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Abstract: Endmember selection is the basis for sub-pixel land cover classifications using 

multiple endmember spectral mixture analysis (MESMA) that adopts variant endmember 

matrices for each pixel to mitigate errors caused by endmember variability in SMA.  

A spectral library covering a large number of endmembers can account for endmember 

variability, but it also lowers the computational efficiency. Therefore, an efficient 

endmember selection scheme to optimize the library is crucial to implement MESMA.  

In this study, we present an endmember selection method based on vector length. The 

spectra of a land cover class were divided into subsets using vector length intervals of the 

spectra, and the representative endmembers were derived from these subsets. Compared 

with the available endmember average RMSE (EAR) method, our approach improved the 

computational efficiency in endmember selection. The method accuracy was further 

evaluated using spectral libraries derived from the ground reference polygon and Moderate 

Resolution Imaging Spectroradiometer (MODIS) imagery respectively. Results using the 

different spectral libraries indicated that MESMA combined with the new approach 

performed slightly better than EAR method, with Kappa coefficient improved from 0.75 to 

0.78. A MODIS image was used to test the mapping fraction, and the representative spectra 

based on vector length successfully modeled more than 90% spectra of the MODIS pixels 

by 2-endmember models.  

Keywords: endmember selection; multiple endmember spectral mixture analysis 

(MESMA); vector length  
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1. Introduction 

The accuracy of sub-pixel classification of land cover types using spectral mixture analysis (SMA) 

or multiple endmember spectral mixture analysis (MESMA) is strongly affected by the selection of 

pure spectra, or endmembers [1–3]. MESMA based on SMA commonly uses variant endmembers for 

image pixels, and the appropriate endmember model is usually determined for a pixel via the metric of 

minimum root mean squared error (RMSE) of model fits and other constrained conditions [2]. In order 

to sufficiently model the complex land cover types using MESMA, an endmember library of an 

enormous number of spectra needs to be established from reference spectra or image pure pixels to 

explain the spectral variability. A large number of spectra cause a heavy computational burden and a 

complicated interpretation of model results [3,4]. Therefore, endmember selection optimizing 

representative spectra from the endmember library is a crucial component for MESMA, as it balances 

the accuracy of modeled fractions and the computational efficiency of model fits [3,5]. 

Endmember selection methods for MESMA were elaborated in previous studies. A count-based 

(CoB) method focused on the number of successful model fit within a library, and representative 

endmembers for each land cover class were chose with the spectra that successfully modeled the 

greatest number starting from all spectra to the spectra of a class remained unmodeled [2,6]. Another 

method, the minimum endmember average RMSE (EAR), based on the average error of a spectrum 

modeling all spectra of a class which was determined by MESMA, and the representative endmember 

is the minimum EAR spectrum within a class [3]. Similar to minimum EAR, the minimum average 

spectral angle (MASA) used spectral angle to select the representative spectra, and the comparison 

between spectral angle mapping (SAM) and MESMA indicates that SMA is more sensitive for 

selection of lower albedo spectra [7]. An iterative endmember selection (IES) focused on the 

classification accuracy of endmembers for the endmember library with all classes, which selected the 

spectra with the higher kappa coefficient of classification [8]. The above methods have been used for 

MESMA to successfully map land cover classes [9–11]. A combined method, hybrid IES-CoB/EAR 

selection, was also developed to select endmembers for mapping plant, which synthesized the two 

previous approaches and successfully modeled plant species [5].  

For these approaches, two steps were involved: (1) a spectral matching algorithm was used for 

model fits or similarity measures (e.g., SMA, MESMA, SAM); (2) a quantitative metric was used to 

select a set of endmembers (e.g., the minimizing RMSE, the minimizing spectral angle, maximizing 

kappa). For example, SMA was applied to iteratively fitting each endmember to other spectra within a 

library, and the representative endmembers were selected with the spectra meeting the criteria RMSE 

of SMA. Iterative model fits of SMA to all endmember pairs would hamper the selection efficiency if 

a large number of spectra were used. Meanwhile, some quantitative metrics may miss endmembers 

that represent a class, when endmember classes are highly variable. For example, the minimum EAR 

poorly selected representative endmembers from a highly variable class [3], and the IES method 

missed representative endmembers from a rare class [5].  

