia ferruginea [18]. Private commercial plantations of  

non-native Tectona and Gmelina and citrus fruit orchards (Citrus spp.) were common within the region 

during the study period. Ecological characteristics of the most commonly planted tree species are 

described in Table 1 ([18], [89–96]). 
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Table 1. Characteristics of the selected tree plantation species in this study. The first three 

species (Citrus spp., G. arborea, and T. grandis) are non-native, while the rest are native tree 

species. Three of the groups (referred to as species for simplicity) were actually genera, with 

species combined because of low sample sizes: Citrus spp. (species unknown), Vochysia spp. 

(guatemalensis and ferruginea), and Terminalia spp. (amazonia and ivorensis).  

Species Uses [18] 
Timber Harvest 

Rotation [89–93] 
Canopy [89–94] * 

Canopy 

Closure Rate 

[18,95–96] 

Potential 

Understory 

Habitat [94] * 

Management 

Issues [92–93, 96] * 

Citrus spp. Fruit NA 
Intermediate, with 

row-gaps 

NA: row 

cultivation. 
Grass 

Intensively 

managed and 

cleared 

Gmelina arborea Timber 3–15 years Dense 
High to Very 

High 
Short, thin 

Disease, herbicide 

when planting 

Tectona grandis Timber 15–25 years 
Dense to thin,  

semi-deciduous 
Medium Tall, dense 

Fire or manual 

clearing of 

understory required. 

Vochysia spp. (gu. 

and fer.) 

Timber, 

habitat 
15–25+ years Thin to intermediate 

Medium to 

Medium-High 
Tall, dense N/A 

Hieronyma 

alchorneoides 

Timber, 

habitat 
25–40+ years Thin to intermediate Medium Tall, dense N/A 

Terminalia spp. 

(am. and ivor.) 

Timber, 

habitat 
25–40+ years Very thin Medium Tall, dense N/A 

* denotes where literature data are supplemented with personal observations from field work. 

2.2. Remote Sensing Data 

HyMap II hyperspectral data were acquired by the NASA CARTA-II flight campaign conducted over 

northern Costa Rica from 01 March to 25 March, 2005 [83]. The HyMap II whiskbroom sensor 

(manufactured by HyVista Corporation, Castle Hill, Australia) included 125 spectral channels covering 

the 458 to 2491 nm range at a 15 nm sampling interval. Water absorption regions centered at 1350 and 

1850 nm were excluded. The instantaneous field of view covered a 61° swath with a 14.2 to 16.7 m  

pixel size [83]. Seven HyMap images with low cloud cover (<20%) covering the central SJLSBC and 

adjacent areas were selected for analysis (Table A1). 

Image pre-processing and processing steps to normalize reflectance values and improve image quality 

for enhancing discrimination of forest types and plantation species are summarized in Figure 2. We used 

the HyMap surface reflectance data products released by HyVista, which included georectification from 

onboard DGPS, ATREM model processing to correct for atmospheric effects, and EFFORT polishing 

of reflectance values, described in Arroyo-Mora et al. [97]. We resampled HyMap images to the mean 

pixel size (15 m) using the nearest neighbor method and co-registered image tiles to a 2005 Landsat 7 

pan image (<7.5 m root mean squared error (RSME); Table A1) using an automated tie point program [98]. 

Clouds, cloud shadows and terrain shadows were masked from each image using manual decision trees 

based on NDVI and hyperspectral bands centered on 460, 500, 1170, and 1460 nm. We corrected the 

masked images for cross-track and along-track illumination differences using a bilinear cross-track 

correction algorithm (A. Singh, in prep). Because of differences in illumination among image dates and 
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residual errors from georectification (<7.5 m RSME), we conducted cross-image illumination correction 

using the haze correction relative normalization method [99], selecting the reference normalization 

image that had the lowest blue-band reflectance in shadowed areas (Table A1). 

 

Figure 2. Flow diagram of pre-processing and processing steps. Blue diamonds denote 

images, green squares mark image processing, white boxes and circles denote data derived 

from images or field work, grey circles mark randomly selected, independent testing and 

training data, and red circles mark analysis products. 

We mosaicked the resulting final images, replacing cloudy and shadowed pixels with clear pixels in 

overlap areas where possible (Figure 1). Some minor radiometric differences between images persisted 

after correction; we used spectrally stable old-growth forest targets [81] to assess among-image 

differences and compare spectral variation between the HyMap mosaic and Landsat (see below) 

imagery. We estimated that among-image radiometric differences led to an additional 9% variance in 

spectral reflectance, on average, at stable forest targets. We further addressed radiometric variability 

across image tiles by collecting training and validation data across the entire study area (see Section 2.3). 

Multispectral data were acquired by the Landsat 5 and 7 sensors (scene path 15, row 53) in four years 

(1986, 1996, 2001, and 2005) with low annual cloud cover, between the months of October and March 

(Table A1). Each year selected was further composited to remove existing clouds using the next closest 

image dates to the degree possible (Table A1). Each Landsat 5 image was geometrically corrected to 
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Landsat 7 images to less than 0.5 pixel RMSE (<15 m) using an automated tie-point program [98]. We 

corrected images for atmospheric effects using LEDAPS [81] and radiometrically normalized all images 

to the most haze-free image in the time series (Table A1) using the MAD algorithm [100]. To remove 

clouds and Landsat 7 missing scan line errors, all images except 2001 were composites of two or three 

image dates separated by less than thirteen months. Prior to image mosaicking, clouds and line errors 

were masked using custom decision trees employing Band 1, 3, 4 and 6 thresholds. Further details on 

image processing can be found in Fagan et al. [9] supplemental. 

 

Figure 3. Two images of La Selva Biological Station, with land-use classes labeled at points 

for illustration, and a table showing the spectral values of the points in each image. Image A 

(left) shows a metric derived from Landsat imagery—the mean of the Euclidean distance 

(ED) in Band 5 between all four image pairs in a Landsat image stack (1986–2005). Warmer 

colors signify greater mean change in Band 5 over time; both reforestation and deforestation 

events show high mean change; Image B (right), showing the same area, is a three-band 

HyMap reflectance composite (593:794:534 nm). To illustrate radiometric variation between 

images, the highest spectral contrast between two image tiles in the entire HyMap image 

mosaic can be seen just below the mature forest point, in the bottom left corner of the red box. 

To highlight recently disturbed forest and tree plantations in a single measure for multitemporal 

analyses, we used a single Landsat band (band 5; 1550–1750 nm) for each pixel across the image time 

series (Figure 3). Landsat band 5 by itself has been used to detect forest disturbance in previous  

Class Hymap, 794 nm
Landsat
Mean Distance

Forest types Reflectance Euclidean distance metric

Mature Forest (MF) 0.296 0.007

Secondary Forest (SF) 0.340 0.036

Tree Plantation (TP) 0.439 0.061

N
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studies [101,102], and in our preliminary analysis (M.E. Fagan, unpublished data), it performed as well 

or better than other single-band metrics like Normalized Burn Ratio and Tasseled Cap bands [79,80]. 

