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Abstract: Understanding the spatial and temporal dynamics of vegetation is essential in 

drylands. In this paper, we evaluated three vegetation indices, namely the Normalized 

Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI) and the 

Enhanced Vegetation Index (EVI), derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Surface-Reflectance Product in the Xinjiang Uygur 

Autonomous Region, China (XUAR), to assess index time series’ suitability for monitoring 

vegetation dynamics in a dryland environment. The mean annual VI and its variability 

were generated and analyzed from the three VI time series for the period 2001–2012 across 

XUAR. Two phenological metrics, start of the season (SOS) and end of the season (EOS), 

were detected and compared for each vegetation type. The mean annual VI images showed 

similar spatial patterns of vegetation conditions with varying magnitudes. The EVI 

exhibited high uncertainties in sparsely vegetated lands and forests. The phenological 

metrics derived from the three VIs are consistent for most vegetation types, with SOS and 

EOS generated from NDVI showing the largest deviation. 
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1. Introduction 

Drylands cover nearly 40 percent of global land surface [1,2]. Rainfall is low and highly variable in 

these lands, which results in dramatic variation of temporal development and growth cycle of vegetation 

from year to year. Many dryland ecosystems have experienced increased threats from climate change and 

human-induced activities over recent decades [3–6]. Knowledge of the spatial and temporal dynamics of 

vegetation is essential to understand the impacts of climate change and anthropic activities on dryland 

ecosystems. With the capability for large spatial coverage and frequent observations, satellite data have 

played an important role in monitoring vegetation dynamics [7–9]. In particular, the spectral vegetation 

index dataset is known to be well-related to leaf area index (LAI), chlorophyll abundance, absorption of 

phtosynthetically active radiation (fPAR) and gross primary production (GPP) [10,11]. For dryland 

vegetation activity monitoring, time series of vegetation indices have often been used to detect variability 

of vegetation activity [12–14] and changes of vegetation phenology [15,16]. 

The polar orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard  

the National Aeronautics and Space Administration’s Terra and Aqua platforms enable sound 

environmental monitoring in general and the calculation of vegetation indices, as they offer a radiometric 

and spatial resolution superior to that of, for example, the Advanced Very High Resolution Radiometer 

(AVHRR) sensor [17]. Vegetation Indices (VIs) derived from MODIS data represent improved spatial, 

spectral, and radiometric representations of surface vegetation conditions [18]. Among the most 

commonly used datasets in vegetation dynamic monitoring are the Normalized Difference Vegetation 

Index (NDVI) time series. However, the NDVI does have some limitations related to soil background 

brightness, which has an impact on the index and leads to the fact that, for similar canopy biophysical 

properties, different index values can be found for different soil and moisture conditions [19]. In order to 

overcome this problem, Huete [20] proposed a soil-adjustment factor, L, to account for the first-order, 

non-linear, differential radiative transfer through a canopy in the near infrared (NIR) and red regions of 

the spectrum, and obtained a soil-adjusted vegetation index (SAVI). After that, soil-adjusted indices such 

as the modified soil-adjusted vegetation index (MSAVI) and optimized soil-adjusted vegetation index 

(OSAVI) were developed for optimal adjustment of soil effects [21,22]. Moreover, the Enhanced 

Vegetation Index (EVI) was developed to optimize the vegetation signal with improved sensitivity in 

high-biomass regions and to provide improved vegetation monitoring through a de-coupling of the 

canopy background signal and a reduction in atmospheric influences [17]. The EVI has shown to be 

strongly linearly related and highly synchronized with seasonal eddy flux tower photosynthesis 

measurements in terms of phase and amplitude, encompassing a broader range in LAI retrievals [23]. 

The evaluation of VIs is an important and necessary process when assessing the vegetation development 

in different biomes. Li et al. [24] pointed out that both the NDVI and EVI derived from MODIS surface 

reflectance adjusted for the nadir bidirectional reflectance distribution function (NBAR) had a better 

accuracy than LAI in estimating the onset dates of greenness in deciduous broadleaf forest.  

