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Abstract: The main requirement for preserving European hay meadows in good condition 

is through prerequisite cut management. However, monitoring these practices on a larger 

scale is very difficult. Our study analyses the use of MODIS vegetation indices products, 

namely EVI and NDVI, to discriminate cut and uncut meadows in Slovakia. We tested the 

added value of simple transformations of raw data series (seasonal statistics, first difference 

series), compared EVI and NDVI, and analyzed optimal periods, the number of scenes and 

the effect of smoothing on classification performance. The first difference series 

transformation saw substantial improvement in classification results. The best case NDVI 

series classification yielded overall accuracy of 85% with balanced rates of producer’s and 

user’s accuracies for both classes. EVI yielded slightly lower values, though not significantly 

different, although user accuracy of cut meadows achieved only 67%. Optimal periods for 

discriminating cut and uncut meadows lay between 16 May and 4 August, meaning only 

seven consecutive images are enough to accurately detect cutting in hay meadows. More 

importantly, the 16-day compositing period seemed to be enough for detection of cutting, 

which would be the time span that might be hopefully achieved by upcoming on-board HR 

sensors (e.g., Sentinel-2). 
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1. Introduction 

Hay meadows in Europe provide important services for humans mainly by providing fodder for 

animals. Furthermore, extensively used hay meadows bear high biodiversity values, they represent high 

nature value farmlands [1] and when traditional practices were applied in rural landscapes, they provide 

great aesthetic values. All these services are critically dependent on specific agricultural management 

and particularly on regular cutting at a specific time of the season [2]. This implies that hay meadows 

are very sensitive and of a dynamic nature because when proper management is neglected they decline 

from a good status quite fast [3]. In Central Europe, a good historical example was the intensification of 

extensive hay meadows (both due to intensive cutting and grazing) during the Communist era [4] and 

when collective farming collapsed, agriculture was abandoned followed by overgrowing and shrub 

encroachment [5]. However, the traditional agricultural management of hay meadows is not very 

profitable and today subsides are needed from the EU’s Common Agricultural Policy (CAP) in order to 

sustain the good condition of hay meadows and the services they provide [6]. In this respect, proper tools 

are needed in order to monitor hay meadow management in large areas with the aim of assessing the 

success of specific CAP-implemented measures. It is obvious that comprehensive, timely monitoring 

(e.g., on an annual basis) through field research is not feasible on a broader scale (e.g., national wide), 

when bearing in mind the costs and variability of cutting practices across such a large area. Therefore, 

remote sensing (RS) approaches need to be analyzed and tested in order to deliver consistent spatial 

information on proper hay meadow management practices in larger areas [7]. 

Remote sensing (RS) approaches have been widely used mainly for mapping and classifying 

grasslands and for estimating the biomass they provide. However, grassland studies have seen variable 

success and depend mainly on site specific conditions, grassland types and the landscape’s spatial 

composition. In general, the more homogenous grassland landscape is, the better the classification 

success, which can be documented, for example, by relatively good grassland classification accuracy in 

the Netherlands [8], as opposed to complicated detection of grasslands in the Carpathians [9]. Use of 

multi-temporal classification approaches was found to be of essential help mainly when grasslands were 

found in complex agricultural areas [10]. Furthermore, with the increased availability of vegetation 

indices (VI) time series (e.g., derived from AVHRR, MERIS, MODIS or Landsat archive), many studies 

demonstrated these products could be utilized for grassland studies, such as for mapping of specific 

grassland types [11], characterizing their vegetation state [12] or classifying their management 

practices [13]. In the context of grassland management, these studies were mainly motivated by the 

identification of degraded grasslands due to overgrazing, for example in Southern Europe [14], where 

grazing seems to be the main driver of good condition of grasslands. In Central Europe on the other 

hand, proper cut management of grasslands is an important driver specifically for hay meadows [7]. 

However, with the use of RS approaches, cutting practices were identified mainly indirectly within the 

complex classification studies and they were inherently included in different categories, for instance in 

distinguishing managed and unmanaged agriculture classes [15,16], improved and unimproved 

grasslands [17,18], and conservation as opposed to moderately productive grasslands [19]. To our 

knowledge, only three published studies were found by us that exactly analyzed RS approaches for 

detecting cut practices in European grasslands. Franke et al. [7] used indicators of proper cutting 

practices through Rapid Eye data time series in order to detect extensively used hay meadows in 
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Germany. Schuster et al. [20] and Voormansik et al. [21] analyzed radar time series to detect local scale 

cutting in grasslands, resulting in completely opposite results. All the authors have suggested that high 

spatial resolution data are needed to detect grassland management as it is highly fragmented in Europe. 

However, Nitze et al. [17] used MODIS VI time series to distinguish improved and semi-improved 

grasslands in Ireland, and Alcantara et al. [16] used the coarser resolution MODIS data to differentiate 

active agriculture (including regularly cut grasslands) and abandoned agriculture (including unmanaged 

grasslands) in Central Europe, with both studies providing promising results. They documented that, 

besides specific classification algorithm, pre-processing of input data, use of a specific period and 

number of scenes and differences between EVI and NDVI vegetation indices should be considered when 

using multi-temporal classification for grassland studies. 

Our study aims to analyze the potential of MODIS VI time series to detect cutting in hay meadows. 

We are aware of the spatial limitation in MODIS products for grassland studies in Central Europe, 

therefore we based our analysis on homogenous samples in order to minimize mixed pixel and MODIS 

gridding artifact effects. The main objective here is to set up a conceptual framework for analyzing 

annual VI time series, motivated by its potential utilization after MODIS-like data products become 

available with a higher spatial resolution (e.g., by combining of Sentinel2 and Landsat VI products). 