Is it possible to choose a new quantitative metric for selection of representative spectra without 

iterative model fits, and widely represent a class with higher variability? Vector length of a spectrum is 

an important feature to construct classifier [12]. Unlike the previous quantitative metrics relying on 

iterative model fits, vector length could subset spectra alone without matching algorithm. MESMA is 
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sensitive to the vector length of a modeled spectrum due to the higher correlation between the albedo 

and the vector length of a spectrum [7,13]. Therefore, the vector length of spectra may be a 

quantitative metric to divide subsets for a more variable class, and representative endmembers will be 

calculated by the median or average spectrum of each subset.  

Due to advantages for mapping global land cover types as an optical sensor, the band channels of 

MODIS reflectance are highlighted in this study. The objective of this paper is to present a new 

method for efficiently dividing spectral subsets of endmember classes and obtaining representative 

endmembers based on vector length of spectra for MODIS reflectance channels.  

In this paper, we test a new quantitative metric, vector length, for endmember selection. Spectra 

derived from reference polygon were used to compare the new method to EAR/CoB method, and a 

MODIS image was used to test the performance of MESMA for mapping. The next section presents 

the new method based on vector length and two data sets including a spectral library for comparison 

and a set of images (MODIS and ETM images) for mapping. The third section presents the study 

results. Discussions and conclusions are provided in the last two sections.  

2. Methods and Data 

2.1. Study Areas 

Two areas were used for this study, which derived different data sets for two experiments purposes. 

For comparison purpose of endmember selection, we downloaded an existing data set including an 

original spectral library (OSL), a representative spectral library based on EAR/CoB (RSLEC), 

Airborne Visible Infrared Imaging Spectrometry (AVIRIS) imagery and ground reference  

polygons [14]. The two libraries were extracted from the AVIRIS imagery over the Santa Barbara 

where the land cover types are dominated by vegetation, soil and urban (Figure 1a). In order to test the 

mapping performance using the new endmember selection, a set of imageries were processed for 

mapping and assessing land cover classes. The data consisted of Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Enhanced Thematic Mapper (ETM) images (Figure 1b). To test the 

mapping performance of endmember selection, a set of imageries were processed for land cover map 

and validation, which consisted of Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Enhanced Thematic Mapper (ETM) images (Figure 1b). Snow is a typical land cover type, and 

MODIS is a popular sensor for global snow mapping due to its moderate spatial resolution, higher 

temporal resolution and appropriate channels for detecting snow. So imageries located in the 

Himalayas were used to map four land cover classes that were identifiable by broad band sensors.  
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Figure 1. Study areas: (a) A red polygon of left image is the cover region of Airborne 

Visible Infrared Imaging Spectrometry (AVIRIS) in St. Babara shown as a UTM projection; 

(b) The right image is a scene of Moderate Resolution Imaging Spectroradiometer (MODIS) 

image with grid number h25v06 shown as a Sinusoidal projection, and a red parallelogram is 

the overlapped region between MODIS and Enhanced Thematic Mapper (ETM).  

2.2. Data Set for Comparison 

OSL was extracted from AVIRIS imagery over the Santa Barbara in 14 June 2001 using the training 

reference polygons, and RSLEC was selected from OSL using EAR/CoB method by “Vipertools”  

team [14]. Ground reference polygons were created using field land cover classes and 1-m resolution 

digital orthophoto quads (DOQs) [3]. OSL and RSLEC consist of 1588 and 78 spectra with five 

classes, respectively (Table 1). For our experiments of MODIS reflectance channels, we spectrally 

convolved OSL, RSLEC, and AVIRIS imagery using MODIS filter functions.  

Then we constructed a library with 70 representative spectra from OSL using the new method 

implemented by our routine, which was named representative spectral library based on vector length 

(RSLVL). Each spectrum of RSLVL was the median spectrum of a subset of a land cover class, and 

the subset partition was mainly implemented by equal intervals of vector length for each class.  

