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Abstract: The main objective of the present study was to apply a slope-based spectral 

method to both dry and fresh pasture vegetation. Differences in eight spectral ranges were 

identified across the near infrared-shortwave infrared (NIR-SWIR) that were indicative of 

changes in chemical properties. Slopes across these ranges were calculated and a partial 

least squares (PLS) analytical model was constructed for the slopes vs. crude protein (CP) 

and neutral detergent fiber (NDF) contents. Different datasets with different numbers of 

fresh/dry samples were constructed to predict CP and NDF contents. When using a  

mixed-sample dataset with dry-to-fresh ratios of 85%:15% and 75%:25%, the correlations of 

CP (R2 = 0.95, in both) and NDF (R2 = 0.84 and 0.82, respectively) were almost as high as 

when using only dry samples (0.97 and 0.85, respectively). Furthermore, satisfactory 

correlations were obtained with a dry-to-fresh ratio of 50%:50% for CP (R2 = 0.92). The 

OPEN ACCESS



Remote Sens. 2015, 7 8046 

 

results of our study are especially encouraging because CP and NDF contents could be 

predicted even though some of the selected spectral regions were directly affected by 

atmospheric water vapor or water in the plants. 

Keywords: reflectance spectroscopy; spectral slope; pasture quality; crude protein (CP); 

neutral detergent fiber (NDF); fresh vegetation 

 

1. Introduction 

The quality of the plants consumed by livestock in pastures is an important factor for their 

productivity. The food’s potential quality is assessed by indicators such as crude protein (CP) 

concentration, cell-wall components (NDF—neutral detergent fiber and ADF—acid detergent fiber) and 

digestibility. The most widely accepted method for assessing these indicators is chemical analysis [1,2] 

which, although accurate, is both time-consuming and expensive.  

Reflectance spectroscopy of solid particles in the visible-near infrared-shortwave infrared  

(VIS-NIR-SWIR) spectral range is a well-known technique for the rapid and quantitative assessment 

of chemical composition in many materials [3–5]. This is a rapid, cost-effective, nonchemical and 

nondestructive technique and for the most part, no sample preparation is needed. In general, vegetation 

spectra absorb in the VIS range (350–780 nm) due to photosynthetic pigments (centered near 490 and 

680 nm), whereas absorption in the NIR (780–1100 nm) and SWIR (1100–2500 nm) domains is 

associated with water, protein, oil, lignin, starch, sugar, nitrogen and cellulose. For example,  

protein-associated N-H and C-H bonds absorb at 1510, 1980, 2060, 2130, 2180, 2300 nm and at 1690, 

2240, 2350 nm, respectively [6–9]. 

The synergistic use of VIS-NIR-SWIR reflectance with multivariate statistical methods (such as 

partial least squares (PLS) regression and principle component analysis) is very useful for extracting 

quantitative information on the composition and properties of materials such as agricultural products, 

soils, dust, polymers and drugs (e.g., [10–16]). Remote sensing of foliar biochemicals was developed in 

the late 1970s [17–20], mainly using methods from laboratory-based NIR spectroscopy (NIRS) [21,22]. 

Today, NIRS is widely used in the laboratory to identify the chemical composition of plants [9,23–29]. 

One of the potential applications of NIRS is the analysis of fresh plant material (e.g., leaves, whole 

plants) without the need for drying or grinding [30]. However, the water content of vegetation poses a 

major challenge to extending NIRS techniques from the laboratory scale where a dried leaf is under 

analysis, to analyses in the field or canopy. Indeed, the advantage of conducting spectral measurements 

on dried, ground vegetation samples lies in the fact that water has a broad absorption range centered 

around 1400 and 1940 nm that masks other absorption features associated with constituents such as 

nitrogen, lignin, sugar and cellulose [6]. Cozzolino [30] presents and discusses some of the most recent 

applications of NIR spectroscopy without the need for drying or grinding. He reports the successful 

prediction of components such as dry matter, nitrogen, oil and protein in fresh samples, as well as 

promising results for internal and external quality assessment of mandarin using a portable NIR 

spectrometer and in-field detection of plant diseases. Predictions of protein content in fresh alfalfa using 

NIRS have been reported by Petisco et al. [31] (r2 = 0.68), Cozzolino and Labandera [32] (r2 = 0.86), and 
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several others [33,34]. Protein has also been detected in other types of vegetation [35–37]. However, all 

of these studies made use of the spectrometer's entire spectral range and models were calibrated using 

fresh vegetation datasets. 

