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Abstract: Accurate and up-to-date mapping and monitoring of rubber plantations is 

challenging. In this study, we presented a simple method for rapidly and accurately mapping 

rubber plantations in the Xishuangbanna region of southwest China using phenology-based 

vegetation index differencing. Temporal profiles of the Normalized Difference Vegetation 

Index (NDVI), Enhanced Vegetation Index (EVI), Atmospherically Resistant Vegetation 

Index (ARVI), Normalized Difference Moisture Index (NDMI), and Tasselled Cap Greenness 

(TCG) for rubber trees, natural forests and croplands were constructed using 11 Landsat 8 OLI 

images acquired within one year. These vegetation index time series accurately demonstrated 

the unique seasonal phenological dynamics of rubber trees. Two distinct phenological phases 

(i.e., defoliation and foliation) of rubber trees were clearly distinguishable from natural forests 

and croplands. Rubber trees undergo a brief defoliation-foliation process between late 

December and mid-March. Therefore, vegetation index differencing between the nearly 

complete defoliation (leaf-off) and full foliation (leaf flushing) phases was used to delineate 

rubber plantations within fragmented tropical mountainous landscapes. The method presented 

herein greatly improved rubber plantation classification accuracy. Overall classification 

accuracies derived from the differences of the five vegetation indices varied from 92% to 96% 

with corresponding kappa coefficients of 0.84–0.92. These results demonstrate the promising 

potential of phenology-based vegetation index differencing for mapping and monitoring 

rubber expansion at the regional scale. 
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1. Introduction 

Over the past several decades, massive rubber plantations have become major drivers of deforestation 

and other types of habitat degradation in Southeast Asia and southern Yunnan of China [1–3]. The 

environmental and socioeconomic impacts of rubber expansion have widely been explored at various 

scales [4–9]. Understanding and quantifying the large-scale impacts of rubber plantations requires 

accurate mapping of rubber plantations and timely measurements of the conversion of other land-cover 

types to rubber plantations [3]. 

Remote sensing has played an important role in mapping and understanding changes in the areal 

extent and spatial pattern of rubber plantations. Recently, numerous studies have used satellite imagery 

for delineating rubber plantations [3,10–16]. These studies can be categorized into two broad groups: 

monotemporal image classification [11,13–16] and phenology-based classification [3,10,12]. 

Phenology-based classification is effective because it includes the phenological features derived from 

the time series of satellite images, such as MODIS and China’s Feng-Yun-3A [10,12,17]. However, the 

relatively coarse spatial resolutions of these time-series data and frequent cloud cover during the 

growing seasons of rubber trees make it difficult to delineate and map rubber plantations in fragmented 

landscapes in tropical regions. To overcome this drawback, Dong et al. [11] used multiyear multitemporal 

Landsat images for studying the rubber plantation’s phenological trajectory, and then combined the 

PALSAR-based forest mask and single-date Landsat TM image in the foliation stage of rubber trees to 

map rubber plantations with high classification accuracy. 

Multi-seasonal imagery that captures different periods of the growing season is of considerable value 

for characterizing land cover types [18–23]. In particular, using paired leaf-on and leaf-off images can 

result in substantial improvements in the accuracy of classifying forest types [24]. Compared with 

rubber plantations, natural forests have higher vegetation indices during the defoliation stage (dry 

season) of rubber trees [10–12,25]. Therefore, it is possible to effectively distinguish rubber plantations 

from natural forests and other landscapes by using paired defoliation and foliation images. 

Vegetation index differencing is often employed to detect changes using remote sensing [26]. It is also 

shown that the inclusion of phenological differences in vegetation indices can greatly improve the 

accuracy of land cover classifications over a variety of landscapes [22]. The objective of this study was to 

develop and examine a simple and novel approach for delineating and mapping rubber plantations at the 

regional scale by combining vegetation index differencing and phenological information between the 

defoliation and foliation stages of rubber trees. This study was conducted in the region of Xishuangbanna 

in southern Yunnan, China, where rubber trees are presently the most important and prevalent cash crop. 

The phenology of three major land cover types (i.e., rubber trees, natural forests and croplands) in 

Xishuangbanna were examined based on the temporal profiles of several vegetation indices derived from 

Landsat-8 OLI images acquired during the dry season of 2013–2014. Next, the performances of the 
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phenology-based vegetation index differencing method for delineating and mapping rubber plantations 

were evaluated based on a confusion matrix estimated from random reference data samples. 