Two representative spectral libraries, RSLEC and RSLVL, based on different endmember selection 

methods were used to classify land over classes of the AVIRIS imagery (with MODIS reflectance 

channels) using 2-endmember MESMA implemented in the ENVI add-on “ViperTools” [14]. We used 

2-endmember MESMA (endmember+shade) since it was simple and adequate for the comparison 

between two libraries. RSLVL was used as an input file for of ViperTool. The minimum and 

maximum fractions for software were −0.05 and 1.05 respectively, and the photometric shade was used 

in “ViperTools”. The accuracy of the two representative libraries was assessed by the confusion matrix 

comparing to pixels of true land cover classes, which were 1670 pixels extracted from the AVIRIS 

image using the assessing reference polygons.  
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2.3. Image Data for Mapping 

A pair of images, MODIS and ETM, was used to test the mapping performance of MESMA using 

the new method. The study area overlapped between two images is located in the Himalayas  

(Figure 1b), and both images were acquired on 3 October 2000. The grid of MOD09GA, 

MODIS/Terra surface reflectance daily product, was h25v06, and the ETM was p140r041. Complex 

mountainous terrain with heterogeneity generally causes higher spectra variability, and it is ideal to 

evaluate the ability of the new method for mapping land cover classes. Four land cover classes are 

identifiable by MODIS and ETM using image classification techniques, which are green vegetation 

(GV), soil/NPV (non-photosynthetic vegetation), snow and shade/water classes. Related to the five 

classes in Table 1, shrub and tree are subclasses of the GV; litter and soil are subclasses of the 

soil/NPV. Urban is a most complicated surface class, and its spectrum is similar to soil/NPV in 

MODIS reflectance channels. The four land cover types can be clearly divided and identifiable by 

MODIS and ETM using the image classification techniques. Therefore, four classes are appropriate for 

fraction map within 500-m resolution of MODIS, and the fractions of MODIS pixels for the four land 

cover classes are mapped using MESMA and the endmember selection based on vector length. 

MODIS/Terra is descending observation at local time 10:30 [15], and a higher resolution ETM 

image with the similar passing time was used to calculate the “true” fractions within the MODIS  

500-m resolution pixel for each of the four land cover classes. The true fractions of the four classes 

were derived in the two main steps: classification of ETM and fraction calculation within 500-m using 

the classification map.  

First, ETM imagery with 30-m pixels was classified with GV, soil/NPV, snow and shade/water.  

(1) Snow pixels of ETM were identified using SNOWMAP algorithm based on normalized difference 

snow index (NDSI, NDSI = (band2 − band5)/(band2 + band5)) [16], which met the condition  

NDSI > 0.4 and band4 > 30%; (2) similar to SNOWMAP, normalized difference vegetation index 

(NDVI, NDVI = (band4 − band3)/(band4 + band3)) was used to identify GV (NDVI > 0.65 and  

band2 > 2.5%); (3) shade/water pixels were classified based on normalized difference water index 

(NDWI, (band2 − band4)/(band2 + band4)), and the pixels met both NDVI > 0.15 and band2 < 30%; 

(4) soil/NPV pixels were identified using a method based on both NDVI and NDSI [17], and the 

thresholds both NDSI < −0.15 and −0.01 < NDVI < 0.15 were used.  

Second, four “true” fraction maps for each class with MODIS resolution were derived from 30-m 

ETM classification image using the ratio of the number of each class pixels and the total number of 

ETM pixels in 500-m cell [18]. For example, there are 16 × 16 ETM pixels in 500-m cell. If the 500-m 

cell consists of 128 snow, 51 soil/NPV, and 26 shade/water ETM pixels, then the true fractions within 

500-m were snow 50%, soil/NPV 20%, and shade/water 10%, respectively. The 500-m true fractions 

of overlapped area between MODIS and ETM were calculated using ETM classification image.  

In the study area (a red parallelogram in Figure 1b), MOD09GA pixels with the true fraction greater 

than 99% were collected as endmembers, and an original endmember library (OEL) including the four 

classes was created by these endmember pixels. To test effects of MESMA mapping by different 

numbers of representative spectra, we constructed seven representative endmember libraries (RELs) 

based on vector length from OEL with 5, 10, 20, 50, 100, 200, and 500 subsets numbers respectively. 