In a previous study [28], we found that when using slopes across selected spectral ranges of dried 

and ground vegetation, it was possible to evaluate several pasture quality indicators with high 

accuracy, such as CP, NDF and metabolic energy concentration. However, that study was restricted to 

estimates based only on the spectra of dry samples; adjusting the method to fresh vegetation would 

enable further in-situ analyses, and this was the aim of the present study. Our main objective was to 

extend the spectral slope method to both dry and fresh vegetation. Importantly, the main criterion for 

spectral slope selection across the entire spectral range was similar spectral behavior between fresh and 

dry samples, thus avoiding the impact of water absorbance and reducing the amount of data collected 

by the hyperspectral instrument. 

2. Materials and Methods 

2.1. Study Area 

The study area was Patish basin (31°22'N, 34°40'E), a semiarid region located in the northern 

Negev Desert of Israel spanning an area of 230 km2. One of its main land uses is as a natural pasture; 

others include grazing on stubble wheat fields after harvesting, bare loess soil plains and planted 

forest. The climate is mostly Mediterranean, with rainfall from November to April averaging  

200–300 mm per year [38]. Average daily minimum winter temperatures are 6 °C–8 °C and average 

daily maximum summer temperatures are 32 °C–34 °C [39]. The area is hilly, with an average height 

of 200 m above sea level. The soil on the slopes is 1-m deep loess with a sandy loam texture, 

consisting of 14% clay, 27% silt and 59% sand (USA classification: Calcixerollic, Xerochrepts) on 

Eocene bedrock [40].  

In these shrublands, the gentle slopes are characterized by a continuous matrix of flat soil surface 

covered with a biological soil crust consisting of bacteria, cyanobacteria, algae, moss and lichen [41]. 

This crusted intershrub matrix is interspersed with patches associated with shrubs and other large 

perennials. The natural vegetation includes woody shrubs (<1 m high) and annuals. The dominant 

perennial species in the research area are the shrubs Atractylis serratuloides (Asteraceae), Noaea 

mucronata (Chenopodiaceae) and Thymelaea hirsuta (Thymelaeaceae), the geophyte Asphodelus ramosus 

(Liliaceae), and Tamarix negevensis. The main annual species are Reboudia pinnata (Brassicaceae), 

Avena sativa (Poaceae), Stipa capensis (Poaceae), Hordeum glaucum (Poaceae), Bromus scoparius, 

Crepis sancta, Chrysanthemum coronarium, Scolymus maculatus, Senecio flavus, Atriplex, and 

Centaurea iberica [42]. The Patish basin site is moderately grazed by Bedouin-owned herds of Awassi 

sheep. The grazing season is from mid-February to mid-May, when the annuals are at their peak of growth; 

it ends in mid-spring (March–May), when they are subjected to dry conditions [43]. 

2.2. Data Collection and Spectral Measurements 

The dataset used in this study included fresh and dry pasture samples. The fresh samples were 

collected at three sites. Two sites were natural pasture, at Gilat Research Center (31°20'36.43"N, 
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34°40'20.04"E) and Shaked Park (31°16'12"N, 34°39'2.75"E), both long-term ecological research 

(LTER) sites in the study area; 36 fresh samples were collected on 12 March 2013, after the peak of 

the rainy season and before the flocks went out to pasture. A third site was selected along the herds’ 

grazing path and 16 samples of fresh and dry vegetation were collected before the rainy season, on  

5 November 2012. The entire plant is eaten by the livestock, and therefore the samples included all 

plant parts-grains, leaves and stems. The samples collected into paper bags to keep them fresh until the 

end of the collection day, when spectral measurements were taken. The reflectance spectra of the fresh 

samples were measured in the laboratory using an Analytical Spectral Devices (ASD; Boulder, CO, 

USA) Fieldspec-Pro JR Spectroradiometer furnished with a contact probe. The ASD measures spectra 

in 2151 bands at 1-nm intervals across the VIS-NIR-SWIR (350–1000–2500 nm) region. The spectra 

were measured by direct contact of the probe to the different parts of the vegetation sample, i.e., 

leaves, stems and grains (where present). The spectra are presented against a white Halon reflectance 

panel reference (Spectralon, Labsphere Inc.). Each spectral measurement represented an average of 40 

spectral readings and the spectra of three replicates for each vegetation sample were averaged. The 

three replicate measurements were taken from different parts of the plant. Then the vegetation samples 

were oven-dried for 72 h at 60 °C, ground to pass through a 1-mm sieve, and subjected to chemical 

analysis for CP and NDF. 