Therefore, we focused in addition to simple classification, on comparing specific VIs (NDVI vs. EVI), 

analyzing the optimal time period and number of scenes needed, the effect of smoothing and the added 

value of simple transformations (first difference series, seasonal statistics) for classification performance 

in order to suggest the proper way for using MODIS data to monitor cutting practices in hay meadows. 

2. Study Area and Methods 

The study area covers all of Slovakia, with quite a diverse landscape that reflects mainly 

heterogeneous geological formations, soils, elevations and terrain [22]. The climate is also quite diverse, 

exemplified by the area covering four climate zones and nine European-based climatic strata [23] with 

the continental zone having the biggest coverage. Grasslands in Slovakia are formed mainly as small 

scattered patches with a diverse spatial arrangement (Figure 1). 

Based on national agricultural statistics, the total coverage of grasslands (excluding natural alpine 

grasslands) is estimated to be approx. 15% of Slovakia and 30% of its agricultural landscape. Grassland 

vegetation types vary broadly based on nutrition, geological substrate, soils, hydrology and elevation. 

Land use is an important driver of grasslands, including cutting on meadows, grazing at different 

intensities on pastures or both (spring cutting and autumn grazing). A substantial proportion of 

grasslands were abandoned and became overgrown after socioeconomic changes in the early 1990s. 

Recently, agro-environmental subsidies have introduced special management in the most valuable  

semi-natural grasslands in Slovakia [24]. This study focuses on “semi-natural” or extensively used 

grasslands with traditional grassland management practices and high biodiversity values. Of these, the 

great majority, evenly distributed in Slovakia, are mesophilous hay meadows, classified as Habitat 6510 

(lowland hay meadows) under the EU Habitat Directive [25]. A first cut (mainly in late June or early 

July) is the prerequisite for proper management in order to sustain the hay meadows in good condition. 

Optionally, either a second cut or soft grazing is undertaken in these grassland types [26]. When these 

hay meadows are not cut, however, grassland values can be threatened and farmers are unable to obtain 
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financial support from agro-environmental programmes. Because of CAP subsides, these grassland 

habitats were intensively mapped in Slovakia and registered in agricultural map portal 

(www.podnemapy.sk). However, there is no information about the cutting management of the grasslands 

in Slovakia so we needed to gather ground truth data as follows. Firstly, we took 150 random locations 

within the grassland land cover class (Corine class 231) across Slovakia. These locations were visually 

inspected on Google Earth and agricultural map portal to obtain a homogenous uncut Natura 6510 habitat 

site that was closest to the randomly selected point in order to minimize mixed-pixel problems and 

gridding artifacts in the MODIS data [27]. The absent cutting on these sites was preliminarily detected 

by visual interpretation of Landsat images series of 2012 (Figure 2). Secondly, we took another 

150 random locations and repeat the process for selection of 6510 habitat sites, where cutting was 

preliminarily detected (Figure 2). 

Sample sites varied in size and shape but only one MODIS pixel (approx. 250 × 240 m in native 

projection) was selected for each site (Figure 3). 

 

Figure 1. Study area and sampled hay meadows (red dots) that were used for the analyses. 

Green areas represent all grasslands in Slovakia (Corine Land Cover class 231 [28]). 
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Figure 2. Preliminary detection of cutting on selected sites. A. Cutting before 11.7.2012. B. 

and C. cutting between 11.7, and 27.7. 2012. D. No cutting in these periods. 

 

Figure 3. Selection of MODIS homogenous pixels for analyses. 
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These 300 sites were randomly split into training set (200) and validation set (100) and monitored for 

other years (2013–2014) based on regular field visits and visual inspection of Landsat images in order 

to confirm the preliminarily estimated cutting per site. The field visit during this period included also 

consultation with local farmers about the cut management. Visual interpretation of Landsat images series 

helped in confirmation of permanent absence of cut management on site. Those sites where we were not 

sure about the cutting performed were masked for the analyses. Finally, the cutting treatment information 

from 2012 was used in analyses with final distribution of samples as it is listed in Table 1. 

Table 1. Final proportion of treatments in training and validation data sets. 

 Training Set Validation Set 

Cut (2012) 84 46 

Uncut (2012) 102 54 

Annual series of EVI and NDVI vegetation indices for the period from 2012–2014 were extracted 

from MOD13Q1 and MYD13Q1 products (16 days, 250 meters) along with quality assurance 

information from the Land Processes Distributed Active Archived Center (LPDAAC, 

https://lpdaac.usgs.gov/) for the area covered by the h19v04 MODIS grid tile. Data were downloaded 

using EarthExplorer (http://earthexplorer.usgs.gov/) and re-projected to the native coordination system 

(Krovak projection, JTSK EastNorth coordination system). Only good quality pixels (VI usefulness 

index good and higher) were selected for analysis in order to minimize the negative effects of clouds, 

cloud shadows, aerosols, sun-sensor geometries and snow. There were a total of 46 VI images per year, 

and the data therefrom were lumped together using MOD13Q1 product as reference (e.g., MYD13Q1 

product was used only when MOD13Q1 VI usefulness index was less than good) to obtain 23 images 

per year, which was thought to reflect vegetation development over a 16-day time span and increase 

availability of good quality data. No missing data interpolation was done for the period from Day of the 

Year (DOY) 97 to Julian Day 257. Temporal median substitution (for three years) of bad quality data 

followed by linear interpolation of three consecutive images was done for the winter and late autumn 

periods (DOY 1–97; DOY 273–365). The final analyses involved annual series from 2012 because that 

period had the highest good quality data available. Because of the analysis of the optimal period and 

number of images needed for classification performance, the series was split into sets with different 

temporal extents centered on the main harvesting period (3 July, DOY 184), resulting in 11 raw data 