2. Study Area and Data Processing 

2.1. Study Area 

The study area of Xishuangbanna contains the largest rubber plantation areas and accounts for the largest 

proportion of natural rubber production in China. According to data from the Xishuangbanna Statistical 

Yearbook in 2013 [27], the total area of rubber trees in the prefecture were 2940.28 km2 with a total natural 

rubber production of 31.74 × 104 tons, accounting for ~27% and ~37% of the total rubber tree cropping areas 

and production in China, respectively. Rubber plantations currently cover more than 15% of 

Xishuangbanna’s landscape, and rubber plantations are continuing to expand. Forests and croplands are the 

other two major land cover types in this area accounting for 75.6% and 5.0% of the total area, respectively. 

 

Figure 1. Topography of the study area. The black dotted lines show the GPS tracks of the 

field trips between September and November of 2014. The red polygons denote the 

polygons of interest (POIs) for the validation of the resulting rubber plantation maps. 
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Xishuangbanna is a Dai Nationality Autonomous Prefecture that is located in the most southern 

region of Yunnan province in Southwest China and borders Laos and Myanmar (Figure 1). It covers  

an area of 19,125 km2 and has a mountainous topography. The elevation of this prefecture varies from 

2430 m at the top of the mountain in the north to 480 m at the bottom of the lowest valley in the south. 

Xishuangbanna has a tropical monsoon climate with a seasonal rhythm that is roughly made up of  

five stages: the fog-cold stage (early December to mid-February), dry-cool stage (late February to  

late March), dry-hot stage (early April to early May), humid-hot stage (mid-May to mid-October)  

and humid-cool stage (late October to late November) [28]. The annual mean temperature varies from 

21.7 °C at lower elevations to 15.1 °C at higher elevations. The annual precipitation ranges from  

1100 mm at the river valley to 2500 mm at the top of the mountain, with more than 80% occurring  

during the humid-hot stage. In the areas of the lower hills and valleys that are dominated by tropical 

forests, the annual mean temperature is approximately 21 °C and the annual precipitation is greater than 

1500 mm [29]. Due to its unique location that links different climate and ecological zones, this region 

harbors diverse flora and fauna that account for ~20% of the total species diversity in China.  

The primary vegetation of Xishuangbanna can be grouped into four major forest types: tropical rain 

forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical 

monsoon forest [29]. Natural forests are mainly evergreen, while rubber trees show deciduous 

characteristics during the fog-cold and dry-cool stages [28]. Although some tree species in tropical 

monsoon forests are also deciduous, they make up a small proportion (<15%). Additionally, tropical 

monsoon forests are mosaically distributed in seasonal rain forests, and have a greater proportion of 

understory vegetation. This means they present a phenological rhythm different from rubber trees [28]. 

2.2. Landsat-8 OLI Data and Pre-Processing 

Eleven orthorectified and terrain corrected Level 1T Landsat-8 OLI images (path/row 130/45) that 

were acquired from 5 November 2013 to 16 May 2014 were obtained from the USGS EarthExplorer [30]. 

The specific dates of these Landsat scenes can be found in Figure 2. All images were routinely produced 

using the Level 1 Product Generation System (LPGS), version 2.2.3. The Landsat LDOPE Toolbelt 

provided by the MODIS land quality assessment group [31] was employed to detect clouds from the 

Landsat-8 OLI Quality Assessment (QA) band and to produce a cloud mask for removing 

cloud-contaminated pixels. Subsequently, Fmask software developed by Zhu and Woodcock [32] was 

used for automated cloud shadows masking. Cloud and cloud shadow percentages for all the images 

range from 0.05% to 36.84%. The conversion of scaled Digital Numbers (DN) to the Top Of 

Atmosphere (TOA) radiance and/or reflectance was subsequently conducted by following the procedure 

described on the USGS website [33]. Atmospheric effects were removed by using the ENVI FLAASH 

(the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module based on a 

MODTRAN4-based atmospheric correction algorithm [34,35]. The parameters for removing atmospheric 

effects with FLAASH were selected following the detailed description in [35]. Before differencing the 

vegetation index, the images were geometrically registered within a mean square error of less than 0.5 pixels. 