The mean spectrum of each subset was a representative spectrum of the class.  
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The 2-endmember models were used to map endmember fractions of MODIS image. Seven set of 

RELs were applied to model the MOD09GA pixels of the study area respectively. The minimum and 

maximum fractions for MESMA model were −0.05 and 1.05 respectively, and the non-photometric 

shade (0.10) was used. The fraction maps of land cover classifications were assessed by the coefficient 

of determination R2 and RMSE of the regression between modeled fractions of MESMA and “true” 

fraction derived by high resolution image. In our study, a window of 4 × 4 MODIS pixels was used to 

be a cell for the regression, and the regression relationship was created by all cells between MODIS 

mapping fractions and the true fractions in study area. The 4 × 4 window of a cell decreased the 

uncertainty of geolocation especially those caused by geolocation mismatch between MODIS and 

ETM image, because the gridded MODIS products were affected by the pixel shift in spatial location 

during the data processes [19].  

2.4. Endmember Selection Based on Vector Length 

The optimization for selecting representative spectra for each land cover class needs to be balanced 

between the computational efficiency and modeling accuracy for MESMA. The new method used for 

endmembers selection comprises two main steps: partitioning spectral subsets from a class and 

selecting representative spectra for each subset. 

The vector length of a spectrum has been used to calculate the spectral angle [12]. The vector length 

of a spectrum for MODIS reflectance channels is defined as [7,12]: 
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


7

1

2

k
krr  (1)

where kr  is the reflectance for MODIS channels, k is the band number.  

The endmember selection based on vector length was described as follows: (1) vector length of each 

spectrum in an original library was calculated using Equation (1); (2) all vector lengths of each class 

were sorted as ascending order; (3) subsets of a class were partitioned by equal intervals of vector 

length for each class that means these spectra within a same interval of vector length were classified 

one subset, and the interval was calculated from ||Ri|| to ||R(i+1)|| using Equation (2); (4) at last a 

representative spectrum was obtained by a median or mean spectrum of the subset, and the 

representative spectra of all subsets were a parsimonious set for the class.  

The equal interval of vector length for a subset i is [||Ri ||, ||R(i+1)||) , then || Ri || is: 

    nRRiRRi /*1
minmaxmin

  (2)

where ||R||min and ||R||max are the minimum and maximum vector length of spectra for one class, n is the 

number of subsets, i is from 1 to n.  

The endmember selection based on vector length does not require the conventional fitting process 

iteratively carried out for each spectrum. The number of subsets, n, was an empirical parameter 

affected by several factors including the number of original endmembers of each class or class size, 

spectral brightness, and spectral variability. Meanwhile, n is also required in this study to satisfy the 

requirement that the total number of representative spectra of all classes is within 100, since the 

purpose of endmember selection is to construct a proxy library with a relatively small number of 
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spectra. Accordingly, n is determined based on two criteria, which are (1) selecting n as a number 

equal to 5% to 10% of the class size; (2) if applying criterion “1” leads to the total number of 

representative spectra over 100, a fixed width of vector length 0.025 is considered for each subset,  

or ||Ri|| in Equation (2) is assigned as 0.025. Accordingly, n is determined for each class. 

Experimentally, the range of n between 5 and 50 is appropriate for fractional classification using 

MODIS imagery if the spectral varaiability within a class is not higher. An increasing number for 

MESMA may produce difficulties to interpret classification. 

3. Results  

3.1. Comparison between Endmember Selection Based on EAR/CoB and Vector Length 

Representative spectral libraries generated from OSL using two methods, EAR/CoB and vector length 

method, were compared. There were 70 representative spectra in RSLVL comprised five classes with 

different numbers of class spectra (Table 1). Number of subsets, n (Equation (2)), is an alterable 

parameter. We used the different n for five classes in accordance with the variable numbers of class 

spectra within RSLEC, and the total number of RSLVL spectra is less than RSLEC. The n-subset in 

Table 1 was determined based on criterion 1 since the class size is relatively small, and the spectral 

characteristics of each class were also considered (Table 2). For shrub with the largest class size  

(920 spectra), about 5% of the total number of spectral or 45 subsets was used to partition subclasses. For 

tree and litter, which have medium size, 10 subsets (about 5 percent) were used for the two classes. For 

urban class, which also has a medium size but higher variability than tree and liter, 15 subsets (about  

7 percent) were used. For soil, which has the smallest size but most variable spectra, 10 subsets (about  

10 percent) were partitioned. The number of spectra within each subset is possible to be different, and 

some subsets maybe does not contain a spectrum. Therefore, the number of representative spectra 

selected from a class usually is less than or equal to the number of subsets (Table 1).  