NDVI series (RD NDVI) and 11 raw data EVI series (RD EVI). Later, we used simple transformations 

of the raw data series. The first transformation involved basic seasonal statistics such as the mean (MN), 

maximum (MAX), minimum (MIN), range (RG) and standard deviation (SD). These seasonal statistics 

were computed for entire seasons (23 images) and for different time spans centered on the main 

harvesting period (3 July, DOY 184), producing 11 NDVI seasonal statistics series (SS NDVI) and 11 

EVI seasonal statistics series (SS EVI). The second transformation involved the so-called first difference 

series [29], namely substituting the image value (in this case VI value) from the first consecutive image 

in the time series. Similarly, these transformation series were split into a set of the series with a different 

temporal extents centered on the main harvesting period (3 July, DOY 184), resulting in 11 first 

difference NDVI series (FD NDVI) and 11 first difference EVI series (FD EVI). The way how the 

different input variables were used and aggregated for respective periods is illustrated in Figure 4. 
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Figure 4. First difference transformation, notation and selection of input variables for the 

respective classification run. Solid line—raw data (RD), dotted line—first difference 

transformed data (FD). 

Smoothing techniques based on Fourier adjustment [30] was done using different levels of Fourier 

terms (2,3,4,5) in order to test the impact of smoothing on classification algorithms (Figure 5). 

 

Figure 5. The effect of Fourier adjustments by using different levels of Fourier terms on 

temporal profile of VI. 
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Simple classification tree (CART) [31] algorithm was used to classify cut and uncut meadows because 

of its simplicity and easy interpretation of classification logic, what allows production of simple set of 

rules (or production rules), which should be meaningful and could later serve as an input to knowledge 

based classification as it was suggested by [32]. Specifically, we used C4.5 algorithm[33], gini measure 

of purity as splitting rule [34] and direct stopping rule for pruning the trees (not less than 5% proportion 

in node). Totally, we performed 90 classification runs with different periods and input variables as they 

are listed in Table 2. 

Table 2. List of all classification runs with different data series. The best case series for 

different types of the data sets are marked in bold. RD—raw data, SS—seasonal statistics, 

FD—first difference, FA—Fourier adjustment. 

Classification Run VI Type/Transformation Period 
Number of  

Input Variables 

CT01 NDVI RD 8 January–26 December 2012 23 

CT02 NDVI RD 21 January–10 December 2012 21 

CT03 NDVI RD 9 February–24 November 2012 19 

CT04 NDVI RD 25 February–8 November 2012 17 

CT05 NDVI RD 13 March–23 October 2012 15 

CT06 NDVI RD 29 March–7 October 2012 13 

CT07 NDVI RD 14 April–21 September 2012 11 

CT08 NDVI RD 30 April–5 September 2012 9 

CT09 NDVI RD 16 May–20 August 2012 7 

CT10 NDVI RD 1 June–4 August 2012 5 

CT11 NDVI RD 17 June–19 July 2012 3 

CT12 NDVI SS 8 January–26 December 2012 5 

CT13 NDVI SS 21 January–10 December 2012 5 

CT14 NDVI SS 9 February–24 November 2012 5 

CT15 NDVI SS February25–8 November 2012 5 

CT16 NDVI SS 13 March13–23 October 2012 5 

CT17 NDVI SS 29 March29–7 October 2012 5 

CT18 NDVI SS 14 April–21 September 2012 5 

CT19 NDVI SS 30 April–5 September 2012 5 

CT20 NDVI SS 16 May–20 August 2012 5 

CT21 NDVI SS 1 June–4 August 2012 5 

CT22 NDVI SS 17 June–19 July 2012 5 

CT23 NDVI FD 21 January–26 December 2012 22 

CT24 NDVI FD 9 February–10 December 2012 20 

CT25 NDVI FD 25 February–24 November 2012 18 

CT26 NDVI FD 13 March–8 November 2012 16 

CT27 NDVI FD 29 March–23 October 2012 14 

CT28 NDVI FD 14 April–7 October 2012 12 

CT29 NDVI FD 30 April–21 September 2012 10 

CT30 NDVI FD 16 May–5 September 2012 8 

CT31 NDVI FD 1 June–20 August 2012 6 

CT32 NDVI FD 17 June–4 August 2012 4 
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Table 2. Cont. 