Topographical correction was not considered because no universal topographic correction method 

applies to all situations [36]. Also, the band-ratio vegetation indices could significantly reduce the noise 

caused by topographical variations [37]. 
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Figure 2. The temporal profiles of the Landsat 8 OLI NDVI, EVI, ARVI, NDMI, and TCG time 

series for the rubber plantations, natural forests and croplands. Random samples of 2000 pixels 

were individually extracted from 134 polygons of interest (POIs) for the rubber plantations, 110 

POIs for the natural forests and 136 POIs for the croplands. The boxplot depicts the median (the 

central horizontal line), the 25th and 75th percentiles (the edges of the box) and the most 

extreme data points (the whiskers). Rubber plantations present two unique phenology stages: 

defoliation (the long light yellow column) and foliation (the long light green column). 

Four spectral vegetation indices, the Normalized Difference Vegetation Index (NDVI) [38], Enhanced 

Vegetation Index (EVI) [39,40], Atmospherically Resistant Vegetation Index (ARVI) [41,42], and 

Normalized Difference Moisture Index (NDMI) [43,44], were calculated using the surface reflectance. 

These indices were formulated by using the following equations:  
ρ ρ

ρ ρ
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 are the surface reflectance values of Band 2 (blue, 0.45–0.51 μm), 

Band 4 (red, 0.64–0.67 μm), Band 5 (near-infrared, 0.85–0.88 μm) and Band 6 (shortwave-infrared, 

1.57–1.65 μm) in the Landsat-8 LOI images, respectively [45]. 

The Tasseled Cap transformation incorporates six different spectral bands into vegetation indices that 

can be directly associated with physical characteristics [46]. Thus, the Tasseled Cap Greenness (TCG) 

was also derived from the Landsat-8 OLI at-satellite reflectance following the equation described  

by Baig et al. [47]. 
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 are the at-satellite reflectance values of 

Bands 2–7 in the Landsat-8 LOI images, respectively [47]. 

2.3. Reference Data 

We combined field data, high-resolution imagery from Google Earth™, and a forest inventory vector 

dataset to produce reference data. Field surveys were conducted between September and November of 

2014 using a GPS digital camera with a horizontal position accuracy of less than 10 m as the main tool 

for capturing information. More than 6000 geo-referenced field photos and records were acquired in 

plots where the examined land cover areas were larger than 90 m × 90 m. The GPS tracks of the ground 

survey are shown in Figure 1. We processed all of the geo-referenced photos and records as kml files and 

geo-linked them with Google Earth™. Subsequently, the polygons of interest (POIs) for the examined 

land cover types were digitalized by interpreting the high spatial resolution imagery within Google 

Earth™ and were used as reference data for evaluating the accuracy of mapping the rubber plantations. 

Numerous studies have suggested that this approach is effective [3,10–12]. In this study, furthermore, 

these reference data were cross-validated with forest inventory vector datasets developed in 2006 by the 

local government to create a final reference data set (Figure 1), given that forest inventory data recorded 

stand ages of rubber trees and natural forests. 

2.4. Image Difference Threshold Selection and Accuracy Assessment 

Thresholding is a critical step in detecting change in image differencing [48,49]. Different methods 

were developed for thresholding the difference image for binary change detection. In most cases, a series 

of discrete threshold values are used to construct ‘accuracy assessment curves’ or ‘calibration curves’ 

that illustrate the variations in accuracy with the threshold value [50–52]. Then, the optimum threshold 
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value (OTV) that results in the highest accuracy is applied to create a binary change mask. In this study, 

we used the median and median absolute deviation of the difference images as thresholds for 

constructing an accuracy assessment curve. A series of discrete threshold values with a narrow interval 

(e.g., 0.01 median absolute deviations) were tested to generate a relatively continuous curve.  

The accuracy measures, such as the overall accuracy (OA), producer’s accuracy, user’s accuracy and 

kappa coefficient, were calculated for each threshold value by using an error matrix. The OTV with the 

highest kappa coefficient was applied to build a binary mask for delineating rubber plantations from 

other land cover types. Subsequently, an Erode filter (3 × 3 kernel sizes) together with a Dilate filter  

(3 × 3 kernel sizes) was applied to the binary mask for producing the resulting rubber plantation map. 