For each Landsat image pair we calculated the Euclidean spectral distance in band 5, across all possible 

image pairs; masked cloud and scan-line error pixels were omitted from the calculation. We used the 

mean and variance of spectral distance to summarize the magnitude and variability of spectral change 

for each pixel. For example, pixels with a larger mean distance and high variability represent forest areas 

that likely experienced disturbance, such as tree plantations with rapid harvest rotations. 

To further characterize forest disturbance and reforestation, we classified the Landsat image time 

series. Prior to classification, we selected six spectral bands (Landsat bands 1–5 and 7) and calculated 

four vegetation indices from the Landsat data. The vegetation indices were NDVI [103], the Brightness 

and Green bands from the Tasseled Cap transformation [104], and a normalized difference of Band 2 

and Band 5 (ND25, calculated like NDVI). These ten bands, along with elevation derived from a  

hole-filled SRTM DEM (v. 2.1) at 90-meter resolution [105,106], were the inputs into the classification. 

We used a Random Forest supervised classifier (described below) and field-collected training and 

validation data (for full details, see Fagan et al. [9]; Figure A1). Landsat images were first classified to 

forest and nonforest; these forest masks were integrated over time to distinguish stable, mature forest (forest 

persisting from 1986 to 2005) from reforestation and open land cover. Independent testing data indicated 

high within-year classification accuracy of the forest masks (e.g., 96% overall accuracy for 2005) and among-

year forest-change accuracy for the three land cover types (88% overall; see Fagan et al. [9] for details). 

Because distinguishing reforestation from other forest types was our primary goal, we converted the Landsat-

derived 2005 land cover map into a mask that indicated the presence or absence of reforestation. 

To permit the inclusion of the 30 m Landsat data in the hyperspectral classification, final summary 

metrics and land cover variables were resampled to a 15 m pixel size and then matched to the  

geo-registered HyMap image using a nearest neighbor resampling method. 

2.3. Field Data Collection 

Georeferenced land use data came from three sources: field observations, surveyed boundaries of 

managed forests (polygons), and visual interpretation of georeferenced high-resolution aerial photos. 

We collected 1859 land use data points in all for classification model training and field validation.  

Field observations consisted of a total of 1575 land use points collected using a handheld global 

positioning system (GPS) device during separate field seasons in 2004 and 2005 (Trimble GeoXT; [25]) 

and 2009 to 2012 (Garmin 60CSx; [9]). The 2009 to 2012 field data was backdated to 2005 by comparing 

it with high-resolution aerial photos collected during the CARTA-II mission (0.5 m pixels). An effort 

was made to locate field points at intervals greater than 250 m along paved and unpaved roads across 

the region. Each land use point was located a minimum of 60 m from a road. Information recorded at 

each point included the dominant land use within a 60-m radius area, tree species, and additional 

information on land use history such as forest age. Where the exact age of secondary forests was 

unknown, visual assessment of forest cover in two types of imagery was used to determine the 

approximate age of secondary forest points: the 1986 and 1996 Landsat imagery, and black and white 

aerial photos taken in 1986 and 1992 (1:60,000 scale; [30]). 



Remote Sens. 2015, 7 5669 

 

Tree plantation boundaries were georeferenced by a local forest extension organization, FUNDECOR. 

Boundary polygons were collected using Garmin 60CSx GPS units and in many cases were refined 

through repeated visits. Field data from these polygons were generated by randomly locating target 

points at a distance from the polygon edge (>30 m inside the polygon) and then checking the resulting 

points (n = 64 points) in the high-resolution CARTA-II imagery. CARTA-II aerial photos were also used 

to directly create 220 land use points. Image interpreted points were selected a minimum distance of  

500 m from existing land use points to increase the number of training and validation samples in  

under-surveyed image tiles within the hyperspectral image mosaic. Each point selected from aerial photos 

was surrounded by at least a 60 m radius homogenous area. 

To develop training data for image classification, we randomly selected 70% of the land use data 

points in each class. Each training point was buffered by a 60 m radius polygon known to be a single 

land use type from field and aerial photo inspection, and all pixels that fell within the 60 m buffer were 

assigned to that land use class as training pixels. Overlapping land use polygons were winnowed by 

random selection; all resulting polygons were separated by >150 m. This resulted in a total of 1287 points 

and 33,182 pixels for training, representing 0.2% of the hyperspectral image. No single land use class 

was trained with less than 250 pixels and the median was 1028 pixels (Table 2). 

2.4. Forest Type Classification 

2.4.1. Land Use Classes 

We classified three main forest types, tree plantations, mature forests, and secondary forests, to meet 

our first objective of testing the ability of hyperspectral and multitemporal data to distinguish tree 

plantations from other forest types. Mature forests were defined as lowland rainforests or swamp  

forests older than available Landsat time series data (i.e., >24 years in age; (Table 2)). This category 

potentially includes a wide range of forest compositions, as the majority of mature forest constituted 

selectively-logged old-growth lowland rainforest (S.E. Sesnie, pers. comm.). Secondary forests were 

defined as completely-cleared area of forest regrowth <24 years in age (the limit of our historical 

records). Tree plantations consisted of closed canopy monocultures made up of one of six tree plantation 

species (Table 2). To improve discrimination of these key forest types and improve monitoring of land 

use change, we also distinguished 11 common non-forest land uses, for a total of 20 land use classes 

initially (Table 2). However, for the first set of analyses distinguishing forest types, land use classes were 

grouped post-classification into the three forest categories defined above and a non-forest class, 

categorized as “other” (Table 2). 

To meet our second objective and examine how well hyperspectral and Landsat data distinguish tree 

plantation species composition, subsequent analyses focused on classification accuracy for individual 

tree species in areas classified as tree plantations. Thus, we reported the class accuracy of tree plantations 

both as a single land cover class and by species composition. 
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Table 2. Class information and descriptions for the land-use classes in this study. The classification class was used for the initial model classification 

and map prediction, and the summary class was used for comparisons of the Random Forest models. Tree plantations were assessed both as a 

grouped class and as separated class (i.e., each species) in the final summary accuracy assessment, and so are marked in italics. Classes referred 

to as reforestation in the text are in bold, and include secondary forests and tree plantations. 