Classification Run VI Type/Transformation Period 
Number of  

Input Variables 

CT33 NDVI FD 3 July–19 July 2012 2 

CT34 NDVI FA(2 harmonics) of the RD 30 April–5 September 2012 9 

CT35 NDVI FA(3 harmonics) of the RD 30 April–5 September 2012 9 

CT36 NDVI FA(4 harmonics) of the RD 30 April–5 September 2012 9 

CT37 NDVI FA(5 harmonics) of the RD 30 April–5 September 2012 9 

CT38 NDVI SS using FA(2 harmonics) instead of RD 16 May–20 August 2012 5 

CT39 NDVI SS using FA(3 harmonics) instead of RD 16 May–20 August 2012 5 

CT40 NDVI SS using FA(4 harmonics) instead of RD 16 May–20 August 2012 5 

CT41 NDVI SS using FA(5 harmonics) instead of RD 16 May–20 August 2012 5 

CT42 NDVI FD using FA(2 harmonics) instead of RD 1 June–20 August 2012 6 

CT43 NDVI FD using FA(3 harmonics) instead of RD 1 June–20 August 2012 6 

CT44 NDVI FD using FA(4 harmonics) instead of RD 1 June–20 August 2012 6 

CT45 NDVI FD using FA(5 harmonics) instead of RD 1 June–20 August 2012 6 

CT46 EVI RD 8 January–26 December 2012 23 

CT47 EVI RD 21 January–10 December 2012 21 

CT48 EVI RD 9 February–24 November 2012 19 

CT49 EVI RD 25 February–8 November 2012 17 

CT50 EVI RD 13 March–23 October 2012 15 

CT51 EVI RD 29 March–7 October 2012 13 

CT52 EVI RD 14 April–21 September 2012 11 

CT53 EVI RD 30 April–5 September 2012 9 

CT54 EVI RD 16 May–20 August 2012 7 

CT55 EVI RD 1 June–4 August 2012 5 

CT56 EVI RD 17 June–19 July 2012 3 

CT57 EVI SS 8 January–26 December 2012 5 

CT58 EVI SS 21 January–10 December 2012 5 

CT59 EVI SS 9 February–24 November 2012 5 

CT60 EVI SS 25 February–8 November 2012 5 

CT61 EVI SS 13 March–23 October 2012 5 

CT62 EVI SS 29 March–7 October 2012 5 

CT63 EVI SS 14 April–21 September 2012 5 

CT64 EVI SS 30 April–5 September 2012 5 

CT65 EVI SS 16 May– 20 August 2012 5 

CT66 EVI SS 1 June–4 August 2012 5 

CT67 EVI SS 17 June–19 July 2012 5 

CT68 EVI FD 21 January–26 December 2012 22 

CT69 EVI FD 9 February–10 December 2012 20 

CT70 EVI FD 25 February–24 November 2012 18 

CT71 EVI FD 13 March–8 November 2012 16 

CT72 EVI FD 29 March–23 October 2012 14 

CT73 EVI FD 14 April–7 October 2012 12 

CT74 EVI FD 30 April–21 September 2012 10 

CT75 EVI FD 16 May–5 September 2012 8 
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Table 2. Cont. 

Classification Run VI Type/Transformation Period 
Number of  

Input Variables 

CT76 EVI FD 1 June–20 August 2012 6 

CT77 EVI FD 17 June–4 August 2012 4 

CT78 EVI FD 3 July–19 July 2012 2 

CT79 EVI FA(2 harmonics) of the RD 14 April–21 September 2012 11 

CT80 EVI FA(3 harmonics) of the RD 14 April–21 September 2012 11 

CT81 EVI FA(4 harmonics) of the RD 14 April–21 September 2012 11 

CT82 EVI FA(5 harmonics) of the RD 14 April–21 September 2012 11 

CT83 EVI SS using FA(2 harmonics) instead of RD 1 June–4 August 2012 5 

CT84 EVI SS using FA(3 harmonics) instead of RD 1 June–4 August 2012 5 

CT85 EVI SS using FA(4 harmonics) instead of RD 1 June– 4 August 2012 5 

CT86 EVI SS using FA(5 harmonics) instead of RD 1 June– 4 August 2012 5 

CT87 EVI FD using FA(2 harmonics) instead of RD 16 May–5 September 2012 8 

CT88 EVI FD using FA(3 harmonics) instead of RD 16 May–5 September 2012 8 

CT89 EVI FD using FA(4 harmonics) instead of RD 16 May–5 September 2012 8 

CT90 EVI FD using FA(5 harmonics) instead of RD 16 May–5 September 2012 8 

Variable importance ranking was estimated based on summing the drop (delta) in node impurity for 

all predictors over all nodes in the trees and expressing these sums relative to the largest sum found over 

all predictors, as implemented in Statistica v. 9 software (StatSoft, Inc., Tulsa, OK, USA). The main 

criteria for classification performance were accuracy measures such as overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA) and Cohen’s kappa [35]. Significant differences 

between the classifications were subjected to McNemar tests, as suggested and described by Foody [36]. 

3. Results 

The seasonal profile of VI in grasslands exhibits a typical shape, which reflects green biomass 

development during the season, with a sharp increase in spring reaching the maximum in early summer 

and a smooth decrease thereafter until the end of the vegetation season (Figure 6). 

The small decrease visible after the period when the seasonal maximum is reached may be a response 

to summer drought and hay harvesting. The effect of grass cutting is more influential, which is apparent 

when cut and uncut meadows are plotted separately (Figure 7). After the hay harvesting period, 

vegetation re-growth is evident, reaching the second VI peak in late summer. Variation of this profile is 

the highest during the spring vegetation increase, followed by the autumn and the harvesting period, 

which is the lowest during both vegetation peaks in late spring and late summer. Here, variation in late 

autumn and winter is not considered as this is largely affected by low data quality due to clouds or snow. 

The temporal EVI and NDVI patterns are similar. EVI bears constantly lower values and higher spatial 

variability throughout the season. 

However, when the cut and uncut meadows are analyzed separately, the bigger difference appears. 

EVI bears higher values in cut meadows compared to uncut meadows over the entire season except for 

a short period after harvesting (Figure 7). In contrast, NDVI is almost the same in cut and uncut meadows 
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during the whole season except for more apparent difference occurring between the two vegetation peaks 

(16 May and 4 August). 

 

Figure 6. Temporal profile of NDVI and EVI (bars represent standard deviation) in all 

sampled hay meadows (286 sites). 

 

Figure 7. Temporal profile of NDVI and EVI in cut (dot line) and uncut (solid line) hay meadows. 



Remote Sens. 2015, 7 6118 

 

The best case classifications from all the raw and transformed data sets are visible in Figure 8 and 

accuracy measures for the best case classifications are reported in Tables 3–8. In general, the best 

classification results yield first difference series followed by seasonal statistics series and raw data series. 