For this study, the differences in the vegetation indices were obtained by subtracting the values of the 

vegetation indices on 9 February 2014 from the values of the vegetation indices on 13 March 2014. 

Before this, some cloud-contaminated pixels occurred in the north part of the study area on 13 March 2014 

and were filled with the cloud-free pixels from 29 March 2014. Accuracy assessment of the rubber 

plantation maps was performed using the confusion matrix. The random reference data samples 

consisted of 10,000 pixels was individually extracted from 781 POIs for rubber plantations and 1917 

POIs for the non-rubber types of land cover. 

3. Results 

3.1. Unique Phenological Behaviour of Rubber Trees Observed from  

Multi-Temporal Landsat 8 OLI Images 

As shown in Figure 2, the multi-temporal profiles of five spectral vegetation indices (NDVI, EVI, 

ARVI, NDMI and TCG) extracted from random reference data samples indicated drastic differences 

among three examined land cover types. The vegetation indices from natural forests only slightly 

fluctuated during the examined period, while these indices from croplands consistently decreased from 

early November 2013 to the middle of April 2014. However, the vegetation indices from rubber 

plantations substantially decreased during the period from late December 2013 to early February 2014 

(defoliation phase) and subsequently experienced a rapid and pronounced rebound until the middle of 

March 2014 (foliation phase). The lowest vegetation index values of the rubber plantations occurred in 

early February. The image acquired during the same period indicated that the rubber trees were nearly 

completely defoliated (Figure 3a). 

Compared with the other two examined land cover types, rubber plantations had lower vegetation 

indices in early February and higher vegetation indices in the middle of March (Figure 2). The largest 

differences in the vegetation indices between rubber plantations and natural forests were observed in 

early February when rubber plantations had far lower vegetation indices than natural forests.  

In mid-March, vegetation indices from rubber plantations rapidly recovered and exhibited higher values 

than those of natural forests. The images acquired during the same period indicated that rubber 

plantations translated into light green patches (Figure 3b). With the rebound of the vegetation indices 

from rubber plantations, the greatest differences in the vegetation indices between rubber plantations and 

croplands were found in the middle of March. 
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Figure 3. The false colour composition map (R/G/B = Band 7/5/4) of the Landsat 8 OLI 

images, including (a) the image during the nearly complete defoliation stage of the rubber 

trees on 9 February 2014 and (b) the image during the full foliation stage of the rubber trees 

on 13 March 2014. The zoom-in images of a typical area show that the rubber plantations are 

easily discernible as greyish-purple patches in the defoliation stage in image (a) and as light 

green patches during the foliation stage in image (b). However, the natural forest is always 

green during the defoliation (a) and foliation (b) stages of rubber trees. Major land cover 

classes of interest were marked in the zoom-in images, including rubber plantation (“A”), 

natural forest (“B”), and cropland (“C”). 
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3.2. Map of Rubber Plantation Derived from Image Differencing 

As shown in Figure 4, the binary classifications of rubber plantations versus non-rubber land cover 

were obtained by thresholding the difference images of the five spectral vegetation indices between at 

the nearly complete defoliation and full foliation stages of rubber trees. The resulting rubber plantation 

maps are highly accurate according to the confusion matrix estimated from random reference data 

samples (Table 1). The producer’s accuracies in mapping rubber plantations and non-rubber land cover 

were 87%–94% and 96%–99%, respectively, with corresponding user accuracies of 96%–99% and 

88%–94%. Consequently, the overall accuracies of the resultant maps varied from 92% to 96% with 

kappa coefficients from 0.84 to 0.92 (Figure 4). Differencing the ARVI and NDMI images performed 

better and produced the highest overall accuracy of 96% with a kappa coefficient of 0.92. In comparison, 

differencing the ARVI image achieved higher user’s accuracy of rubber plantations than differencing the 

NDMI image. Among all the differencing images, the TCG differencing image produced the lowest 

overall accuracy of 92% with a kappa coefficient of 0.84. 

Table 1. Error matrices (pixel counts) for five vegetation index differencing methods.  

Non-rubber includes forest, cropland, built-up land, water body and other land cover types. 