The dry sample data consisted of 235 vegetation samples from the pasture area that were obtained 

from the Agricultural Research Organization (ARO) archives at the Volcani Center, Israel (courtesy of 

Serge Yan Landau [26,44,45]). The samples had been collected during the grazing season in the years 

2002–2011 from the natural pasture area in Patish basin and from sown pasture in experimental farms 

(Migda and Karei-Deshe’, located in the northern Negev and eastern Galilee, respectively) in  

Israel. The samples were collected from the vegetative bulk of each species, oven-dried for 72 h at  

60 °C and ground to pass through a 1-mm sieve [26]. Then spectral measurements and chemical 

analysis of CP and NDF were performed. The samples were scanned using a Foss NIRS system model 

5000 NIR reflectance monochromator spectrometer (Hoganas, Sweden) at 1104–2492 nm in 2-nm 

increments (700 bands), set to collect NIR spectra as log (1/R) where R is the reflectance [44]. Each 

spectral measurement represented an average of 25 spectral readings. The spectra of two replicates for 

each vegetation sample were averaged. 

2.3. Chemical Reference 

We used % CP and % NDF as indicators of pasture quality. The chemical analysis for CP was 

performed by automated Kjeldahl method and for NDF according to Goering and Van Soest [1,27]. Protein 

content was determined by acid digestion [46]. Neutral detergent fiber (NDF) was measured using a 

detergent that solubilizes the proteins and sodium sulfite and helps remove some of the nitrogenous matter; 

EDTA was used to chelate calcium and remove pectin at boiling temperatures; triethylene glycol was used 

to remove non-fibrous matter from concentrate feeds, and heat-stable amylase was used to remove starch. 

Amylase was added twice (once during reflux and once during filtration) to minimize filtering difficulties. 

Heat-stable amylases were used in hot solutions to inactivate potential contaminating enzymes that might 

degrade fibrous constituents. NDF content was determined as {((crucible weight + fiber) − crucible weight 

w/o fiber)/(sample weight × lab dm as decimal)} × 100 [47]. 
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2.4. Slope Calculation and Data Analyses 

To simplify the spectral signals, thereby ensuring stable calibration, and to improve the predictive 

ability of the final model, we applied different pretreatments to the spectral domain. The spectral data 

were considered in reflectance and absorbance (−log10R). In addition, continuum removal (CR) spectra 

were calculated. The commonly used CR technique [48–51] normalizes reflectance spectra and 

enhances spectral differences, enabling the distinction and highlighting of individual absorption 

features from a baseline. In this algorithm, the monotonous spectra are characterized by a reflectance 

signal value of one, and absorption features are presented relative to a continuum of interpolated 

reflectance values that connect the two absorption edges. Then, slopes are calculated with the 

following equation: 

m = 
y2 y1

x2 x1
 (1)

where the x axis represents wavelength and the y axis represents CR reflectance. 

To develop a model to assess pasture quality, we first used CR spectra to visually inspect the 

spectral behavior vs. chemical information on the vegetation. Then, the differences in spectral behavior 

as a function of wavelength, which are indicative of changes in chemical properties, were identified, 

yielding eight spectral ranges (Table 1). The slopes across these spectral ranges were then calculated. 

Importantly, the main criterion for spectral slope selection across the entire spectral range was similar 

spectral behavior between the fresh and dry samples. 

2.5. Data Processing and Quantitative Analyses 

The ASD spectral data (1501 bands between 1000 and 2500 nm) of the fresh vegetation were 

resampled to match the Foss NIRS system model 5000 (700 bands between 1104 and 2492 nm) and 

the slopes were then calculated. PLS regression analysis was used with the sloped base model to 

predict the CP and NDF values of fresh vegetation. 