However, differences in the best case classifications were statistically significant only in NDVI at the 

0.05 (FD NDVI vs. SS NDVI) and 0.01 (FD NDVI vs. RD NDVI) level, respectively. Moreover, the FD 

series classification trees were quite simple (5 rules/splits) compared to very complex trees composed 

of raw data series (9 splits) and seasonal statistics series (7–9 splits), making them difficult to interpret 

(Table 7). When shorter periods centered on the harvesting date were used, better results were achieved 

(Figure 4). This was consistent across all classifications, where the best results in the FD series were 

seen using the period between 16 May and 5 September (EVI) and between 1 June and 20 August 

(NDVI). The best classification in all types was compared to their smoothing counterparts using different 

numbers of harmonics in temporal Fourier analysis. By using smoothing series for all the best case 

classifications (RD, SS, FD), significantly lower accuracies were obtained, although this was not the 

case when five harmonics were used. Using raw VI and seasonal statistics, EVI series yield better 

classification accuracies than NDVI series, yet these were not statistically significant. 

On the other hand, though not statistically significant, NDVI yielded consistently better accuracies 

than EVI in FD series classifications, where the best was for the period between 1 June and 20 August 

using two images less than the best FD EVI classification. User’s and producer’s accuracies were well 

balanced in the NDVI series (Table 7) and cut detection using NDVI outperformed the EVI series, 

reaching producer’s accuracies of 85% in comparison to just 67% using the EVI series. 

Table 3. Confusion matrix and accuracies of raw NDVI data set (30 April to 5 September). 

 Cut Uncut Total User’s Accur. (%) 

Cut 31 14 45 68.89 

Uncut 15 40 55 72.73 

Total 46 54 100  

Producer’s Accur. % 67.39 74.07   

Overall Accur. % 71    

Cohen’s Kappa 0.42    

Table 4. Confusion matrix and accuracies of raw EVI data set (14 April to 21 September). 

 Cut Uncut Total User’s Accur. (%)

Cut 29 9 38 76.32 

Uncut 17 45 62 72.58 

Total 46 54 100  

Producer’s Accur. % 63.04 83.33   

Overall Accur. % 74    

Cohen’s Kappa 0.46    
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Figure 8. Classification performance of the all tested data series with different periods used. 

(a) raw data series RD, (b) seasonal statistics series SS, (c) first difference series FD. 

NDVI—solid line, EVI—dot line. The best case series for each NDVI and EVI are marked 

with the value of Cohen`s kappa. Bold line indicated significant difference in comparison to 

the best case of relevant series. Filled boxes indicated significant difference between EVI vs. 

NDVI using the same data set. 
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Table 5. Confusion matrix and accuracies of NDVI seasonal statistics data set (16 May to 20 August). 

 Cut Uncut Total User’s Accur. (%) 

Cut 33 12 45 73.33 

Uncut 13 42 55 76.36 

Total 46 54 100  

Producer’s Accur. % 71.74 77.78   

Overall Accur. % 75    

Cohen’s Kappa 0.50    

Table 6. Confusion matrix and accuracies of EVI seasonal statistics data set (1 June to 4 August). 

 Cut Uncut Total User’s Accur. (%) 

Cut 29 5 34 85.29 

Uncut 17 49 66 74.24 

Total 46 54 100  

Producer’s Accur. % 63.04 90.74   

Overall Accur. % 78    

Cohen’s Kappa 0.54    

Table 7. Confusion matrix and accuracies of first difference NDVI data set (1 June to 20 August). 

 Cut Uncut Total User’s Accur. (%) 

Cut 39 8 47 82.98 

Uncut 7 46 53 86.79 

Total 46 54 100  

Producer’s Accur. % 84.78 85.19   

Overall Accur. % 85    

Cohen’s Kappa 0.70    

Table 8. Confusion matrix and accuracies of first difference EVI data set (16 May to 5 September). 

 Cut Uncut Total User’s Accur. (%) 

Cut 31 3 34 91.18 

Uncut 15 51 66 77.27 

Total 46 54 100  

Producer’s Accur. % 67.39 94.44   

Overall Accur. % 82    

Cohen’s Kappa 0.63    

The logic behind the classifications could be partly explained by the analysis of variability 

importance. In the raw data EVI series, the most influential images for differentiation of cut and uncut 

meadows lay in late summer (with 20 August being the highest), followed by an image ranked far lower 

in importance after the harvest (3 July) and with the lowest importance for the images during the 

harvesting periods (Figure 9). 

When the NDVI series is used, despite the similar importance of late summer images, the high 

influence of images from the harvesting period (17 June and 1 June) for differentiating cut and uncut 

meadows is apparent. This reflects well the dissimilar pattern of the VI seasonal profile from EVI and 
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NDVI in cut and uncut meadow values in these periods (Figure 7). The importance of SS for classifying 

cut and uncut meadows is similar in NDVI and EVI, where range, minimum and standard deviation 

(Figure 10) rank highest in importance. 

 
Figure 9. Variable importance for the best case classification of the raw data series (RD). 

 

Figure 10. Variable importance for the best case classification of the seasonal statistics series (SS). 
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In the FD EVI series (Figure 11), several periods are comparably important for classification, namely 

late summer (20 August), which can reflect the higher increase (vegetation re-growth) in cut meadows 

compared to uncut meadows; after the harvest period (3 July), reflecting the removal of biomass after 

the harvest and before the harvest period (1 June), which may respond to dissimilarities in cut and uncut 

meadows at the vegetation biomass peak (Figure 7). Contrarily, the FD NDVI series saw only a decrease 

after the harvest in different periods ranging from 3 July until 4 August, which is of comparably high 

importance for classification. The final classification trees for the best case FD series for EVI and NDVI 

are presented in Figure 12. In both series, cutting is classified by 5 leaf paths (production rules) and 

uncut meadows only by one leaf path what reflects higher variability of cut meadows and cutting 

practices. Seventy-five percent (63 sites) of cut and 80% (82 sites) of uncut training sites in NDVI series 

and 62% (52 sites) of cut and 84% (86 sites) of uncut training sites in EVI series were used in the final 

pruned tree. Cutting was classified mainly by decision rules that reflect decrease in NDVI between 

consecutive 16 days periods (e.g., in 19 July, 17 June) and increase of EVI (e.g., 4 August, 20 August). 