Motohka et al. [25] found the EVI to be the most effective vegetation index for rice paddy phenology 

monitoring in monsoon Asia when it was compared with in situ data. Based on ground observations, 

Nagai et al. [26,27] examined the NDVI, EVI, and the green-red ratio vegetation index (GRVI) and 

found that the GRVI was the best at capturing the seasonal changes in photosynthetic capacity, as green 

and red reflectances are strongly influenced by changes in leaf pigments. Due to its insensitivity to 
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background reflectance and being a better predictor of Gross Primary Productivity, a 2-band EVI (EVI2) 

has been found to be a better index than the NDVI for monitoring vegetation phenology and activity 

across a variety of ecosystems [28]. Wu [29] developed a new Generalized Difference Vegetation Index 

(GDVI) to characterize land of dryland environment. 

For the diverse arid and semi-arid environment, the ability of NDVI time series to capture the 

seasonal and inter-annual variability has been confirmed in vegetation communities such as desert 

grassland, desert, woodland, savanna and shrub-steppe [12]. The SAVI, which is closely related to 

NDVI and can minimize the effect of soil brightness, has been used to record vegetation development 

for the semi-arid ecosystem in northwestern Mexico [30,31]. In addition, the MODIS-derived EVI and 

NDVI showed a strong linear relationship with gross primary production comparing with in situ flux 

measurements at a station located in the semi-arid environment of Sahel [32,33]. Despite these 

applications, the detection results of VIs in arid and semi-arid lands were suggested to be interpreted 

with caution due to the high uncertainties of VIs in sparsely vegetated areas [14,34], heterogeneity 

landscape structure and complex vegetation composition [16,35]. To address these issues, the main 

objective of this study is to evaluate three MODIS-derived vegetation index products—in particular, 

concerning their suitability for monitoring vegetation dynamics in the arid environment of the Xinjiang 

Uygur Autonomous Region (XUAR), China. We derive the NDVI, SAVI, and EVI from the MODIS 

reflectance data and compare their spatiotemporal variation across the study region and along 

transects. Since the spring and autumn phenological transitions are important factors regulating plant 

growth and carbon sequestration [36], two phenological metrics, the start of the season (SOS) and end 

of the season (EOS), are mapped from the VI time series and compared regionally. The suitability of 

the VIs for vegetation dynamic monitoring in drylands is discussed in detail. 

2. Study Area and Data 

2.1. Study Area 

The Xinjiang Uygur Autonomous Region (XUAR) is the largest autonomous region in China, 

covering 1,660,000 km2, which is more than one-sixth of China’s territory. Due to the variations in 

topography and climate, the land cover types vary greatly in the XUAR as shown in Figure 1. The 

Junggar Basin and the Gurbantunggut Desert lie between the Altay and Tianshan Mountains. The 

Tarim Basin and Taklamakan Desert are situated between the Tianshan and Kunlun Mountains. The 

entire area can be divided to northern and southern parts by Tianshan Mountains. The land is mainly 

covered by grassland and sandy desert [37–39]. Forest scatters within high mountains and along rivers. 

Oasis landscapes ranging from small to moderate in size (0.01–15,000 km2) have developed in river 

deltas, alluvial-diluvial plains and the edges of diluvial-alluvial fans [40]. Agricultural land and human 

settlements are found in the oases as these provide stable water supply in this arid region. 

Located in the hinterland of Eurasia continent, it has a variable arid to semi-arid continental climate 

with annual precipitation of 100–200 mm and mean annual temperature of 10–15 °C [41]. The annual 

precipitation is unevenly distributed with a general decreasing pattern from northwest to southeast 

across XUAR (Figure 2). The annual precipitation of the northern XUAR is 210 mm while the 

southern XUAR has an annual precipitation of 100 mm.The mean July temperature is 27.1 °C and the 
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mean January temperature is −17.1 °C [41]. The areas within high mountain ranges have a typical 

mountain climate, which is characterized by long, cold winters and short, hot summers. The growing 

season for vegetation extends from March to November in XUAR. Typical crops planted in these areas 

include wheat, cotton, corn, and rice, as well as vegetables and fruits such as sugar-beet and melon [42]. 

 

Figure 1. Geographical location and land use/cover of the XUAR. The land use map is 

extracted from MODIS land cover type product [39]. 

 

Figure 2. Spatial distribution of (a) annual precipitation and (b) annual mean temperature 

in the XUAR in 2012. The climate data is from the monthly meteorological data records of 

the National Meteorological Information Centre, China Meteorological Administration. 