Selection of a suitable calibration set is of critical importance in any PLS analysis. The overall goal 

is to meet a number of requirements: (i) it must be representative of the future population from which 

the new X (spectral) measurements will be sampled; (ii) it should cover all possible variations in the 

measurement conditions that might impact a multivariate calibration; (iii) measuring conditions should 

be as similar as possible; (iv) it must span the X (spectral) space, as well as the Y (reference) dynamic 

space as widely and representatively as possible [52].  

We used the most popular “full cross-validation” method where only one sample at a time is kept 

out of the calibration and used for prediction (also termed the “leave one sample out procedure”). The 

dataset was split into two independent subsets: a calibration set using different subdivisions of 

samples, and an external test set to assess the accuracy of the constructed model. In both, dry and fresh 

vegetation was combined into one dataset. Since there were two populations and slopes that generally 

described both subsets (dry and fresh), the impact of different numbers of samples in the calibration set 

on the prediction of CP and NDF was investigated. For the calibration dataset, the following 

subdivisions were tested: 85 vs. 15, 75 vs. 25, 50 vs. 50, 35 vs. 65 (dry vs. fresh sample, respectively). 

Each PLS model was run and tested on different numbers of dry and fresh samples based on the main 
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described criterion. An external test set comprised of 5 to 12 fresh samples and 20 to 35 dry samples 

was used to examine the model's predictive ability.  

2.6. PLS Data Analyses 

The PLS regression is generally based on latent variable (LV) decomposition of two blocks of 

variables, the X and Y matrices, which contain spectral data and any reference chemical variable, 

respectively. The objective of the regression is to locate small numbers of PLS components that 

efficiently predict Y when X is used [52]. PLS regression has advantages over other regression 

techniques, such as stepwise multiple linear regression and principal component regression. It not only 

works with multicollinear variables, but also when the number of independent variables is greater than 

the number of observations, which is generally the case for NIRS analyses [53]. 

The ultimate goal of multivariate regression analysis is to create a calibration equation (or series of 

equations) which, when applied to data of “unknown” samples measured in the same manner, will 

accurately predict the quantities of the constituents of interest [52]. The multivariate calibration models 

were generated using PLS regression, with the goal of defining a relationship between the eight 

spectral slopes in the NIR-SWIR spectral range of pasture samples and each chemical reference (i.e., 

CP and NDF): 

Y=A	+	A1X1 + A2X2 + A3X3 + … + AnXn (2) 

where Y is the chemical reference of a sample, A is an empirical coefficient, and Xi is the spectral slope in 

the ith wavelength region. 

Statistical parameters for the calibration model were calculated by leave-one-out cross validation 

(only one sample at a time is kept out of the calibration and used for prediction). The performance and 

relevance of the PLS regression models were further evaluated by computing different statistics. The 

difference between the predicted values and measured chemical reference values was expressed as the 

root mean square error of prediction (RMSEP) or the root mean square error of cross validation 

(RMSECV). RMSEP is defined as the square root of the average of the squared differences between 

the predicted and measured values of the validation objects [52]: 

y

pm

n

XX
RMSEP  


2)(

 (3) 

where Xm is the chemically measured value of a sample, Xp is the predicted value of the sample based 

on the spectral analysis, and nv is the number of samples in the calibration stage. 

In addition, we used the ratio of prediction to deviation (RPD), which is defined as the ratio of the 

standard deviation of the reference values (e.g., protein) to the RMSECV or RMSEP. An RPD value below 

1.5 was taken to indicate that the model is unusable, a value between 1.5 and 2.0 that it has the potential to 

distinguish between high and low values, and between 2.0 and 2.5, quantitative prediction is possible. RPD 

values above 2.5 were considered to indicate excellent predictive capability of the model [54].  

2.7. Calculating the Water-Absorption Area  

One of the most spectrally pronounced factors, in addition to leaf structure, foliar pigments, 

lignocellulose absorbance, etc., is the total amount of water present in the leaf, which affects the 
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degree to which incident solar energy in the NIR-SWIR region is absorbed by vegetation [55]. In this 

regard, calculating the area under the curve (mathematically known as the definite integral) can be a 

good indicator of water concentration in vegetation. First, two maximum points of the absorption 

shoulders (x1 , y1 and x2 , y2; Figure 1) were identified. Then, the coefficients of the straight-line 

equation that is tangent at these points were calculated: 

a = (y2 − y1)/(x2 − x1), b = y1 − ax (4)

Finally, the area between the straight line and the absorption line was calculated (Figure 1) by:  

Total area = ∑  (5)

where x1 − x2 is the spectral range of the absorption water, yL is the CR value at x(i) of the straight line 

and yC is the CR value at x(i) of the absorption line. 