Summary Class Classification Class Short Name Descriptions 
Training  

Points 

Training  

Pixels 

Testing  

Points 

Other Banana Banana Large, export-oriented monocultures of banana 54 1507 91 

 Heart-of-Palm Hpalm Monocultures of heart-of-palm; occasional shade trees 44 1220 81 

 Pineapple Pina Large, export-oriented monocultures of pineapple 47 1302 86 

 Cassava Cass. Open monocultures of cassava 15 417 68 

 Bare soil Soil Reddish exposed soil; mix of inceptisols and andisols 28 772 112 

 Sand Sand Sandy soils, adjacent to river. 23 909 74 

 Clouds Cloud Cumulus clouds. 104 6342 67 

 Pasture Past. Open to wooded grassy pasture. 180 4990 152 

 Shade Shade Cloud shadows and dark, deep water. 100 4055 51 

 Urban Urban Mainly cement, asphault, and tin roofs. 13 372 53 

 Water Water Open water. 67 1212 99 

Mature Forest 
Lowland Mature Forest Matfor Forest >24 years old (Fagan et al. 2013). 153 4259 119 

Swamp Forest Swfor Forest >24 years old that is dominated by Raphia palms. 10 278 65 

Secondary Forest Secondary Forest Secfor Forest < 24 years old. 61 1695 127 

Tree Plantations 

Citrus Citrus Large orchards of Citrus spp. 52 909 60 

Gmelina Gmel. Exotic tree plantations of Gmelina arborea. 46 1105 80 

Hieronyma Hier. Native tree plantations of Hieronyma alchorneoides. 11 310 69 

Tectona Tect. Exotic tree plantations of Tectona grandis. 38 951 75 

Terminalia Term. Native tree plantations of T. amazonia and the non-native T. ivorensis. 11 305 61 

Vochysia Voch. Native tree plantations of V. ferruginea and V. guatemalensis. 10 253 43 
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2.4.2. Classification Model Comparison 

We compared four separate models integrating multitemporal Landsat data into a single-date 

hyperspectral classification (Table 3). The first classification model (“Hyper”) consisted of hyperspectral 

data only. A second model (“HyperLs”) used both the hyperspectral data and two metrics derived from 

multitemporal Landsat spectral data (i.e., the mean and variance of band 5 over the image composite 

time series) as predictor variables in a supervised classification. The third model (“HyperLC”) modified 

the Hyper results post-classification using the time series of Landsat land-cover data to reclassify mature 

forests as secondary forest where they intersected Landsat time series-derived secondary forest. The 

fourth model (“HyperLsLC”) was exactly the same as the third model, except that it modified the results 

of the HyperLs classification model. 

Table 3. Summary, conceptual model of the four Random Forest models. Situations where 

only single-date training data exists could employ Models 1 or 2, while situations with 

multiple dates of training data could use Models 3 or 4. In our study, multiple dates of 

hyperspectral imagery do not currently exist for most of the region, limiting the utility of 

multiple dates of training data. 

 Training Data 

Imagery Data Single Date Multiple Dates 

Hyperspectral (1).Hyperspectral (Hyper) NA 

Hyperspectral + Landsat (2).Hyper + Landsat spectral data (Ls) 
(3).Hyper + Landsat land cover data (LC) 

Hyper + Ls + LC 

Prior to implementing classification models, we reduced data dimensionality for the training data 

using linear discriminant analysis (LDA). LDA has been extensively used to discriminate tree species 

with remotely sensed data and performs well with hyperspectral data despite violations of normality 

assumptions [39,107]. In this analysis, the 105 hyperspectral bands (Figure 4) were reduced to 19 LDA 

bands with low correlation. The LDA helped to reduce radiometric differences across image tiles, 

improving the consistency of training and testing samples across the study area. The LDA model was 

developed using all 20 possible land cover classes because initial analyses revealed that combining land 

use classes prior to classification markedly decreased forest type discrimination. 

The Random Forest (RF) machine learning algorithm was used to develop a classifier for the  

LDA-processed hyperspectral and Landsat image data [108]. Random Forest is an ensemble decision 

tree classifier that is non-parametric and flexible with regards to data distributions and assumptions  

(see [108] for a full description). RF has been used for hyperspectral classification [45,109,110]  

and the analysis of datasets with hundreds to thousands of potentially correlated predictors (e.g., [111]). 

We implemented RF using the RandomForest package in the R statistics package v. 2.14.1 [112],  

with default settings and n = 1000 decision trees per classification. 



Remote Sens. 2015, 7 5672 

 

 

Figure 4. Mean hyperspectral reflectances for the forest classes in this analysis, derived from 

the HyMap imagery at the training data locations. Class sample sizes are shown in the 

legend; see Table 2 for class name acronyms. The gray polygon represents one standard 

deviation above and below the yellow secondary forest class (abbreviated here as “Secfor”). 

Water-absorbing spectral regions (centered on 1.3 and 1.9 µm) were excluded from the 

analysis and are not shown. 

2.4.3. Post-Classification Processing 

Following hyperspectral image classification, post-processing was conducted to remove some 

misclassification errors and improve discrimination of individual land cover classes. The Random Forest 

classifier outputs from the Hyper and HyperLs models were used to predict land use maps, and each map 

was filtered to remove classification speckle anomalies in three steps. First, a duplicate image was 

processed with a 3 × 3 moving window majority filter. Second, adjacent pixel clusters less than 4 pixels 

in size were sieved in the original classified map. Finally, sieved pixels were replaced with pixels from 

the filtered duplicate image. This process removed speckle, preserved narrow linear features from 

replacement by majority classes, set the minimum mapping unit at 0.09 hectares (four pixels), and 

increased map accuracy by 1.7%–2% across classification models. Post-processed map accuracy was 

assessed using independent validation data, as described below. 

The post-processed classification results from Hyper and HyperLs were the starting points for the 

HyperLC and HyperLsLC models, respectively (Figure 2, Table 3). We used the Landsat-derived 2005 

reforestation mask to reclassify mature forest in the Hyper and HyperLs land use maps to secondary forest. 

We then assessed the accuracy of the reclassified land use maps for the HyperLC and HyperLsLC models. 
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2.5. Accuracy Assessment 

2.5.1. Independent Validation Data 

To assess classification accuracy with independent validation data, we evaluated 1086 testing points 

using a stratified random approach. For each land use class, 64 randomly-located data points were 

generated using the Raster package in R statistics software (v. 2.14). The land use class of each validation 

point was identified using aerial and Landsat imagery. Points were discarded when they intersected a 

cloud, cloud shadow, or were located within a land use type that could not be identified. 

Validation samples from aerial and satellite imagery for tree plantation species and secondary forests 

could only be confirmed for a limited number of sites, contributing to a low number of initial samples 

for these forest types. In order to obtain a sufficient number of independent samples to evaluate each 

classification model, we combined the stratified random sample with field validation data (Section 2.3) 

randomly withheld from the classification model. We randomly withheld 30% of the field data for testing 

purposes, or 558 land use points. All retained testing points were separated by >100 m from each other 

and training data polygons to reduce spatial autocorrelation between samples. The median number of 

testing samples across all classes was 74 (Table 2). 