2.2. Data 

The MODIS Surface-Reflectance Product (MOD09A1) provides an estimate of the surface spectral 

reflectance values at 500 m resolution in a gridded format using a sinusoidal projection. Each 
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MOD09A1 pixel contains the best possible observation during an 8-day period, selected as the one 

with large observation coverage, a low viewing angle, an absence of clouds or cloud shadow, and aerosol 

loading [43]. The MOD09A1 products over the XUAR for the period 1 January 2001 to 31 December 

2012 were extracted. The study area can be fully covered by six MODIS data tiles. To generate a  

12-year VI time series, a total of 3312 data tiles were downloaded and processed, covering the entire 

XUAR region. 

The MODIS 500 m land-cover product (MCD12Q1) was used to identify primary land covers in the 

study area. With the International Geosphere-Biosphere Programme (IGBP) land-cover legend [39], 

the MODIS product of 2012 was downloaded and served as base information in this study. 

3. Methods 

The data processing strategy includes the following steps. The MOD09A1 data tiles were first 

mosaicked, reprojected using the MODIS Reprojection Tool and masked with the XUAR boundary at 

the pre-processing step. Per-pixel QA information in MODIS products allows for removal of most 

contamination of the NDVI signal related to clouds, aerosol and snow. The time series of vegetation 

indices, including NDVI, EVI and SAVI, were then calculated from 2001 to 2012. The spatiotemporal 

patterns of monthly and annual variation were compared for different VIs. Based on the smoothed VI 

time series, phenological metrics were detected. The regional phenology detection results over the 

study area were finally generated and compared. 

3.1. VI Derivation 

The NDVI is defined by [17]: 

NDVI ൌ
ሺNIR െ REDሻ
ሺNIR ൅ REDሻ

 (1)

where NIR is the reflectance value in the near infrared band, and RED is reflectance in the red band, 

respectively. For the MOD09 data, band 2 represents the near infrared reflectance (871–876 nm) and 

band 1 represents the red reflectance (620–670 nm). 

The SAVI is defined by [20]: 

	SAVI ൌ
ሺNIR െ REDሻ

ሺNIR ൅ RED ൅ Lሻ
ൈ ሺ1 ൅ Lሻ  (2)

where L is the soil brightness correction factor. The value of L varies with the amount or cover of 

green vegetation: in very high vegetation regions, L = 0; and in areas with no green vegetation, L = 1. 

Generally, a value of L = 0.5 works well in most situations and is the default value used. When L = 0, 

then SAVI = NDVI. We set L = 0.5 as suggested in our study. 

The EVI is defined by [17]: 

EVI ൌ G ൈ
ሺNIR െ REDሻ

ሺNIR ൅ Cଵ ൈ RED െ Cଶ ൈ BLUE ൅ Lሻ
 (3)

where G = 2.5, C1 = 6, C2 = 7.5, L = 1. BLUE is the reflectance in the blue band. The coefficients 2.5 

and 1 represent the gain and canopy background, respectively [17]. The atmospheric influence on the 
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red band is corrected using the blue band and the coefficients 6 and 7.5, respectively. Band 3 of 

MOD09 data represents blue band reflectance (459–479 nm). 

3.2. VI Means and Variability 

The mean monthly VI was calculated from the monthly VI data based on the 2001–2012 time 

series. For every pixel, the monthly 12-year arithmetic mean (VIഥ ୫) was calculated using Equation (4), 

with n being the number of years and VIm the monthly VI value. 

VIഥ ୫ ൌ
1
n
෍VI୫

୬

ଵ

 (4)

The mean annual VI (VIഥ ୟ) was calculated accordingly from the annual sums of the VI. To better 

represent vegetation growth condition, only VIs in the growing season (from March to November) 

were used for mean annual VI and variability calculation. 

The deviation (DVIi) from the 2001–2012 mean annual VI at a given spatial location for a certain 

year i was calculated as: 

DVI୧ ൌ VI୧ െ VIഥ ୟ (5)

In addition, the relative annual VI deviation (rDVIi) was derived. This describes the deviation as a 

percentage from the mean annual VI: 

rDVI୧ ൌ
DVI୧ ∙ 100

VIഥ ୟ
 (6)

The mean annual VI variability (VVIതതതതത) was derived with the relative annual VI deviation (rDVIi), 

with n being the number of years: 

VVIതതതതത ൌ
1
n
෍|rDVI୧|
୬

ଵ

 (7)

3.3. Phenological Metric Detection 

The software TIMESAT is a common tool for time series data analysis [44]. Despite the uncertainty 

of VI time series ,the curve fitting method of TIMESAT has a good performance of noise reduction 

and the maintenance of signal integrity and achieved consistent results from the three VIs for most 

vegetation types [45,46]. In our study, TIMESAT was used to smooth the time series of VIs as well as 

to estimate the phenology metrics for the study area. Local Gaussian-type functions were fit to data in 

intervals around maxima and minima of the time-series. In this paper, two phenological metrics, 

namely the start of the season (SOS) and end of the season (EOS) were mapped and analyzed for all VI 

time series. The phenological metrics that were detected, and their definitions, are listed in Table 1. 
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Table 1. Phenological metrics and their definitions [44]. 