Table 1. Numbers of original spectra and representative spectra.  

Class Shrub Tree Litter Soil Urban Total (n-Subset) 

OSL 920 188 161 99 220 1588 

RSLEC 38 9 17 7 7 78 

RSLVL 35 (45) 9 (10) 10 (10) 10 (10) 6 (15) 70 (90) 

OSL: original spectral library; RSLEC: Representative spectral library based on EAR/CoB;  

RSLVL: Representative spectral library based on vector length. 

Table 2. Statistics of vector lengths of original spectral library. 

Class Minimum Maximum Mean STDEV 

Shrub 0.394 0.766 0.488 0.049 

Tree 0.400 0.625 0.495 0.035 

Litter 0.342 0.747 0.586 0.085 

Soil 0.440 1.050 0.856 0.140 

Urban 0.395 1.900 0.566 0.124 

STDEV: standard deviation. 
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To compare the spectral extremeness between RSLEC and RSLVL, the libraries were  

transformed to produce spectral brightness and greenness using coefficient of the tasseled cap with 

ETM bands [3,20]. The z-score of three criteria parameters (length, brightness and greenness of 

spectrum) from two libraries were shown in Figure 2. A z-score measures a score’s relationship to the 

mean in a class, and a positive or negative z-score indicates a statistical measurement above or below 

the mean. The z-score of length was closely related to brightness z-score for both two libraries, and the 

greenness was more variable than the other parameters. The ranges of z-score variation for each class 

were from negative value to positive, which indicated a disperse distribution of representative spectra 

for a class. The representative spectra from urban were most extreme than average. Figure 2 illustrated 

that all classes of RSLVL presented more extreme than classes of RSLEC, and indicated that the 

representativeness of the representative endmembers using the new method were higher than the 

spectral library using EAR/CoB.  

 

Figure 2. Spectral z-score of land cover classes from two representative spectral libraries. 

Left column is z-score of spectra in representative spectral library based on EAR/CoB 

(RSLEC), and right column is z-score of spectra in representative spectral library based on 

vector length (RSLVL).  
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The AVIRIS image spectrally resampled to MODIS reflectance bands (Section 2.2) was modeled 

by 2-endmember MESMA using two representative libraries RSLEC and RSLVL, respectively. The 

class confusion matrix for comparison between the ground reference polygons and classification map 

using RSLEC is shown in Table 3. The overall accuracy of RSLEC is 84.8% with a kappa coefficient 

of 0.75. Meanwhile, the class confusion matrix of classification map using RSLVL produced a kappa 

coefficient of 0.78 giving an overall accuracy of 86.4% (Table 4). Furthermore, the computing time of 

“ViperTools” using RSLVL was 77.20 seconds calculated by a computer with Intel i7 2.8-GHz 

processor under 4.0 GB of RAM (Random Access Memory), which was faster than RSLEC (91.38 s). 

As shown by the two confusion matrixes in Tables 3 and 4, two classes, shrub and soil, are more 

accurately classified using RSLEC than using RSLVL. On the other hand, the classification map of 

MESMA using RSLVL is more accurate in identifying three classes: tree, litter, and urban. The overall 

accuracy and kappa coefficient indicated that the new method performed slightly better in selecting 

representative spectra for MESMA.  

Table 3. The class confusion matrix by RSLEC (representative spectra based on 

EAR/CoB). 

Class Shrub Tree Litter Soil Urban Total 

Shrub 884 73 35 1 0 993 

Tree 61 121 1 0 0 183 

Litter 18 0 145 13 0 176 

Soil 0 0 0 85 43 128 

Urban 0 0 0 1 181 182 

Unclass 1 0 1 2 4 8 

Total 964 194 182 102 228 1670 

Table 4. The class confusion matrix by RSLVL (representative spectra based on vector length). 