2.5.2. Subsampling the Validation Data 

To correct for an uneven number of testing samples [113], we equalized sampling effort across classes 

by creating multiple balanced sets of test data using a subsampling bootstrap of the original test data [114]. 

“Subsampling” bootstrap samples without replacement were developed relatively recently [114] and are 

mathematically straightforward and considered more robust to lack of independence than traditional 

bootstraps [115]. Subsampled bootstraps allowed the estimation of confidence intervals through an 

asymptotic sampling function based on the Central Limit Theorem (by default and in our study, a square 

root function), a selected subsample size (n = 20, sampled without replacement) from each land use class, 

and the original population size of validation points (Table 2) [114,115]. Subsample bootstraps were run 

1000 times to develop confidence intervals around accuracy estimates and approximate a stratified 

random sampling design [116–118]. 

We compared RF model performance using four summary land use categories: tree plantations, 

secondary forests, mature forests, and all other classes (Table 2). Each of the four summary land use 

categories (e.g., mature forest) was subsampled as one class in the accuracy assessment, with proportional 

sampling from each sub-class (e.g., lowland mature forest and swamp forest). For each model, we 

evaluated RF model accuracy using subsampled test data, calculating the mean and 95% confidence 

interval of several statistics from error matrices: overall percent accuracy, Kappa statistic, and omission 

and commission accuracies for each class. For the class accuracy statistics, we used the size of the original, 

unbootstrapped sample (Table 2, “Testing points”) to calculate standard error in confidence intervals. 

For the overall accuracy and Kappa statistics, we used the mean of the test sample size across land use 

classes (82 pixels) to calculate standard error in confidence interval estimates. To statistically compare 

overall and class accuracies among classification models, we used generalized linear models (GLM). 
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3. Results and Discussion 

3.1. Forest Type Classification 

The four RF models showed increased overall bootstrapped accuracy as additional multitemporal data 

were added to each classification approach (Hyper model, 83.5%; HyperLsLC: 88.5%). The addition of 

land cover information on secondary forests (LC models) significantly improved (p < 0.0001) accuracy 

by +1.7 to +2.7 (Figure 5); Kappa values also significantly increased (p < 0.0001; Figure A2). The addition 

of multitemporal spectral data led to a slightly smaller increase in accuracy than the Landsat-derived 

reforestation data (model HyperLC vs. HyperLs, p < 0.0001), but combining both land cover and spectral 

data led to the highest overall model accuracy (HyperLsLC, p < 0.0001). For the Hyper and HyperLs 

models, the Random Forest “out-of-bag” (OOB) internal accuracy measure was much higher and less 

variable (~96%) than the overall accuracy derived from independent test data because spatial 

autocorrelation was reduced for independent test data (Figure 5). 

 

Figure 5. Overall accuracy comparison of the four Random Forest models. For each model, 

the bootstrapped overall accuracy for the four summary land-use classes is shown in black 

(mean and 95% confidence intervals), and the original unbootstrapped accuracy is shown in 

red. Letters denote that bootstrapped accuracy is significantly different for all of the models 

(p < 0.0001). For the two models on the left with distinct RF classification models  

(see text), we show the overall mean accuracy of the full twenty-class RF model on the 

original unbootstrapped testing data and the corresponding OOB accuracy for the same  

twenty-class model. 

Tree plantations were well discriminated from secondary and mature forests across all models (Figure 6, 

Table S2). Although secondary and mature forests were confused with each other, the Hyper model 

classified tree plantations with 85.6% producer’s accuracy. Including multitemporal spectral data 

(models HyperLs and HyperLsLC) caused a significant (p < 0.0001), but small (+1.5), increase in the 

user’s accuracy of tree plantations. The inclusion of multitemporal land cover information (e.g.,  
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the HyperLC model) did not increase the accuracy of tree plantation classification, because the information 

was only used to reclassify mature forests to secondary forests. 

 

Figure 6. Producer’s and user’s accuracy for the Random Forest models, by summary  

land-use class (mean ± 95% CI). Producer’s accuracy is defined as 100 minus the error of 

omission for a given class, and user’s accuracy is defined as 100 minus the error of commission 

for a given class. 

Table 4. Confusion matrices of the bootstrap results for forest summary classes, comparing 

the Hyper RF model accuracy and the HyperLsLC RF model accuracy. 

Model: Hyper Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,718 0 1272 605 21,595 91.6 

Mature Forest 67 19,054 4533 1068 24,722 77.5 

Secondary Forest 80 533 10,905 1200 12,718 86.2 

Tree Plantations 135 413 3290 17,127 20,965 82.1 

Total 20,000 20,000 20,000 20,000  Overall: 

Prod. Acc. 98.6 95.3 54.5 85.6  83.5 

Model: HyperLsLC Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,727 0 1150 688 21,426 91.8 

Mature Forest 41 18,915 647 146 22,489 95.9 

Secondary Forest 104 837 15,153 2158 14,558 83.5 

Tree Plantations 128 248 3050 17,008 21,527 83.6 

Total 20,000 20,000 20,000 20,000  Overall: 

Prod. Acc. 98.6 94.6 75.8 85.0  88.5 

The Hyper model had relatively low producer’s accuracy for secondary forests (54.5%) and user’s 

accuracy for mature forests (77.5%), primarily because of confusion between these forest types.  

The addition of multitemporal Landsat spectral data (models HyperLs and HyperLsLC) showed a 

significant increase (+5.8 to +7.5 between models, p < 0.0001; Figure 6) in the producer’s accuracy of 
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secondary forests. Models with multitemporal spectral data had markedly improved discrimination of 

mature forests from tree plantations and secondary forests, and only slightly lower discrimination 

between tree plantations and secondary forests (Table S2). As a result, small but significant increases in 

user’s accuracy of mature forests were observed in these models (p < 0.0001), along with small but 

significant declines in producer’s accuracy for mature forests and in user’s accuracy for secondary forests. 

Incorporating information on secondary forests from Landsat-derived land cover maps (models 

HyperLC and HyperLsLC) significantly improved discrimination of secondary forests overall (12.7 to 

15.0 between models, p < 0.0001; Figure 6). There was a concomitant small decline in accuracy for 

mature forests (~−2 across models in user’s and producer’s accuracy, respectively; Figure 6, Table S2). 

Because initial analysis indicated heavy confusion between mature and secondary forests in the Hyper 

model (Figure 6), we assumed that the spectral similarity and species overlap between these two forest 

types justified reassignment based on multitemporal information. Despite the highest overall accuracy 

for the HyperLsLC classification models, secondary forests only achieved acceptable producer’s 

accuracy (75.8%) because of persistent confusion with tree plantations and non-forest land uses (Table 4). 