Metric Abbreviation Definition 

Start of the season SOS 
Time for which the left edge has increased to 30% of the seasonal 

amplitude measured from the left minimum level. 

End of the season EOS 
Time for which the right edge has decreased to 30% of the 

seasonal amplitude measured from the right minimum level. 

4. Results 

4.1. Mean Monthly VI 

Figure 3 depicts the mean monthly NDVI from January to December for 2001–2012. The mean 

monthly VI demonstrates the growth cycle of different vegetation types throughout the year. The 

monthly VI indicates that the beginning of vegetation development starts between March and April in 

XUAR. In October, vegetation starts to be senescent throughout the region. From December to 

February only low VI values are observed. 

 

Figure 3. Seasonal dynamics of the mean monthly NDVI from 2001–2012. Average VI 

values were calculated for each month for the period 2001–2012.  

The temporal evolution of vegetation index reflects the growth pattern for different vegetation types. 

For instance, agricultural areas do not show high vegetation activity before April, while the natural 

steppe at the same latitude has already started green-up in March. The growth of forests in the Altay 

Mountains in the north of XUAR is hindered by low temperatures before May. The maximum 

vegetation index is reached in June throughout the region for most vegetated areas. For the shrublands 

and grasslands in the Jungar Basin, the VIs drop sharply in December and then increase again by April 

of the following year. The sharp decrease in the vegetation index is mainly caused by the dormancy  

of vegetation. 
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4.2. Mean Annual VI and Variability 

4.2.1. Mean Annual VI 

The annual mean of the NDVI, SAVI, and EVI for the XUAR in 2001–2012 are presented in Figure 4. 

The annual mean VI images exhibit similar spatial patterns for vegetation conditions, but with varying 

magnitudes. All VIs depict a spatial pattern with northern and central Xinjiang having high VI values 

and the eastern and southern areas having low values. 

 

Figure 4. Spatial distribution of average annual (a) NDVI; (b) SAVI; and (c) EVI derived 

from MODIS 8-day surface reflectance data for 2001–2012 for the XUAR. The three 

transects are marked in the figure. 

The spatial variation of annual mean VI across the northern and southern XUAR corresponds with 

regional climate conditions (Figure 2). With higher rainfall in northern XUAR, the forests, grasslands, 

and agricultural land have better growing conditions and longer growing seasons. In contrast, relatively 

short growing seasons are found along the Kunlun Mountains in the southern XUAR. The growth of 

vegetation is limited by low precipitation throughout the year in this zone. The NDVI image shows 

higher values than SAVI and EVI images in most areas. Over dense forests and grasslands distributed 

around the Tianshan Mountains and northern Altay Mountains, NDVI exhibits high mean annual 

values comparing with SAVI and EVI images.  

In order to illustrate the spatial differences between the NDVI, SAVI and EVI in distinctive 

ecoregions, three transects were sampled within the annual mean VI images (marked in Figure 4a,b). 
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Each transect crossed sparsely to densely vegetated regions in order to encompass a wide range of VI 

values. The land cover types along the transects included cropland, grassland, forest, and barren desert. 

Comparing the profiles, similar trends can be found between the VI profiles (Figure 5). However, 

larger data ranges were observed in the NDVI profiles than the SAVI and EVI profiles. 

 

Figure 5. Profiles of mean annual VIs for 2001–2012 along the three transects.  

(a) Ecoregion gradient passing several oases; (b) elevation gradient; (c) variation along 

87°E longitude. The locations of the three transects are marked in Figure 4. 

Transects a and b start in the northwest and end in the southeast and are about 300 km long. 

Transect a starts in the agricultural land near the Ebinur Lake in the north. It extends to the sparse 

grassland and crosses the forests of the Tianshan Mountains, which are areas with very high VI values. 