Class 
Reference Data Classified 

Pixels 

User’s 

Accuracy Rubber Non-Rubber 

NDVI differencing method 

Classified data 
Rubber 8973 370 9343 96% 

Non-rubber 1027 9630 10,657 90% 

Reference pixels 10,000 10,000  

Producer’s accuracy 90% 96%  

EVI differencing method 

Classified data 
Rubber 8947 193 9140 98% 

Non-rubber 1053 9807 10,860 90% 

Reference pixels 10,000 10,000  

Producer’s accuracy 89% 98%  

ARVI differencing method 

Classified data 
Rubber 9290 123 9413 99% 

Non-rubber 710 9877 10,587 93% 

Reference pixels 10,000 10,000  

Producer’s accuracy 93% 99%  

NDMI differencing method 

Classified data 
Rubber 9406 177 9583 98% 

Non-rubber 594 9823 10,417 94% 

Reference pixels 10,000 10,000  

Producer’s accuracy 94% 98%  

TCG differencing method 

Classified data 
Rubber 8694 342 9036 96% 

Non-rubber 1306 9658 10,964 88% 

Reference pixels 10,000 10,000  

Producer’s accuracy 87% 97%  
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Figure 4. Difference images (a) of the five spectral vegetation indices from the two images 

acquired on 13 March 2014 (cloud-contaminated pixels were filled with the cloud-free 

pixels from 29 March 2014) and on 9 February 2014, and the rubber plantation maps (b) 

obtained by thresholding these difference images. The areas of the rubber plantations (ARP) 

in these maps were calculated and are shown in (b). 

The rubber plantation maps represented a highly consistent spatial distribution (Figure 4b).  

These maps correctly depicted large rubber plantation areas in the central and southern lowlands. 

However, the rubber plantation maps extracted from the difference images of the NDVI, EVI,  



Remote Sens. 2015, 7 6051 

 

NDMI and TCG falsely classified some pixels as non-rubber areas in the western and northwestern 

regions (i.e., central Menghai County) of the rubber plantations. In contrast, differencing the ARVI 

images presented fewer misclassified pixels in the western and northwestern portions of Xishuangbanna 

and achieved the highest user’s accuracy, 99%. 

Figure 4 showed that the total area of rubber plantations in Xishuangbanna ranged from 3107.31 km2 

to 3841.26 km2 in 2014. The NDMI differencing image yielded the largest rubber plantation area,  

while the TCG differencing image yielded the smallest area. The rubber plantation area achieved from 

the EVI differencing image (3193.00 km2) was roughly equivalent to that from the TCG differencing 

image. The NDVI and ARVI differencing images produced moderate rubber plantation areas of  

3514.75 km2 and 3707.28 km2, respectively. 

4. Discussion 

4.1. Phenology of Rubber Trees and Its Potential for Mapping Rubber Plantations 

The temporal trajectories of the five vegetation indices captured by multitemporal Landsat OLI data 

in the three major land cover regions showed that the phenology of rubber plantations is distinctly 

different from that of the other two major land covers. Two specific phenological stages (i.e., defoliation 

and foliation) can be clearly identified in rubber plantations. The pronounced decrease in the vegetation 

indices from late December to early February of the next year indicated that substantial defoliation of the 

rubber trees occurred. The drastic increase in the vegetation indices from early February to mid-March 

suggested that the rubber trees underwent speedy leaf flushing and canopy recovery. Although the different 

phenological behaviour of rubber trees from natural forests was also reported in previous studies [3,11],  

our study further demonstrated that the phenological behaviour of rubber trees was distinguished from 

that of croplands in the study area. Therefore, it is likely to effectively separate rubber trees from natural 

forests and croplands based on the differences in phenological information in vegetation indices. This 

finding is inconsistent with Senf et al. [10], who failed to differentiate effectively between rubber plantations 

and natural forests based on the MODIS EVI-based phenology information and explained that the 

phenology of natural forests partly resembled that of rubber trees in Xishuangbanna. However, phenological 

ground observations showed that the biological rhythms of rubber trees and natural forests were distinctly 

different in Xishuangbanna [28]. This inconsistency may be only explained by the issue of mixed pixels 

within MODIS data, which confused the MODIS EVI-based phenology information between rubber trees 

and natural forests [11]. 