Class Shrub Tree Litter Soil Urban Total 

Shrub 881 64 26 3 1 975 

Tree 61 128 5 0 0 194 

Litter 9 2 147 9 0 167 

Soil 13 0 4 87 16 120 

Urban 0 0 0 3 200 203 

Unclass 0 0 0 0 11 11 

Total 964 194 182 102 228 1670 

3.2. Fraction Map of MODIS Image Using the New Endmember Selection  

Endmember pixels of four land cover classes were extracted from MODIS image using 500-m true 

fractions of classes derived from a classification map of the ETM image, and the number of original 

endmembers is shown in Table 5. The statistics of vector lengths for MODIS image endmembers is 

shown in Table 6. A large number of original enmember spectra greatly hamper the performance of 

MESMA modeling image spectra. In the experiment of fractional snow mapping using MODIS image 

endmembers, the number of original endmembers is large as described in Table 5. For example,  



Remote Sens. 2015, 7 6289 

 

the GV endmembers are more than fifteen thousands and criterion 2 needs to be applied for 

determining subset number n. By defining a fixed width of vector length 0.025 for each subset,  

the subset numbers are 20 for GV, 20 for soil/NPV, 50 for snow, and 10 for shade/water, respectively. 

It is also interesting to evaluate the algorithm performance if different subset numbers are used in 

MESMA. Therefore, additional analysis was carried out based on seven different subset numbers. 

Some subsets of a class did not contain a spectrum, and seven libraries containing different number of 

representative spectra were constructed from the image endmembers using endmember selection based 

on vector length (Table 5).  

We linearly modeled MODIS pixels over the study area using 2-endmember MESMA by seven 

representative libraries respectively. The number of successfully modeled pixels indicates the 

performance of simulation by representative endmembers, and the percentage of successfully modeled 

pixels is shown in Figure 3. More than 79.2% MODIS pixels were successfully modeled using the total 

number of 20 representative endmembers (5 subsets for each class). With the increasing of the subset 

numbers (from 5 to 500 subsets), the successful modes were improved to be 91.7%. Because the 

growth of the subset numbers increased the computational time exponentially, the balance between the 

number of spectra and computational efficiency should be considered.  

Table 5. Numbers of MODIS image endmembers and representative spectra. 

Class GV Soil/NPV Snow Shade/Water Total 

Original 15249 4605 1371 198 21423 

5-subset 5 5 5 5 20 

10-subset 10 10 10 10 40 

20-subset 20 20 20 19 79 

50-subset 47 49 50 48 194 

100-subset 91 96 96 81 364 

200-subset 168 178 184 198 728 

500-subset 381 401 407 198 1387 

GV: Green vegetation; NPV: non-photosynthetic vegetation. 

Table 6. Statistics of vector lengths of MODIS image endmembers. 

Class Minimum Maximum Mean STDEV 

GV 0.158 0.677 0.398 0.061 

Soil/NPV  0.300 0.878 0.615 0.123 

Snow 0.948 2.309 1.539 0.274 

Shade/water 0.111 0.585 0.368 0.114 

STDEV: standard deviation. 
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Figure 3. The percentage of successfully modeled pixels using n-subset. 

Besides the number of successfully modeled pixels, the regression relationship comparing the 

modeled fractions to the “true” fractions was used to validate the fraction maps of MODIS in study 

area using endmember selection based on vector length. The modeled fractions of land cover classes 

are preferably indicated by the regression relationship between modeled fractions and the true fractions 

derived from a high resolution image (Table 7). Although the numbers of the successfully modeled 

pixels were increasing from 5 to 500 subsets, the accuracies of fraction maps of the GV and soil/NPV 

were not monotonically increased. Figure 4 plots R2 and RMSE of regression from 5 to100 subsets in 

Table 7, which showed the 20 was an appropriate subset for GV and soil/NPV classes due to their 

combination of higher R square and lower RMSE in 20-subsets. The snow class increased the mapping 

accuracy of MODIS with the increasing n-subset. While 50 was an appropriate number for snow to 

balance the efficiency and the accuracy with medium R square and RMSE. The fraction accuracy of 

shade/water was very low as their low brightness, and 10 subsets for shade/NPV produced medium R 

square and RMSE. There were appropriate subset numbers balancing the computational efficiency and 

the mapping accuracy. In this study, 20 subsets for GV and soil/NPV were appropriate, and 50 was a 

better n-subset for the snow class in MODIS reflectance channels.  