Again, this could reflect the dissimilar pattern of VI seasonal profile of EVI and NDVI in cut and uncut 

meadows, which may lead to different ways of discriminating cut and uncut meadows using the EVI and 

NDVI FD series. 

 

Figure 11. Variable importance for the best case classification of the first difference series (FD). 
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Figure 12. Classification tree and splitting rules of the best case first difference series for 

EVI (a) and NDVI (b). Values are in VI × 10000. Percentages in parentheses represent the 

proportion of the classified sites of the respective leaf to the total amount of sites in that 

specific class. Thus, sum of these percentages represents proportion of sites from the 

respective class, which were used in the final pruned tree. 

4. Discussion 

4.1. Temporal Profile of VIs 

The VI grassland seasonal pattern can vary substantially, reflecting not only differences in vegetation 

type and dominant species phenology [37] but also land use such as for pasture or meadows [38], farming 

practices like the timing and cutting regime [7], local climate variability and site hydrology [39], or 

abandonment rate [16]. The shape of the VI temporal curve of hay meadows in our study is comparable 

to other grassland studies in Europe [10,40], although differences in the timing and magnitude of peaks 

can vary because of climate variability and regionally specific grassland management. The spatial 

variability of VI is constantly lower throughout the season in non-managed meadows (Figure 6), which 

means that management practices have affected seasonal development of VI more than differences in 

local climate or dominant species phenology. The small decrease after the period when the seasonal 

maximum was achieved mainly reflects hay harvesting. Similarly, Nitze et al. [17] used a land-cover 

classification study from grass dominated landscape in Ireland to describe these small scale fluctuations 

during the summer and linked them with typical management practices such as cutting and grazing, 
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stating they were more apparent in improved than in unimproved grasslands. Peterson et al. [41] 

described another distinctive feature of managed as opposed to unmanaged grasslands reflected in the 

VI temporal profile, namely the lower speed and later green-up in unmanaged grasslands because of a 

thick litter layer not cut in previous season. However, this phenomenon was not apparent in our 

VI profiles. 

4.2. Classification Performance 

It is quite difficult to compare accuracy measures of our results with other studies because of the 

different classification schemes used in the related studies, as mentioned in the introductory section. For 

example, Prischepov et al. [15] aimed in their agricultural land abandonment study to distinguish 

managed (e.g., harvested) grasslands and abandoned (unmanaged) grasslands. They used Landsat  

multi-temporal classifications resulting in substantially higher classification accuracies of managed  

(UA = 95.7%; PA = 82.7%) as opposed to unmanaged grasslands (UA = 50%; PA = 78.1%). The authors 

reported that abandoned (unmanaged) grasslands were frequently misclassified as managed grasslands, 

concluding that unless a satellite image was available for the period just after the cut, it would become 

very difficult to detect whether grassland management had taken place in a given year. Similarly, 

Alcantara et al. [16] distinguished an active agriculture class (with inclusion of managed grasslands) and 

an abandoned agriculture class defined as areas covered by secondary succession such as grasses that 

were neither mown nor grazed. They used MODIS time series combining NDVI and derived 

phenometrics. Though they reported quite promising results for a complex classification task (OA 

of 65%), slightly lower accuracies levels of 41% (UA) and 56% (PA) were obtained for the specific 

abandoned agriculture class. It was mainly for misclassification of active agricultural classes that they 

discussed as the possible effect of spatial proximity; the fact that many abandoned agriculture areas were 

intermixed with still active agriculture and MODIS gridding artifacts that cause changes in the spectral 

information reported for a given MODIS pixel over time as it is reported in Tan et al. [27]. Our study 

obtained slightly better results (in respect to accuracies), which could be caused by more exact class 

definition, homogenous samples used and a smaller study area with lower variability of grasslands and 

their management practices. As for the ecological and economic importance of grasslands in Ireland’s 

grass dominated landscape, Nitze et al. [17] used 16-day MODIS VI time series for multi-temporal 

classification of improved and semi-improved grasslands. The authors analyzed all VI value 

combinations for each year over a ten-year period (2000–2010) in order to identify the optimal number 

of images for classification. Obviously, increasing the number of images using NDVI improved 

classification accuracies. With only three images, average accuracy reaches 82.6%, only 3.4% less than 

the maximum of 86% reached with the 17 different input images. EVI data yielded even better results 

by up to 5%. They also reported the results varying widely between years, ranging from 80% to 95%, 

while obtaining slightly better accuracies than in our example, which can imply that using similar 

approaches produces better differentiation of improved as opposed to unimproved grasslands than 

unimproved (in our case considered as cut meadows) and unmanaged grasslands. Using the VHR Rapid 

Eye for multi-temporal classification of grasslands in Germany, Franke et al. [7] achieved overall 

accuracies ranging from 74.8% with kappa coefficient of 0.45, when using three scenes per vegetation 

season, up to 82.5% and kappa of 0.60 when using five scenes. In addition to semi-natural grasslands 
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and extensive grasslands (which can be compared to our classes of uncut and cut meadows, respectively), 

they classified other types of grasslands as intensive and tilled, reporting mean class accuracy of 82.6%. 