3.2. Tree Plantation Species Discrimination 

Across all of the models, all six tree species within plantations were classified with acceptable (≥67%) 

to high (>80%) producer’s accuracy and, with the exception of Vochysia spp., high user’s accuracy 

(Figure 7, Table 5).  

 

Figure 7. Producer’s and user’s accuracy across the four Random Forest models for tree 

plantations as a general class (left column; mean ±95% CI) and for each tree plantation species. 

Producer’s and user’s accuracy are defined in Figure 6. Please note that, for clarity, the order 

of the species and RF models has changed slightly from other figures. The three non-native 

species are grouped on the left, while the three native species are grouped on the right. 
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Table 5. Full confusion matrix for the HyperLsLS Random Forest model, with tree plantations 

as a class separated into the component tree species. The confusion matrix in bold is same 

one shown in Table 4. Row and column totals and accuracies in bold refer to the confusion 

matrix in bold. The individual tree species (italics) sum up to the all tree plantation species 

category in bold to the top left. We show mean user’s and producer’s accuracy for the filtered 

final map from 1000 subsampled runs with 20 samples each (20,000 samples total). 
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Total 
User 

Acc. 

All Other 19,727 0 1150 688 232 191 47 164 54 0 21,565 91.8 

Mature 

Forest 
41 18,915 647 146 0 0 38 0 108 0 19,749 95.9 

Second. 

Forest 
104 837 15,153 2158 114 200 515 143 938 248 18,252 83.5 

All TP spp. 128 248 3050 17,008       20,434 83.6 

Citrus 12 0 640  3005 0 0 46 0 82 3785 79.4 

Gmelina 0 0 612  0 2893 0 0 0 0 3505 82.5 

Hieronyma 12 0 0  0 0 2585 0 0 157 2754 93.9 

Tectona 24 0 0  0 0 0 3009 0 0 3033 99.2 

Terminalia 46 0 464  0 0 0 0 2317 70 2897 80.0 

Vochysia 34 248 1334  0 0 100 0 0 2744 4460 61.5 

Total 200,000 20,000 20,000 20,000 3351 3284 3285 3362 3417 3301   

Prod. Acc. 98.6 94.6 75.8 85.0 89.7 88.1 78.7 89.5 67.8 83.1   

The main source of omission error for tree plantation species was misclassification as secondary 

forests (Table 5). The three non-native tree species had higher classification accuracy than the native 

tree species, and Terminalia spp. had the lowest producer’s accuracy and greatest confusion with 

secondary forests, followed by commission errors for Vochysia spp. (Table 5). 

As noted above, the reclassification of secondary forest using land cover maps (the–LC models) had 

little effect on tree plantation classification accuracy. Differences between the Hyper and HyperLC models, 

for example, were likely a result of minor differences between RF decision tree classifiers that were 

developed separately. Including multitemporal spectral data, however, positively and negatively affected 

classification accuracy for plantation tree species composition. Tree species with more open canopies, 

including Citrus, Tectona, and Terminalia, had small declines (1%–7%) in producer’s and/or user’s accuracy 

in the Ls models (Figure 7). Vochysia and Gmelina, by contrast, had large increases (4%–8%) in both 

producer’s and user’s accuracy, while Hieronyma was largely unchanged between models (Figure 7). 

Landscape analysis of the most accurate overall map (HymapLsLC, Figure 8; Table A3 has the full 

map accuracy statistics) revealed that 10.5% of all forests in the study region were tree plantations in 

2005, but only 1.3% of all forests were native tree plantations (Figure 9). 

 



Remote Sens. 2015, 7 5678 

 

 

Figure 8. Full twenty-class land cover map. The HyperLsLC land-use classification is shown 

inside the white outline. The regional forest-nonforest map outside the white outline is 

derived from 2005 Landsat imagery (see Fagan et al. [9]); nonforest is shown in light gray 

and forest in light green. 

3.3. Hyperspectral Classification Accuracy 

3.3.1. Classification of Tree Plantations 

We found that single-date hyperspectral data was able to accurately distinguish tree plantations from 

mature forests and secondary forest, although secondary forests had poor overall accuracy. Furthermore, 

hyperspectral data alone (Hyper model) accurately classified all six tree plantations to species with 

acceptable to high (75%–92%) producer’s accuracy and intermediate to very high (57%–99%) user’s 

accuracy (Figure 7). There was marked variation among tree plantation species in classification accuracy 

(Table 5). A common non-native plantation species, Tectona spp., had the highest user’s and producer’s 

accuracy across models, most likely because of its distinctive foliage and spectral values in the mid  

infra-red (1490–1760 nm and 2000–2400 nm; Figure A3). Terminalia spp. tree plantations had the 

lowest producer’s accuracy across models and were often misclassified as secondary forest. This tree 
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genus has a thin, high canopy with low leaf area index (LAI) [89] and its spectral signature is likely to 

have been influenced by abundant native understory trees. 

Because monospecific tree plantations were of limited spatial extent in our landscape relative to 

secondary and mature forests (Figure 9), we chose to first assess accuracy for tree plantations as a single 

map category, and then assess accuracy for individual reforestation species classes. Using a stratified 

random and bootstrapped sample of our validation data, producer’s and user’s accuracies for the tree 

plantation species were acceptable to high across models (Figure 7). In support of our first hypothesis, 

non-native tree species had higher producer’s accuracy than native species across models (Figure 7). 

Native genera, like Vochysia spp., were present in multiple forest types (mature and secondary forest, 

and tree plantations), which may have lowered accuracy. Vochysia ferruginea, in particular, is quite 

common in secondary forests in the region (R.C. Chazdon, pers. comm.). It is also likely that the higher 

number of training pixels for the non-native species may be partly responsible for differences in spectral 

separability between native and non-native tree species. 

 

Figure 9. Area of different land-uses in the final 2005 map. Natural forest types are in bold, 

and tree plantation species are in italics to the right. 

Tree species classification accuracy from this study was comparable to other studies that have 

attempted to separate tropical tree species using aerial hyperspectral data. For example, Clark et al. [43] 

achieved 92% overall accuracy in separating seven Costa Rican tree species with high-resolution 

HYDICE imagery, but individual species’ producer’s accuracies varied from 70%–100%. More recently, 

Feret and Asner [39] had ~85% overall classification accuracy with six Hawaiian tree species and 73.2% 

overall accuracy with seventeen tree species using high-spectral resolution CAO imagery. In our study 

region, reflectance values for tree species within plantations may have overlapped with natural forest 
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because of dense understory regrowth, local canopy dieback from disease or seasonal leaf loss, the 

occurrence of similar species in both plantations and secondary forests, and spectral averaging in 

moderate-resolution imagery [48,119]. However, there was little confusion between tree plantation species 

in our study. As a result, assessing the accuracy of tree plantations as one singular forest type rather than 

as individual tree plantation species only slightly improved the producer and user’s accuracy (85% and 

84%, respectively; Table 5) over the mean accuracy across tree species (83% and 83%, respectively). 