The transect ends in sparsely vegetated areas. Transect b starts from the crop areas of an oasis in the 

north, crosses a mixture of sparse vegetation and agricultural land located in the desert. The transect 

ends in the foothills of the Kunlun Mountains, where the mixture of natural vegetation types in small 

patches causes strong oscillation of the mean annual VI. The transect c follows the 87°E longitude line 

from north to south and is about 1460 km long. The northern part of the transect is characterized by a 

mixture of grassland and forest, where EVI and SAVI show variation while NDVI has little variation. 

In the zone between 47°N and 45°N the VI values are lower and show a rather smooth behaviour. This 

region is characterized by homogeneous land cover that is mainly grassland with small areas of bare 

grounds and open shrublands. The higher values between 45°N and 41°N correspond to the 

agricultural land, forests, and steppe along the Tianshan Mountains. The VI of the grassland between 

41°N and 39°N, located in the Taklamakan Desert, is significantly lower than that of the grassland 

between 47°N and 45°N, since this area has an extremely arid desert climate and the vegetation is very 

sparse. The transect line crosses a transitional zone with open shrubland, cropland, and grassland and 

reaches the Kunlun Mountains south of 39°N. In this zone, the climate is extremely cold and dry with 

primary land covers of gravel desert, alpine desert and alpine desert steppe. 
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The relationships between the VIs for main vegetation types in the MODIS land cover product are 

depicted in Figure 6 and summarized in Table 2. All of the VIs show significant linear relationships 

between each other (p < 0.05) with varying correlations in different vegetation types. There is a strong 

linear relationship (R > 0.94) between the NDVI and SAVI for each vegetation type. The highest 

correlations were found in areas of cropland and grassland. NDVI and SAVI have a moderate 

correlations (R = 0.55) with EVI in areas of woody savannas. For grassland and mixed forest, the 

relationship between NDVI, SAVI and EVI are weakest (R = 0.29 to 0.40). The SAVI and EVI have a 

stronger linear relationship than NDVI with EVI. 

Table 2. The Pearson’s correlation coefficients of mean annual VIs for 2001–2012 for 

different vegetation types. 

Vegetation Type NDVI and SAVI NDVI and EVI SAVI and EVI 

Evergreen Needleleaf Forest 0.9422 0.4093 0.4916 

Mixed Forest 0.9773 0.3675 0.4032 

Open Shrubland 0.9867 0.4163 0.4585 

Woody Savannas 0.9949 0.6504  0.6630 

Savannas 0.9849 0.5447 0.5717 

Grassland 0.9999 0.2886 0.2886 

Cropland 0.9998 0.4095 0.4096 

Cropland/Natural Vegetation Mosaic 0.9987  0.5149 0.5196 

Figure 6 shows the scatter plots between the mean annual VIs over the 2001–2012 period. The 

relationship between EVI and NDVI and SAVI exhibited a high scattering of sampling points. The 

EVI variations corresponding to each SAVI and NDVI are mostly caused by the variation of the blue 

band, since EVI values rely on the blue reflectance in addition to red and NIR. For evergreen 

needleleaf forest, mixed forest, woody savannas and savannas, scattering samples values are observed 

comparing NDVI with SAVI and EVI at value ranges from 0.2 to 0.6. 

 

Figure 6. Scatter plots of the mean annual VIs for the years 2001–2012 among the three 

VIs for different vegetation types. 
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4.2.2. Mean Annual VI Variability 

The mean annual VI variability for the 2001–2012 period is displayed in Figure 7. The figure 

illustrates spatial patterns showing how the mean annual VI varies from year to year. 

 

Figure 7. Mean annual VI variability for 2001–2012 for the XUAR. Mean percentage 

variability was calculated as the mean of the absolute percentage deviations from the mean 

annual VI for 2001–2012. 

The statistical results of the variability are listed in Table 3. The results indicate that 70%–80% of  

the area of the XUAR has low annual VI variability (<10%) and 20%–30% of the area has variability 

higher than 10%. In particular, 10%–15% of the area shows variability between 17% and 24%, and 

only 3%–6% of the area varies by more than 30%. Comparing the three variability maps quantitatively, 

the EVI image shows the highest variability (Table 3). Therefore, the EVI time-series captures larger 

inter-annual variability from 2001 to 2012 for the entire XUAR comparing with NDVI and SAVI. 

Considering the scarcity of vegetation in the Taklamakan desert, the high variability observed only 

from EVI data in this area might be caused by the variation in soil background property. 
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Table 3. Percentage of mean annual VI variability for 2001–2012 for the XUAR. 