The authors stated that three scenes are sufficient to reliably classify grassland management types with 

respect to tilled and intensively used grasslands, although additional scenes are needed if classification 

of semi-natural and extensively used grasslands is required, which they concluded based on frequent 

misclassification between semi-natural and extensively used grasslands. It is in any case obvious that 

VHR also matches the spatial pattern of grassland use intensities, the objective, which is not possible 

with just MODIS data in Central Europe. The combination of VHR and multi-temporal approaches based 

on MODIS data seem to be promising, as was documented, for example, by Aragon et al. [39] and 

Esch et al. [10]. Except the spatial pattern of grassland management types, similar accuracies as the 

above studies have been yielded by us, which may serve as a proper approach for later multisource 

classification approaches of grasslands. The best case classification in our study (Table 7) reached 85% 

overall accuracy with balanced rate of user’s and producer’s accuracies which is exactly the commonly 

recommended minimum target of 85% [35]. Grasslands as such are classified with difficulties in 

complex land cover classification studies, especially in heterogeneous landscape like in Slovakia. For 

example, Corine land cover product from 2006 reached only 39% of producers and 75.5% of users 

accuracies of grassland land cover class 231 based on the homogenous sample similar to that of our 

study [42]. In this respect, we think that the classification results reached an acceptable level of accuracy. 

However, we performed only a binary classification of single land cover class and we assume that if the 

same approach was used within complex land cover classification, the accuracy levels would decrease a 

bit because of possible misclassification of uncut meadows with shrubs and cut meadows with some 

annual crops. Regarding the management needs described in the introductory section, we think that this 

approach with the analyzed data sets should be used with caution for the full coverage mapping of cutting 

(e.g., for the subsidies control system) because of spatial limitation of MODIS VI data. However, when 

the proper full coverage land cover data set is available (or high resolution layers of grasslands) the cut 

detection described by our study could serve as a promising tool for monitoring of selected sites of 

special interest (e.g., NATURA 2000 sites) or for describing the spatial trends or substantial regional 

differences (e.g., for the regional managers). 

Besides accuracy, robustness and simplicity are common goals when specific classification 

algorithms are developed with the general objective of the algorithm’s transferability in space and time. 

In this respect, the great advantage of tree based classifiers is their easy interpretation and thus, can be 

changed to the simple rule-based classifier based on a set of the simple meaningful rules [18]. In this 

respect, we tried to minimize dimensions of the raw data by simple transformations of the raw series. 

Such transformation usually helps in achieving better classification results. Seasonal statistics of Vis [43] 

or variety of phenometrics [16] are often used for this purpose. In our case, we demonstrated that FD 

transformed series outperformed the raw series, resulting in a substantially simpler decision tree that 

allows simple interpretations (Table 9). The final classification tree, based on the NDVI data, looks like 

a set of simple decision rules reflecting the sudden decrease of NDVI values after cutting, varying only 

in the specific time of harvesting (Figure 12). These set of quantitative rules could be considered as 

thresholds to be later recalibrated and upgraded by expert knowledge and transferred to another spatial 

or temporal domain. Similarly, Franke et al. [7] based their multi-temporal classification on assuming 

that removal of plant material for fodder or litter through mowing the grasslands causes spectral changes 
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and so can be an indicator for the intensity of utilization and thus specific land management practice. 

They transferred the knowledge about temporal aspects of different grassland management types into a 

set of rules which they derived from quantitative thresholds called MASD (mean absolute spectral 

dynamic). They documented such an approach outperforming CART based machine learning algorithm 

on test sites by up to 19%. The main advantage of their context-based rule set was a decrease in the 

number of rules (from 10 to 4) and the number of variables from 8 to 4. 

Table 9. Structure of the best case classification trees from the different data sets used. 

  
Period 

Input  

Variables
Used Variables 

Number of 

Rules (Splits) 

N
D

V
I 

Raw data 30 April–5 September 9 
30 April;17 June; 3 July;  

20 August; 19 July 
9 

Seasonal statistics 16 May–20 August 5 Max; Min; Mean; Sd; Range 9 

First difference 1 June–20 August 6 
3 July; 1 June; 17 June;  

19 July; 4 August 
5 

E
V

I 

Raw data 14 April–21 September 9 
20 August; 4 August; 1 June;  

3 July; 30 April 
9 

Seasonal statistics 1 June–4 August 5 Max; Min; Mean; Sd; Range 7 

First difference 16 May–5 September 8 19 July; 1 June; 4 August; 20 August 5 

4.3. Optimal Period 

The optimal period for classification is important and can largely influence classification 

performance. Furthermore, this information is critical for data availability reasons. From this 

perspective, the shorter the required period, the better because of the lower data demands. Our analysis 

revealed that the 16-day time span in a relatively short seasonal period (e.g., using seven or eight 

compositing periods from May to August) is sufficient for accurately detecting cut meadows.  

Nitze et al. [17] documented that the optimal number of images required for achieving good 

classification accuracies is between six to ten (out of 23 images/per year), after which the value gained 

from additional images becomes marginal. Wen et al. [44] also reported that using a shorter vegetation 

growth period was better than the whole annual cycle for classifying different Tibetan grassland types. 

In fact, analysis of the entire annual series may be negatively influenced by the winter period due to 

noise in data which may lead to higher misclassification rates [8]. Based on the series of multi-temporal 

classifications of German semi natural grasslands using 24 Rapid Eye annual series, Schmidt et al. [37] 

showed that a three-scene composite reaches more than 0.8 overall accuracy and the best trade-off 

amount between the number of acquisition dates and classification accuracy is achieved by using a 

seven-scene NDVI composite. Furthermore, the most important season for differentiating semi-natural 

grasslands was early summer (defined as the period from 4 June to 17 June), followed by late spring, 

late summer and mid-summer. On the other hand, Prishchepov [15] reported through a less dense 

Landsat series that the factor which influenced the accurate detection of abandoned as opposed to 

managed grasslands was the number of multi-seasonal images dates (the more the better) rather than 

their exact dates. Our case study found the best case FD NDVI series classification was the period from 

1 June to 20 August, which resulted in an OA of 85%. The narrower series of four images (17 June to 
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4 August) and two images (3 July to 19 July) resulted in significantly lower accuracies (Figure 4c). This 

can reflect the variability of the timing for cutting because of the quite large study region. However, we 

think that the number of scenes needed could be decreased even further in regional dependent 

applications. The more important fact is that the 16-day compositing period seems to be enough to detect 

cutting management, which is the time span that might be hopefully achieved by upcoming on-board 

HR sensors (Sentinel2) with the high temporal resolution followed by a combination with the existing 

platforms (e.g., Landsat). 