3.3.2. Classification of Other Forest Types 

Despite high accuracy with tree plantations, we were not able to accurately classify secondary forests 

using hyperspectral data alone (<55% producer’s accuracy), in large part due to their confusion with 

mature forests and, to a lesser extent, tree plantations (Table 3). The poor secondary forest accuracy we 

observed is similar to the results of Galvao et al. [55] with CHRIS-PROBA imagery in Brazilian 

landscapes, rather than the higher accuracy reported by Thenkabail et al. [54] using Hyperion imagery 

in African forests. Because spectral NIR reflectance saturates as leaf area index and canopy closure 

increases during succession, we might expect mature forests to be spectrally similar to older reforestation 

in the absence of consistent species differences in reflectance [56]. If this is true, moderate-resolution 

hyperspectral images may be similar to moderate-resolution multispectral images in their inability to 

distinguish mature from older secondary forests, particularly in wet tropical forest that can quickly 

achieve canopy closure in less than a decade [55, 77]. 

Future efforts to map secondary forests using single-date hyperspectral imagery could be more 

successful using spectral signatures of pioneer species (e.g., Cecropia spp.) and canopy N content as 

indicators of secondary forest [54, 122–124]. In our image mosaic, the continuous spectral transitions 

between forest successional stages observed in other tropical regions [125] may have been masked by 

spatial variation in reflectance due to selective logging, image differences, and atmospheric haze. Forest 

undisturbed by selective logging was relatively rare in our landscape. Forests with different logging 

intensities have been shown to exhibit distinct hyperspectral spectral reflectance [97]. 

3.4. Hyperspectral and Multitemporal Data Classification Accuracy 

The inclusion of multitemporal Landsat information in the hyperspectral analysis significantly improved 

the classification accuracy of tree plantations, secondary forests, and mature forests (Figure 6). We were 

able to distinguish between all forest types with good producer’s and user’s accuracy by combining 

hyperspectral data, Landsat multitemporal spectral data, and Landsat-derived information on forest 

history (the HyperLsLC model; Table 5). We interpret these results as support for our hypothesis that 

including multitemporal information would improve map accuracy for tree plantations. However, 

increased accuracy was largely a result of better discrimination of mature and secondary forests.  

Relatively little gain in accuracy was achieved for tree plantations as a single land use category. 

We were able to classify the six tree species within plantations with reasonably high accuracy using 

hyperspectral imagery alone. Including multitemporal spectral information slightly lowered the 

classification accuracy of species with open and/or temporally variable canopies (the tree crop Citrus, 

the deciduous Tectona, and the thin-canopied Terminalia). However, multitemporal information markedly 

increased the classification accuracy of the tree species with more dense canopies (Gmelina and 
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Vochysia). Temporal variability in reflectance within plantations dominated by open species may not be 

uniform across space, likely because of forest management history and site factors that can influence 

canopy and understory structure (e.g., [52,57,58]). Overall, there was a small average gain in user’s 

accuracy across species. There was mixed support for our second hypothesis, suggesting that adding 

multitemporal information to hyperspectral classification may be most useful in regions more 

extensively dominated by secondary forests and dense-canopied tree plantations. The additional 

processing needed to include multitemporal satellite imagery may be most efficiently applied in cases 

where distinguishing secondary and mature forest types from one another is needed to assess  

landscape-scale forest conditions. 

The accuracy improvement from including multitemporal spectral data was smaller than anticipated. 

In the Landsat imagery, mature forests frequently showed minor spectral changes over time (Figure 3) 

or were contaminated by cloud artifacts despite cloud masking, leading to false positives for spectral 

changes. Spectral changes from forest clearing and secondary forest regrowth were large in many 

locations (Figure 3), but in some locations changes were smaller, with incomplete disturbance and rapid 

forest recovery. The mismatch in spatial resolution between Landsat and HyMap may also have 

contributed to error in the spectral change metrics, as secondary forest and tree plantations typically 

occurred in small patches adjacent to mature forests. 

Greater gains in accuracy from integrating multitemporal information with hyperspectral data would 

likely be realized by tracking reforestation across a greater number of Landsat image dates with  

enhanced cloud filtering and replacement techniques, utilizing extensive and freely available image 

archives [78,82]. We used only four Landsat image dates for this analysis because of extensive 

cloudiness in this region. Better indices of spectral change could be derived from a subdecadal cloud-free 

composite methodology [79], or a monthly Landsat time series with a cloud pixel filter based on temporal 

outliers [126]. The inclusion of more frequent imagery can potentially reveal spectral or land use 

trajectories unique to different species within plantations or to specific management techniques applied, 

like tree thinning (e.g., [75]). The use of a variety of spectral indices might also improve the sensitivity 

of the data to spectral shifts with regrowth and disturbance [79]. The utility of a multitemporal approach 

will likely increase as new multitemporal change indices are tested [79,126] and the Landsat archives 

are more specifically processed to facilitate multitemporal comparisons [12]. There is an increasing number 

of pre-processed image products for making consistent land change measurements over time [81,127,128]. 

3.5. Model Accuracy Assessment 

In our study, random sampling of tree plantations for independent accuracy assessment was difficult 

due to the low reliability of distinguishing tree plantations from secondary forests on aerial photos.  

As a result, we included opportunistically-sampled ground validation data to increase sample size for 

secondary forests and tree plantation species. Because the inclusion of ground validation data 

imbalanced class sizes across our class strata [113,118], we employed a subsampling bootstrap to 

equalize class sizes in a stratified random sampling validation. The subsampling bootstrap permitted a 

more robust estimate of the accuracy confidence intervals for each class, which has two principal 

limitations. First, equal class sample sizes overestimated errors of commission for common classes like 

secondary forest by assuming that all classes were equally abundant in the study area. A stratified random 
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sampling scheme with equal class sizes emphasizes user’s accuracy (errors of omission) over overall 

accuracy [129]. Secondly, the subsampling bootstrap depends on sufficient sample sizes and well-spaced 

sample locations to estimate class accuracy, and may over- or underestimate error for classes with low 

sample sizes, such as areas reforested with native species in our study region. 

Band reduction and transformation using LDA decreased but did not eliminate inter-image differences 

(Figures 1 and 3), even though training data for all classes were collected across multiple image tiles. 