Percentage NDVI SAVI EVI 

0%–10% 77.44 78.91 69.16 

10%–20% 15.93 14.74 18.89 

20%–30% 3.24 2.93 5.67 

>30% 3.39 3.42 6.28 

4.3. Phenological Metric Detection 

Based on the three VI time series, the SOS and EOS over the XUAR are mapped for the period  

2001–2012. Their mean and standard deviation (SD) from the three VI datasets for each vegetation 

type are summarized in Table 4. The standard deviation of SOS ranges from 11.9 days to 37.6 days. 

The standard deviation of EOS ranges from 13.3 days to 47.0 days. The EOS from NDVI shows 

greater deviation than SAVI and EVI except for evergreen needleleaf forest. The SOS from NDVI 

time series show greater deviation than SAVI and EVI except for cropland. 

Table 4. Mean day of year (DOY) and standard deviation (SD) of phenological metrics 

detected from VIs for 2001–2012 for the XUAR. 

 
SOSNDVI SOSSAVI SOSEVI EOSNDVI EOSSAVI EOSEVI 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Evergreen needleleaf forest 117.4 29.1 112.8 21.4 113.0 24.4 277.3 26.3 284.9 20.2 306.3 28.0 

Mixed forest 127.0 26.6 119.5 15.0 114.9 15.8 274.3 28.1 286.8 15.2 311.3 19.3 

Open shrubland 142.2 27.6 137.7 22.7 135.6 20.9 308.0 35.7 315.1 28.0 324.1 28.0 

Woody savannas 120.2 37.6 113.8 24.2 112.5 26.8 288.4 45.1 294.7 24.1 310.6 26.6 

Savannas 125.6 32.4  120.7 16.3 120.9 17.4 297.7 47.0 298.0 14.4 307.6 14.3 

Grassland  117.7 35.4 115.9 28.0 117.1 29.0 311.2 42.6 311.6 29.3 314.4 28.2 

Cropland 139.1 21.9 133.3 20.7 132.5 22.1 296.5 19.6 306.4 18.0 316.1 17.1 

Cropland/natural vegetation mosaic 124.6 17.8 116.7 11.9 111.6 12.0 285.9 25.9 298.8 16.4 314.0 13.3 

Histograms of the two phenology metrics for different vegetation types are illustrated in Figure 8. 

Despit the shift of peak, the histogram distributions of SOS and EOS from three VIs are in agreement. 

Obvious bimodal distributions are displayed for the SOS of grassland, SOS of cropland and EOS of 

cropland. The bimodal distributions of SOS and EOS of cropland indicate different phenological 

patterns of different crop types. Due to the influence of bare soil on vegetation index [47], grasslands 

of different densities may show inconsistent green-up behaviours, which causes the bimodal 

distributions of SOS. Discrepancies from three VIs are observed for the SOS of grassland, EOS of 

evergreen needleleaf forest and EOS of grassland. For grassland, SOSNDVI has a large peak and 

secondary peak at DOY80 and DOY110, while SOSNDVI has two similar peaks. Similar discrepancies 

are observed from EOS of grassland. For evergreen needleleaf forest, EOSEVI has bimodal distribution 

compared to unimodel distribution of EOSNDVI and EOSEVI. The values distributed near the tail of the 

histogram indicate overestimations in the EOSNDVI of evergreen needleleaf forest, mixed forest open 

shrubland, woody savanna, savanna and grassland. 
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Figure 8. Histograms of the two phenological metrics detected from VI time series for 

each vegetation type for 2001–2012 for the XUAR. The red line denotes NDVI, the black 

line denotes SAVI and the yellow line denotes EVI. 

5. Discussion 

5.1. VI Variability 

The existence of cloud causes a drastic decrease of VI values. In particular, NDVI is more sensitive 

to atmopheric effects than EVI. The contamination of residual clouds leads to the large variation in 

NDVI values as we can see in Figure 5. Though we used the cloud mask to reduce cloud effects on  

per-pixel surface reflectance, there are still uncertaities in the MODIS cloud mask [48,49]. The 

inclusion of cloud and aerosol corrupted EVI has been found to misidentify the vegetation changing 

trend [50]. Therefore, the usage of quality assessment information for atmospheric and cloud screening 

is essential for the reliability of vegetation change detection results. Additional masking may be 

required to exclude contaminated pixels [51]. These indicate that uncertainties can be caused when 

using NDVI time series for vegetation variability detection. 