Table 7. Coefficients and R2 of the regression between the mapping fractions to the  

true fractions.  

n-Subset Class Slope Intercept R2 RMSE 

5 GV 0.80 0.14 0.67 0.16 

5 Soil/NPV 0.56 −0.05 0.73 0.11 

5 Snow 0.67 −0.06 0.71 0.12 

5 Shade/water 0.33 −0.01 0.48 0.04 

10 GV 0.85 0.15 0.78 0.13 

10 Soil/NPV 0.68 −0.06 0.77 0.11 

10 Snow 0.71 −0.06 0.74 0.12 

10 Shade/water 0.38 −0.02 0.51 0.05 

20 GV 0.86 0.16 0.79 0.13 

20 Soil/NPV 0.75 −0.06 0.78 0.12 

20 Snow 0.77 −0.06 0.77 0.12 

20 Shade/water 0.39 −0.02 0.51 0.05 
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Table 7. Cont. 

n-subset Class Slope Intercept R2 RMSE 

50 GV 0.84 0.17 0.79 0.12 

50 Soil/NPV 0.81 −0.06 0.79 0.13 

50 Snow 0.85 −0.06 0.81 0.11 

50 Shade/water 0.43 −0.02 0.53 0.05 

100 GV 0.83 0.19 0.78 0.12 

100 Soil/NPV 0.83 −0.06 0.80 0.13 

100 Snow 0.89 −0.06 0.82 0.11 

100 Shade/water 0.47 −0.02 0.57 0.05 

200 GV 0.82 0.19 0.78 0.12 

200 Soil/NPV 0.86 −0.06 0.80 0.13 

200 Snow 0.95 −0.07 0.85 0.11 

200 Shade/water 0.51 −0.02 0.60 0.06 

500 GV 0.82 0.20 0.78 0.12 

500 Soil/NPV 0.91 −0.05 0.80 0.14 

500 Snow 1.03 −0.06 0.89 0.10 

200 Shade/water 0.50 −0.02 0.60 0.05 

 

Figure 4. R2 and RMSE of regression from 5 to100 subsets in Table 7.  

4. Discussion 

Vector length is an important property of spectrum, and endmember selection based on vector 

length can efficiently obtain the representative spectra from the original spectral library. Unlike most 

available methods, partitioning subsets from a class using vector length does not need to iteratively 

model endmember pairs by spectral matching algorithms. Moreover, the advantages of endmember 

selection method using vector length include: (1) it does not need the detailed priori knowledge to 

partition spectral subsets, and the interval of vector length is beneficial to implement an unsupervised 

subset; (2) the subsets divided by vector length is computationally efficient, because the vector length 
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can be directly calculated by spectral itself; (3) the new method is sensitive to the RMSE of model fit 

due to the high correlation between vector length and albedo of a spectrum.  

The disadvantages of the proposed method are: (1) it highlights the spectral distance information, 

therefore some subtle features of the spectral shape are not identified especially for hyperspectral data; 

(2) the subset partitions based vector length should be performed for a single within-class, because the 

vector length is not able to distinguish the between-classes. Another issue related to the proposed 

method is the lack of spectral shape information. MESMA is sensitive to spectral albedo, and spectral 

angle is sensitive to difference in spectral shape [7]. Therefore, vector length is more selective for 

spectra with higher reflectance, while spectral angle is more selective for lower reflectance spectra.  

In our experiment of fraction map using MODIS image, the brightest class snow was the most accurate 

for the fraction map, and the lowest reflectance shade/water was the lowest accurate. These results 

indicate that our method based on vector length is more suitable for the classes with higher reflectance 

than those with lower reflectance. Also, more considerations on selecting endmember based on both 

vector length and spectral angle are needed in the future study. 