Radiometric correction of hyperspectral imagery, especially imagery mosaics with limited overlap 

among image tiles, is an area where additional research effort is needed on how to more effectively 

normalize reflectance data across flight lines [100,130,131]. Accurate surface reflectance estimates 

across hyperspectral image flight lines will be required for other approaches utilizing field spectroscopy 

rather than extensive field data collection efforts [132]. Improved radiometric, terrain, and atmospheric 

correction between our HyMap image tiles could have potentially increased classification accuracy. 

However, because our training and validation data for each class came from multiple image tiles and 

encompassed a variety of site, terrain shadowing, atmospheric, and image-illumination differences 

(Figures 4 and A3), our final classified land use maps were free of image artifacts (Figure 8). 

3.6. Status of Tree Plantations in Northeastern Costa Rica 

Primary forests are being converted to tree plantations and tree crops across the tropics [15,70,133]. 

However, in previously deforested landscapes like northeastern Costa Rica, tree plantations can dramatically 

enhance carbon storage and tree cover [134,135]. Because of the rarity of native tree plantations in our region, 

maps that do not distinguish non-native tree plantations from secondary forests (e.g., [12]) are much more 

likely to have biased estimates of natural regeneration and deforestation rates than maps that attempt to 

distinguish plantations from secondary forest (e.g., [9,37]). We estimate that only ~3% of the reforestation 

classes mapped by Fagan et al. [9] in this region were actually native tree plantation species, with the 

remainder secondary forests (~78%) and non-native tree plantation species (~19%). 

The dominance of non-native tree plantations in this region, coupled with the shorter rotation times 

of non-native species (Table 1), indicates that tree plantation cover will be highly dynamic in the coming 

decade. While plantation management will benefit timber supplies in this region, rapid harvest rates may 

limit the potential for long-term increases in forest connectivity from tree planting in this habitat corridor. 

Further, non-native tree plantations were often planted outside the SJLS corridor (Figure 8). The  

re-establishment of long-lasting and diverse forest cover in this landscape would likely benefit from 

adjusting reforestation payments to favor reforestation with higher-value native tree species. Native tree 

plantation species were largely planted within the SJLS Corridor and in the forested foothills to the 

southeast, adjacent to existing forest cover (Figure 8). Native species can have longer rotation times, but 

often require less intensive management (Table 1), and wood products and other ecosystem services 

provided by native trees may eventually be preferred over non-native species, as new data on growth 

rates and rates of return on investments become available [136]. 

4. Conclusions 

Given the increasing importance of tropical tree plantations and tree crops, there is an urgent need to 

improve our ability to inventory and monitor tree plantations and distinguish them from natural forest types. 
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In this initial test of a new methodology, we found that hyperspectral and multitemporal data can be 

effectively integrated to discriminate tree plantations from secondary forests and mature forests with 88.5% 

overall accuracy. The addition of multitemporal spectral metrics and land use history derived from a Landsat 

image time series improved the classification accuracy of secondary forests and closed canopy tree plantation 

species, but slightly decreased discrimination of plantation species with more open canopies. Adding 

multitemporal information may only be worth the added image processing effort when image quality is high 

and/or project objectives include mapping of secondary forest or dense tree plantations. 

As increasing amounts of high-quality hyperspectral imagery become available from aerial  

(CAO, NEON, GLihT, AVIRIS, HyMap, CASI) and satellite (HyspIRI, EnMap) sensors over the next 

decade [42,77,130], our results suggest that it may be possible to use hyperspectral data alone to make 

accurate regional or even global maps of tree crop and plantation species. However, to inventory multiple 

tropical forest types in support of reforestation and forest management initiatives like REDD+, we show 

that it may be necessary to combine hyperspectral imagery with other remotely sensed data that has 

greater temporal frequency and a longer historical record. Both the acquisition of rigorous validation 

data on tree plantations and the integration of hyperspectral and multitemporal imagery can be logistically 

demanding, but we found that together they can reveal insights into reforestation patterns important to 

refining national reforestation programs. 

Acknowledgments 

This work was supported by National Aeronautics and Space Administration Earth System Science 

Fellowship NNX10AP49H, the ASPRS Ta Liang Memorial Award, The Earth Institute, the Columbia 

Institute of Latin American Studies, and by an appointment to the NASA Postdoctoral Program at the 

Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract 

with NASA.  The authors would like to thank Margaret Kalacska for an insightful and helpful early 

review of this manuscript, and to thank Chris Small for countless hours of great remote sensing advice 

in small restaurants. Field research was made possible by logistical support provided by FUNDECOR 

and the staff at the Organization for Tropical Studies La Selva Biological Station, and we would like to 

thank Andres Sanchûn, Jose Miranda, Marvin Paniagua, and Mauricio Gaitan for assistance in the field. 

We thank CENAT and Carlos Andres Campos for providing geospatial data on Costa Rica and would 

like to express our appreciation to Bonnie Tice and Sue Pirkle. Finally, the authors wish to thank the 

three anonymous reviewers for their insightful comments, which led to marked improvements in the 

original manuscript. 

Author Contributions 

Matthew Fagan contributed the main idea, designed the methodology, processed all the data, 

conducted all the experiments, drafted the preliminary version of this paper, and finished the final version 

of this paper. Ruth DeFries contributed to the main idea and methodology, and revised all paper versions. 

Steven Sesnie and J. Pablo Arroyo-Mora contributed to the methodology, shared data for analysis, and 

revised all paper versions. Carlomagno Soto assisted with data discovery and shared data for analysis. 

Aditya Singh and Philip Townsend contributed a new algorithm for hyperspectral data processing, prior 

to its publication. Robin Chazdon shared data for analysis and revised all paper versions. 



Remote Sens. 2015, 7 5684 

 

Appendix 

 

Figure A1. The 2005 Landsat-based land cover map used as part of the multitemporal forest 

regrowth classification in this study. The red outline denotes the San Juan-La Selva Biological 

Corridor, and the white outline denotes the outer boundary of the HyMap land-use map (see 

Figure 8). Non-native tree plantations are shown in purple, and native reforestation (including 

secondary forest and native tree plantations) is shown in green; all other land cover classes are 

defined in Table 2. 

 

Figure A2. Kappa values of the four different RF models (mean ±95% CI) with four 

summary classes. All Kappa values differ significantly between models (p < 0.0001). 
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Figure A3. Pairs of hyperspectral reflectance spectra, taken from the training data for all 

nine forest types. See Table 2 for sample sizes and class name acronyms. This figure is 

similar to Figure 4, but displays variability in each class with pairwise comparisons to 

secondary forest. Lines show mean reflectance, with buffer polygons showing ± one standard 

deviation. Secondary forests (pink lines, yellow polygons) are compared against the other 

forest classes (black lines, gray polygons). Note the large amount of variation in spectral 

reflectance for each forest type. 