4.4. Smoothing Effect 

Smoothing series for all the best classifications (RD, SS, FD) obtained lower accuracies, although 

they were not significantly different when five harmonics were used. Lower Fourier terms (e.g., 2,3,4) 

caused significantly lower accuracy values. This agrees with Geerken et al. [45], who stated that at least 

5 harmonics should be used in order to properly classify rangeland vegetation when shaped-based 

classification is applied from Fourier filtered cycle similarity. Only two or three harmonics are 

commonly used to remove the noise in VI time series. In fact, the reflection from grass cutting in the VI 

temporal profile could be considered as noise in such cases, which could lead to problematic detection 

of grasslands in complex classification tasks, for instance in crop type mapping [46]. On the other hand, 

interpolation techniques followed by smoothing could essentially improve the amount of useful input 

data, leading to more representative coverage of study areas. Therefore, proper analysis of missing data 

effects and the utilization of proper interpolation and smoothing techniques should be done in future 

grassland classification studies. 

4.5. EVI vs. NDVI 

Higher EVI variability during peak biomass periods is obvious because EVI was designed to have 

higher dynamic range to solve the well-known deficit of NDVI being saturated at high biomass levels, 

e.g., more than 0.8 [47,48]. On the other hand, slightly higher NDVI sensitivity to relatively low biomass 

levels during the early spring was evident, something in line with what other authors have found [17,48]. 

Nitze et al. [17] documented similar EVI and NDVI behaviors when comparing temporal profiles in 

improved and unimproved grasslands. They stated that EVI time series exhibit better distinction of these 

classes, where improved grasslands are characterized by constantly higher values than unimproved 

grasslands. Furthermore, they also documented that NDVI exhibits higher sensitivity to less intense 

vegetation, in their case—peatlands. Higher dynamic range and atmospheric and background corrections 

are the reasons why EVI is more frequently used in classification tasks [48]. In our case, when using RD 

or SS data, EVI outperforms NDVI in detecting cut meadows. However, the logic behind these 

classifications is not as apparent in the quite complex final decision trees and rules. When we decrease 

the dimension of the data by transforming them to FD series, an abrupt biomass decrease (as the reaction 

to cutting) was constantly evident in NDVI classification rules, resulting in a quite simple and readable 

decision tree. However, this was not the case in the EVI series, which we think is due to EVI’s higher 

sensitivity, reflected in the complex dissimilarity of cut, as opposed to uncut meadows, across the whole 

season. In any case, NDVI and EVI responded in complementary way, thus, their combine usage is 
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advised. Furthermore, though NDVI and EVI are among the most popular VIs, other VIs and especially 

those, which are sensitive to plant water content should be considered for detection of cutting. 

5. Conclusions 

We reported here the possible usage of VI time series for detection of cut management in hay 

meadows. Transformation of raw series clearly helps, mainly FD, which decreases the complexity of the 

resulting classification trees. Specifically, FD series classification trees resulted in simple tree with 5 

rules/splits compared to very complex trees composed of raw data series (9 splits) and seasonal statistics 

series (7–9 splits). We think that such simple rule-based algorithms should be better transferable than 

complex trees. However, this needs to be tested in different regions, grassland types and years. We do 

slightly consider regional differences here as the relatively large study area includes different bioregions, 

but we do not consider other grassland types and more importantly we do not consider climate variability 

between years. This needs to be tested in longer term case studies that may include anomaly years as 

well. NDVI slightly outperformed EVI in the best case FD classification. Specifically, the best case 

NDVI FD series classification yielded overall accuracy of 85%, EVI FD series yielded slightly lower 

values (82%), though not significantly different. Moreover, user’s and producer’s accuracies were well 

balanced in the NDVI series and cut detection using NDVI outperformed the EVI series, reaching 

producer’s accuracies of 85% in comparison to just 67% using the EVI series. This might be caused 

mainly by the higher variability of EVI and different VI response to cutting in the temporal profile, 

leading to different ways of discriminating cut and uncut meadows. All other differences were masked 

in the NDVI profile except the apparent biomass decrease after the harvest in different time periods. 

Contrary, EVI saw constantly higher values in cut meadows over a longer period and their higher 

variability may have caused the higher misclassification rates and omission errors of cut meadows. By 

using smoothing series for all the best case classifications (RD, SS, FD), significantly lower accuracies 

were obtained, although this was not the case when five harmonics were used. On the other hand, 

interpolation techniques followed by smoothing is a method commonly used and they could essentially 

improve the amount of useful input data, leading to more representative coverage of study areas and full 

coverage products. Therefore, proper analysis of the missing data effect and utilization of proper 

interpolation and smoothing techniques should be done in future grassland classification studies. There 

is no need to have the whole annual series in order to sufficiently detect cutting. In fact, the optimal 

period for detection lay between 1 June and 20 August. More importantly, the 16-day compositing period 

seemed to be enough for detection of cutting, which would be the time span that might be hopefully 

achieved by upcoming on-board HR sensors (e.g., Sentinel2), followed by combining them with existing 

platforms (e.g., Landsat). This looks promising when the possible usage of similar concepts at finer 

scales is borne in mind. 
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