The number of subsets, n in Equation (2), is an empirical parameter, and it is determined 

empirically by class size, variability of spectra in a class, and spectral wavelength. In the experiment of 

fraction map using MODIS imagery, seven n-subset (from to 500-subset) were used to partition 

subsets, respectively. Although the number of the successfully modeled pixels increased with the 

increasing subset numbers, the accuracy of fraction mapping was not monotonically increased. The 

non-monotoic changes of the accuracy may indicate that increasing number of representative 

endmembers for MESMA possibly leads to difficulties for interpreting classification.  

The previous research illustrated the RMSE of model fits decreased with increasing iterations for 

MESMA using the original library or representative library, and which stabled at numbers of iterations 

(60 to 200 iterations) for different scenario [21]. Taking into account the previous research, we have 

used seven n-subset to test the mapping performance of n-subset for 2-endmember MESMA, and the 

successfully modeled pixels of MODIS increased with increasing the numbers of subsets. The 

accuracies of the fraction maps presented higher values at one n-subset. To balance the accuracy and 

efficient, the results of experiments indicated n-20 are preferable for mapping fractions of green 

vegetation and soil/rock classes and n-50 are preferable for snow class.  

The number of spectra in each subset may be different due to the fixed width of partition. The 

advantage using fixed width is to ensure predictable range of vector length, so that the spectra are can 

be equally sub-divided with the same length range and low variability. In order to be more 

representative, spectra of a class should be less variable. Otherwise, high spectral variability of a class 

will cause increasing errors of MESMA modeled by the representative endmembers [3]. The subset 

division using the vector lengths is suitable for selecting the representative endmember spectra for the 

classes with high albedo variability. 

The computing time of fraction maps using MESMA is dependent on two factors: (1) the processing 

time to select representative endmembers; (2) the processing time to model MESMA using the 

representative endmembers. For endmember selection, the previous methods need to iteratively model 

the complete spectra (N spectra), which will use the N^2 time. While, the new method needs the N 

time due to calculation by spectral itself. For MESMA model, the processing time is dependent on the 

number of the representative spectra selected from the complete spectra, and less number of the 
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representative spectra will be faster. The new endmember selection selects representative endmember 

faster, and the fraction map of image using less number of the representative endmembers is not only 

efficient but also accurate.  

In this study, MODIS reflectance channels were highlighted for multiple spectral data. Our 

experiments indicated that vector length is an efficient metric to quantize subsets of a class in MODIS 

reflectance channels. Due to the discernable ability about detailed information on spectral variation, 

hyperspectral data expand the classification to the land cover. Future work might focus on the 

hyperspectral channels to expand applications of the vector length metric. Instead of using the fixed 

width for subset partitions, an adaptive width, dependent on the variability (deviation) of vector length, 

would be used to possibly improve the method using fixed width.  

5. Conclusions 

We test a new quantitative metric, vector length, for endmember selection. Spectra derived from 

reference polygon were used to compare the new method to EAR/CoB method, and a MODIS image 

was used to test the performance of MESMA for mapping. The comparison of representative spectra 

based on EAR/CoB and vector length indicated that the new selection method performed slightly 

better in accuracy. The number of 70 spectra selected by vector length is more efficient than the  

78 spectra based on EAR/CoB. For the MODIS image experiment, the simulation accuracies of image 

pixels modeled by the representative endmembers were increasing, when the numbers of representative 

spectra increases (Figure 3). However, fractional accuracies of endmembers were not monotonically 

increasing (Table 7). In the experiment, the 20 subsets for class GV and soil/NPV and 50 subsets for 

snow performed the better accuracy of land cover fractions for MODIS reflectance channels. The 

RMSEs of model fits are not sensitive to the low albedo spectra [7]. Therefore, the fraction accuracy of 

shade/water endmembers was very low as their low albedo.  

The vector length is an effective metric for dividing spectral subsets of a class and selecting 

representative endmembers for MESMA. The representative endmembers of image data successfully 

modeled all the image endmembers and image pixels. Although the image endmembers from a 

mountainous terrain increased the spectral variability and the uncertainties of mode fit, the better 

results of our image experiment presented the stability of the new method to higher spectral variability.  
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