Table A1. Image information for the Landsat image stack (1986–2011) and the Hymap 

image mosaic (2005). The reference image for radiometric correction is indicated for each 

of the two imagery types: Landsat and HyMap. 

Image Type Mosaic Year  Dates Used Original Res. (m) Reference Image 

Landsat 5 1986/87 2/6/1986 30  

  3/13/1987 30  

Landsat 5 1996/97 11/16/1996 30  

  12/21/1997 30  

Landsat 5 2001 1/4/2001 30  
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Table A1. Cont. 

Image Type Mosaic Year  Dates Used Original Res. (m) Reference Image 

Landsat 7 2005 2/2/2005 30 ** 

   9/30/2005 30  

HyMap 2005 3/1/2005 15.4  

  3/8/2005 14.2  

  3/10/2005 16.7 ** 

  3/17/2005 15.8  

  3/17/2005 16  

   3/25/2005 15  

Table A2. Bootstrapped confusion matrices for forest summary classes, comparing all RF 

models to the base Hyper model. 

Model: Hyper  Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,718 0 1272 605 21,595 91.6 

Mature Forest 67 19,054 4533 1068 24,722 77.5 

Secondary Forest 80 533 10,905 1200 12,718 86.2 

Tree Plantations 135 413 3290 17,127 20,965 82.1 

Total 20,000 20,000 20,000 20,000  Overall: 

Prod. Acc. 98.6 95.3 54.5 85.6  83.5 

Model: HyperLs  Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,719 0 1046 663 21,428 92.3 

Mature Forest 39 19,231 3161 517 22,948 84.2 

Secondary Forest 123 521 12,621 1740 15,005 84.6 

Tree Plantations 119 248 3172 17,080 20,619 83.2 

Total 20,000 20,000 20,000 20,000  Overall: 

Prod. Acc. 98.6 96.2 63.1 85.4  85.8 

Model: HyperLC  Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,724 0 1247 571 21,542 91.9 

Mature Forest 52 18,745 1679 395 20,871 90.1 

Secondary Forest 107 828 13,904 1926 16,765 83.5 

Tree Plantations 117 427 3170 17,108 20,822 82.6 

Total 20,000 20,000 20,000 20000  Overall: 

Prod. Acc. 98.6 93.7 69.5 85.5  86.9 

Model: HyperLsLC  Reference Data    

Predicted Other Mature Forest Secondary Forest Tree Plantations Total User Acc. 

Other 19,727 0 1150 688 21,565 91.8 

Mature Forest 41 18,915 647 146 19,749 95.9 

Secondary Forest 104 837 15,153 2158 18,252 83.5 

Tree Plantations 128 248 3050 17,008 20,434 83.6 

Total 20,000 20,000 20,000 20,000  Overall: 

Prod. Acc. 98.6 94.6 75.8 85.0  88.5 
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Table A3. Bootstrapped accuracy confusion matrix for the HyperLsLC map in Figure 8. We 

show here the four summary classes disambiguated into their component classes, with 

producer’s and user’s accuracies estimated directly from the table.  
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Banana 1685 0 0 0 19 0 0 0 0 0 0 

Hpalm 0 1780 0 30 0 0 0 11 0 0 0 

Pina 0 0 1795 29 17 0 25 0 0 0 0 

Cass. 0 0 0 1578 13 0 26 15 0 0 0 

Soil 0 0 0 25 1118 23 66 9 0 0 0 

Sand 0 0 0 0 290 1594 0 0 0 68 20 

Cloud 0 0 20 27 76 25 1518 0 0 104 39 

Past. 15 0 17 101 96 31 47 1600 0 99 38 

Shade 0 0 38 37 11 0 55 41 1957 40 134 

Urban 0 0 0 0 135 154 0 0 0 1481 26 

Water 0 0 0 0 9 0 0 0 0 0 1520 

Matfor 0 0 0 0 0 0 33 8 0 0 0 

Swfor 0 0 0 0 0 0 0 0 0 0 0 

Secfor 17 17 0 0 0 0 0 52 0 0 18 

Citrus 0 0 0 0 0 0 0 12 0 0 0 

Gmel. 0 0 0 0 0 0 0 0 0 0 0 

Hier. 0 0 0 0 0 0 0 12 0 0 0 

Tect. 0 0 0 0 0 0 0 24 0 0 0 

Term. 0 0 0 0 0 0 32 14 0 0 0 

Voch. 14 20 0 0 0 0 0 0 0 0 0 

Total 1731 1817 1870 1827 1784 1827 1802 1798 1957 1792 1795 

Prod. Acc. 97.3 98.0 96.0 86.4 62.7 87.2 84.2 89.0 100.0 82.6 84.7 

 Matfor Swfor Secfor Citrus Gmel. Hier. Tect. Term. Voch. Total User Acc. 

Banana 0 0 0 0 0 0 0 0 0 1704 98.9 

Hpalm 0 0 295 0 88 0 114 0 0 2318 76.8 

Pina 0 0 0 0 0 0 0 0 0 1866 96.2 

Cass. 0 0 0 0 0 0 0 0 0 1632 96.7 

Soil 0 0 0 0 0 0 0 0 0 1241 90.1 

Sand 0 0 0 0 0 0 0 0 0 1972 80.8 

Cloud 0 0 0 65 32 0 0 0 0 1906 79.6 

Past. 0 0 701 167 71 47 50 54 0 3134 51.1 

Shade 0 0 154 0 0 0 0 0 0 2467 79.3 

Urban 0 0 0 0 0 0 0 0 0 1796 82.5 

Water 0 0 0 0 0 0 0 0 0 1529 99.4 

Matfor 9062 608 647 0 0 38 0 108 0 10504 86.3 

Swfor 0 9245 0 0 0 0 0 0 0 9245 100.0 

Secfor 698 139 15153 114 200 515 143 938 248 18252 83.0 

Citrus 0 0 640 3005 0 0 46 0 82 3785 79.4 

Gmel. 0 0 612 0 2893 0 0 0 0 3505 82.5 

Hier. 0 0 0 0 0 2585 0 0 157 2754 93.9 
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Table A3. Cont. 

 Matfor Swfor Secfor Citrus Gmel. Hier. Tect. Term. Voch. Total User Acc. 

Tect. 0 0 0 0 0 0 3009 0 0 3033 99.2 

Term. 0 0 464 0 0 0 0 2317 70 2897 80.0 

Voch. 248 0 1334 0 0 100 0 0 2744 4460 61.5 

Total 10008 9992 20000 3351 3284 3285 3362 3417 3301   

Prod. Acc. 90.5 92.5 75.8 89.7 88.1 78.7 89.5 67.8 83.1   
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