The timing of rubber tree defoliation and foliation varies geographically, and the defoliation-foliation 

transition process of rubber trees is brief. The findings described here showed that rubber trees defoliated 

between late December and early February of the next year and subsequently foliated until the middle of 

March in the Xishuangbanna region. However, later defoliation and foliation time of rubber trees was 

reported by Dong et al. [11] in the Danzhou Region of Hainan Island, China, where rubber trees defoliate 

in late February through March and rapidly foliate in late March through April. Li and Fox [3] observed 

earlier defoliation and later foliation of rubber trees on the mainland of Southeast Asia, where the 

defoliation of rubber trees occurs between November and early April and the foliation occurs from  

mid-April to late May. Therefore, temporal inconsistencies in the defoliation and foliation of rubber 
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trees in different regions must be considered for rubber plantation mapping at the trans-regional scale. 

Even in the same climatic region, climate variability, rubber stand ages and structure, and topography 

could also cause shifts in phonological phases of rubber trees. Further studies on the effects of these local 

driving forces on phenological phases of rubber trees should be investigated in the future. 

The image differencing of five spectral vegetation indices retrieved in the defoliation and foliation 

stages of rubber trees more accurately separated rubber plantations from the other land cover types. 

Overall accuracies of the resultant rubber plantation map vary from 92% to 96% and the kappa 

coefficients from 0.84 to 0.92 (Figure 4). This result is comparable or even slightly superior to that of 

Dong et al. [11], who produced an overall accuracy of 92% with a kappa coefficient of 0.88.  

Likewise, the accuracy achieved in this study is much better than those obtained by Senf et al. [10] and 

Dong et al. [12]. Senf et al. [10] mapped rubber plantations in Xishuangbanna with an overall accuracy 

of 73.5% using multi-spectral phenological metrics from the MODIS vegetation indices time series. 

Dong et al. [12] identified rubber plantations on Hainan Island, China, with an overall accuracy of  

85% by combining PALSAR and MODIS imagery. Obviously, the phenology-based vegetation index 

differencing presented in this study can improve rubber plantation classification significantly. Previous 

studies indicated that combining phenological information with vegetation indices can produce higher 

classification accuracy [22]. The findings described here support the research showing that 

incorporating phenological information and image differencing can help better differentiate between 

rubber plantations and non-rubber land cover [3,10,11,22]. 

Phenology-based vegetation index differencing is highly dependent on the availability of  

good-quality images in specific phenological phases (i.e., defoliation and foliation). Fortunately,  

the defoliation-foliation process of rubber trees in Xishuangbanna occurs during the dry season. Thus, 

the probability of obtaining cloud-free observations from Landsat-like multispectral sensors with high 

spatial resolution is greater. Additionally, high-frequency temporal satellite imagery (e.g., MODIS and 

China’s Feng-Yun-3A) provide an alternative data source for mapping and monitoring rubber 

plantations using phenology-based vegetation index differencing. Although ubiquitous mixed pixels 

within these data with coarse spatial resolution affect the identification of rubber trees in the rapid 

foliation phase [11], the blending of fine spatial resolution imagery (e.g., Landsat and SPOT) and  

high-frequency temporal imagery could potentially overcome this obstacle to capture a more specific 

intra-annual phenology at high resolution in time and space [53,54]. 

4.2. Uncertainties of Rubber Plantation Areas Estimated by  

Phenology-Based Vegetation Index Differencing 

Theoretically, the actual area of rubber plantations in the study area is constant at any given time. 

However, differencing the different vegetation indices produced different estimated rubber plantation 

areas in this study. Although high classification accuracy was achieved in this work, overestimates or 

underestimates of the true rubber plantation areas still existed because of the omission or commission 

errors. For instance, intercropping young rubber trees with other upland cash crops, such as rice, maize, 

pineapple, tea or bananas, in tropical regions can bring about the omission of young rubber trees. 

However, the mosaic distribution of rubber plantations and second-growth forests tend to cause 

misclassification of second-growth forests [3]. There were significant differences among these 
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vegetation indices in the capability to distinguish rubber plantations from other land cover types. 