High VI variability (>30%) can be observed in mountain areas (Figure 7). This might be  

caused by the highly variable meteorological conditions in this mountainous environment. Medium VI 

variability (10%–30%) exists in several grassland-dominated areas, as well as in the agricultural  

areas in the northern XUAR. The variability here might be caused by a mixture of small crop fields 
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and changing agricultural practices. The zones with semi-arid to arid conditions in the Taklamankan 

desert and Gurbantunggut desert show very stable mean annual VI within the observed time period. In 

particular, EVI exhibits more variability than NDVI and SAVI for the sparsely vegetated areas. For 

these areas, the soil background is mainly composed of dry sand. NDVI has been reported to be 

susceptible to the spectral influence of soil texture and moisture in gaps between vegetation for desert 

grass and desert shrubland [52,53]. The high annual variability detected from EVI may be related to 

variation of soil background at low VI levels. 

5.2. Phenological Metric Detection 

Using the curve-fitting method of TIMESAT with the same the seasonal amplitude thresold (30%), 

different dynamic ranges of VIs can cause a shift of phenology detection results, as we can see in Figure 

8. Despite the uncertainty of VI time series, the application of TIMESAT achieved consistent results 

from the three VIs for most vegetation types. Agreeing with past studies [12,30], the three VIs in this 

study proved their effectiveness for phenological metric detection in dryland enviroment. 

However, there are still some discrepencies in phenology detection results. The uncertainty of EOS 

detected from MODIS VIs in our study is higher than SOS (Table 4), which is in agreement with 

previous studies [47,54]. The largest deviation of phenological metrics and the overestimation of EOS 

are observed from NDVI time series. Due to its sensitivity to soil background and atmospheric 

conditions, it exhibited high levels of variation. The disagreement among histogram distributions of 

phenological metrics from the three VIs can be caused by their different sensitivities to the variation of 

soil background. Similarly,Walker et al. [16] revealed the spatial variability of land surface phenology 

extracted from NDVI is higher than EVI in dryland areas in Arizona, USA. The discrepancy of the 

peak greenness from EVI and NDVI has been attributed to their different sensitivities to the 

physiological characteristics of vegetation types [16]. 

In order to better assess the suitablity of VIs for phenological detection in dryland enviroment,  

more detailed information is needed. Verification of satellite-extracted phenology metrics with CO2 

measurements of flux tower footprint or in situ VI measurements will be helpful to our understanding of 

ecosystem processes over arid lands [55,56]. The inaccessibility of in situ data precludes further analysis 

in our study. In addition, we only compared three commonly used VIs in our analysis. The effectiveness 

of other vegetation indices such as EVI2, MSAVI and OSAVI and combined usage of these indices for 

vegetation dynamic investigation in arid and semi-arid dryland can be addressed in further studies. 

6. Conclusions 

Three vegetation indices derived from MODIS data were assessed in vegetation dynamic 

monitoring in the XUAR, China. The annual mean VI images exhibited similar spatial patterns of 

vegetation conditions with varying magnitudes. NDVI, SAVI and EVI were all related to each other with 

varying correlation strengths among different vegetation types. The relationship between NDVI, SAVI 

and EVI were weakest with Pearson’s correlation coefficients ranging from 0.29 to 0.66. In general, EVI 

exhibited high uncertainties in sparsely vegetated land and forest areas due to the disturbance of blue 

band reflectance. The EVI time-series captured the largest inter-annual variability for the XUAR from 

2001 to 2012, with 6.28% of the entire area showing variability higher than 30%. The start of the season 
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and end of the season generated from the three VIs were consistent for most vegetation types. The largest 

deviations of phenological metrics (37.6 days in SOS and 47.0 days in EOS) were derived from NDVI 

time series, suggesting the index’s sensitivity to soil background and atmospheric effects. Discrepancies 

of the histogram distributions of phenology metrics from different VIs further revealed their different 

sensitivities to variation of soil background and physiological development of vegetation. 

The results described here demonstrate the general distinctions of vegetation dynamics assessed 

with three vegetation indices generated from the 500 m MODIS data, and suggest the suitability of 

vegetation indices for large area vegetation dynamic monitoring over arid and semi-arid lands. Future 

research can combine satellite data and climate data to investigate inter-annual variability in vegetation 

dynamics and provide insights into the impact of changing climate on dryland ecosystems. 
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