 
Figure 1. Demonstration of absorption area calculation.  

3. Results and Discussion 

3.1. Chemical Reference: CP, NDF 

Figure 2 shows the distribution of CP and NDF in dry and fresh vegetation. The range of CP values 

in the dry vegetation was wider than that in the fresh vegetation, whereas the range of NDF values was 

similar. The range of CP and NDF values in the fresh vegetation was 3.4%–17.2% (48 samples, 

average 9.5% and STD (standard deviation) 3.9%), and 27%–71% (43 samples, average 51.5% and 

STD 11.8%), respectively. The range of CP and NDF values of the dry vegetation was: 2.5%–32% 

(224 samples, average 9.46% and STD 6.9%), and 28%–76% (232 samples, average 59.4% and STD 

10.9%), respectively. 

3.2. Spectral Slope Analysis 

Figure 3 presents the reflectance (a) and continuum removal (CR) (b) spectra of three fresh 

vegetation samples and three dry vegetation samples with different percentages of CP. The reflectance 

measurements were performed with two spectroradiometers: the Foss NIRS system for the dry samples 

and the ASD Fieldspec-Pro JR for the fresh samples. The baseline of the spectral measurements 

differed between the two spectroradiometers (Figure 3a) due to differences in their illumination 

intensity, physical state of the samples (powdered for dry vs. fresh) and vegetation water content. In 
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contrast, when presented in CR (Figure 3b), the differences between the CR spectral slopes were more 

pronounced than those of the reflectance spectra. On the one hand, the CR spectra emphasize the 

absorption features of the chemical chromophore and on the other, they reduce the physical 

chromophore effect [56]. 

 

Figure 2. Distribution of crude protein (%CP) and neutral detergent fiber (%NDF) 

contents in dry and fresh vegetation. 

Finding a similar change in spectral slope for both dry and fresh vegetation would enable 

overcoming the problem of strong absorbance features that mask chemical chromophores. In  

Figure 3b , c, we show the selection of spectral slopes for dry and fresh vegetation. Changes in slope as 

a function of different CP and NDF contents could be seen in eight spectral ranges: 1748–1764 nm, 

1766–1794 nm, 2070–2088 nm, 2278–2286 nm, 2334–2344 nm, 1940–2226 nm, 2024–2090 nm and 

2090–2160 nm. 

In general, the vegetation spectra at 1440 and 1940 nm exhibit a broad and strong water-absorption 

feature that reduces reflectance [55]. This reduction is especially pronounced for fresh vegetation. In 

dry vegetation, the water absorption no longer conceals the absorption features, such as those at  

1773 nm, and 2330 nm which are caused by organic bonds of plant biochemicals due to the presence 

of proteins, lignin, and cellulose [49]. A detailed description of the main absorbance features of the 

vegetation can be found in Curran [6] and Schwanninger et al. [9]. Note that CR spectra, in contrast to 

reflectance spectra, of both fresh and dry vegetation (Figure 3a,b) exhibit weaker absorption features at 

~2330 nm primarily due to the presence of nitrogen-containing compounds in plants [49]. 

Furthermore, in Figure 3c we show an example of this relationship by zooming in on the  

2334–2344 nm spectral range, where the slope of both fresh and dry vegetation is seen to decrease 

with increasing CP content. In other words, despite the relatively strong absorption features of water, 

the CR spectra in both dry and fresh vegetation generally exhibit similar spectral behavior, even 

though the water-absorption features are much stronger in the latter. 
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Figure 3. (a) Reflectance and (b) continuum removal (CR) spectra of fresh and dry 

vegetation samples with different percentages of crude protein (CP). (c) Zooming in on the 

2334–2344 nm spectral range to demonstrate the changes in slope with changes in CP 

concentration. Note the variability in the slopes across the different percentages of CP in 

the dry and fresh samples. Specifically, as the slope decreases, the CP value increases. 