Differencing the TCG image produced the largest omission errors of 13%, and differencing the NDVI 

and TCG images produced the largest omission errors of 4% (Table 1). However, differencing the 

NDMI image produced the lowest omission errors of 6%, whereas differencing the ARVI image 

produced the lowest commission errors of 1%. Consequently, the TCG image differencing responded to 

the lowest classification accuracy of rubber plantations, whereas the ARVI and NDMI image 

differencing produced the highest one. Under the combined atmospheric and topographic effects, 

differences in sensitivity to vegetation conditions in the defoliation and foliation stages of rubber trees 

existed among the examined vegetation indices. The TCG was atmospherically uncorrected and 

topographically sensitive so that it had less ability to separate rubber plantations from natural forests and 

croplands (Figure 2). The NDVI and NDMI computed from the normalized combination of spectral 

bands can reduce atmospheric and topographic interference to some degree [38,43,44]. In contrast, the 

NDMI is more robust to atmospheric effects than the NDVI [43]. Therefore, the NDMI presented a 

larger separability and performed better than the NDVI (Figure 2 and Table 1). The EVI and ARVI were 

developed to minimize atmospheric aerosol effects [39–42]. However, the EVI is a non-band-ratio based 

vegetation index, which is relatively sensitive to topographic effects. It exhibited moderate separability 

and classification accuracy (Figure 2 and Table 1). The ARVI is more robust to topographic and 

atmospheric aerosol effects than the other vegetation indices, especially in tropical mountainous regions 

of high atmospheric aerosol content, where are often contaminated by soot from slash-and-burn 

agriculture [41]. The preceding results showed that the ARVI performed the highest separability and 

classification accuracy in our study area. 

Higher overall accuracy and a higher kappa coefficient in the ARVI-based maps indicate that the 

rubber plantation area estimate of 3707.28 km2 is more reliable. The estimate is much smaller than the 

areas reported in several recent works [10,55,56], which estimated that the area of rubber plantations in 

Xishuangbanna reached 4240 km2 [55], 5010 km2 [56] and 5907 ± 788 km2 [10] in 2010, respectively. 

However, the reference data obtained from the official statistics of Xishuangbanna showed that the total 

area of rubber plantations in the prefecture was only 2940.28 km2 by the end of 2013 [27]. The figure 

reported in the official statistics is far smaller than the rubber plantation areas derived from satellite 

imagery. In comparison, our results are closer to the official statistics. The difference between our results 

and the official statistics is likely caused by underreporting of rapidly growing and relatively scattered 

small rubber plantations in the private sector. It can also be deduced that previous studies overestimated 

to varying degrees the area and expansion rate of rubber plantations in the study area. Therefore, the 

underlying environmental and ecological effects of rubber expansion in the study area need urgently to 

be re-examined in the future through more accurate spatio-temporal trajectories of rubber expansion. 

The success of the phenology-based vegetation index differencing in delineating rubber plantations 

showed the use of defoliation-foliation image differencing strengthened the phenological change in the 

remotely sensed data and greatly improved land cover classification. This method may be transferred to 

a variety of landscapes where phenological differences always occur. 
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5. Conclusions 

This study presented a phenology-based vegetation index differencing method for rapidly mapping 

rubber plantations and explored its ability to delineate rubber plantations in Xishuangbanna in 

Southwest China, a hotspot of global biodiversity and rubber plantation expansion. The Landsat 8  

OLI-based phenological trajectories showed unique phenological characteristics of rubber plantations 

that were distinguishable from natural forests and croplands. Two specific phenological phases  

(i.e., defoliation and foliation) of rubber trees were accurately identified from the temporal profiles of 

several spectral vegetation indices. Substantial defoliation of the rubber trees occurred between late 

December and early February, and pronounced foliation occurred between early February and  

mid-March. The bitemporal vegetation index differences that were acquired during the key phenological 

phases (i.e., almost complete defoliation and full foliation) were used to rapidly and effectively delineate 

a map of rubber plantations. Our method greatly improved the classification accuracies for rubber 

plantations and presented more reliable rubber plantation areas. Furthermore, the findings herein 

indicated that the recent remote sensing-based rubber expansion in Xishuangbanna could have been 

overestimated in previous studies. Therefore, developing a regular monitoring scheme for evaluating the 

environmental and ecological impacts of rubber tree expansion in the study area should be  

urgently considered. 
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