The distribution of the slopes for the eight spectral ranges is presented in Figure 4. In the upper 

panel, variability is seen in the spectral slopes at 1748–1764 nm, 1766–1794 nm, 2278–2286 nm and 

2334–2344 nm, presumably due to differences in chemical composition and chromophores, which 

differ for each spectral range. The slopes of the dry samples are similar to those of the fresh ones, 

except for the slope calculated for the 1748–1764 nm spectral range. The bottom of Figure 4 shows 

0.00

0.25

0.50

0.75

1.00

1100 1300 1500 1700 1900 2100 2300 2500

R
ef

le
ct

an
ce

a.

b.

0.00

0.25

0.50

0.75

1.00

1100 1300 1500 1700 1900 2100 2300 2500

Wavelength (nm)

1748-
1764nm

1766-1794nm

20
90

-2
16

0n
m

2070-2088nm

22
78

-2
28

6n
m

1940-2226nm

2024-2090nm

R
ef

le
ct

an
ce

 (C
R

)

0.8

1

0.90

1.00

2300 2330 2360

R
ef

le
ct

a
n

ce
 (C

R
)

c.

%CP=3.12

%CP=10.9

%CP=26.1

Slope= 0.006

Slope= 0.004

Slope= 0.001

Dry samples:

%CP=3.38

%CP= 9.63

%CP=15.81

Slope= 0.003

Slope= 0.001

Slope= 0.012

Fresh samples: 2334-2344nm



Remote Sens. 2015, 7 8054 

 

significant variability in the spectral slopes at 2070–2088 nm, 1940–2226 nm, 2024–2090 nm and 

2090–2160 nm due to water content. The spectral slope calculated on the long wavelength side of 

water absorbance at 1940 nm (Figure 3b) can explain the high variability and differences in slope 

values between dry and fresh samples (Figure 3b). Specifically, the strong water absorbance at  

1940 nm leads to a high slope value for fresh vs. dry vegetation (Figure 3c). Note that the range of 

slope values in the spectral ranges 1766–1794, 2278–2286, 2334–2344 is similar for fresh and dry 

vegetation. This presumably allows modeling changes related to the presence of CP and NDF, despite 

the presence of water in the fresh samples. 

 

Figure 4. Slope value distribution of dry (black) and fresh (gray) vegetation for 8  

spectral ranges. 

3.3. PLS Analysis 

Table 1 summarizes the correlation between every specific slope range and the CP and NDF 

contents of fresh vegetation using simple linear regression analyses. Although the correlations were 

not high (for CP: 0.14–0.42 and for NDF: 0.15–0.49), they suggest the possibility of using the slopes 

of several ranges to assess chemical constituents. When all dry and fresh samples were used to 

construct a PLS model, the use of eight slopes as independent variables gave a best-fit model for the 

CP assessment of the fresh samples, and using 7 out of 8 slope ranges (excluding 1940–2226 nm) gave 

a best-fit model for NDF (Table 2, see 85%:15% ratio). For CP, the R2 was 0.96, 0.95 and 0.95, RMSE 
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was 2.34, 2.52 and 1.45 and RPD was 2.50, 2.70 and 4.80 (calibration, validation and prediction on the 

external test set data, respectively). For NDF, the R2 was 0.98, 0.98 and 0.84, RMSE was 7.49, 7.57 

and 4.75 and RPD was 1.68, 1.67 and 2.59 (calibration, validation and prediction on the external test 

set data, respectively). Figures 5 and 6 present the distribution of the respective predicted CP and NDF 

values versus reference values of the external test set samples. The accuracy of the model prediction 

was relatively high. 

Table 1. Correlation between slopes in selected spectral regions and crude protein (CP) 

and neutral detergent fiber (NDF) contents of fresh vegetation. 

CP NDF 

Slope Spectral Range (nm) R2 (n = 48)  R2 (n = 43) 

1748–1764  0.2804 0.1943 

1766–1794  0.193 0.2258 

2070–2088  0.4225 0.276 

2278–2286  0.2415 0.3043 

2334–2344  0.4149 0.4889 

2090–2160  0.2387 0.15 

2024–2090  0.3877 0.2422 

1940–2226  0.1435 0.0884 

 

Figure 5. Crude protein (CP) distribution from predicted (external test data) vs. reference 

values of fresh and dry vegetation using partial least squares (PLS) model. 
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Figure 6. Neutral detergent fiber (NDF) distribution from predicted (external test data) vs. 

reference values of fresh and dry vegetation using partial least squares (PLS) model. 

A much clearer picture of spectroscopic pasture-quality changes compared to the original 

reflectance (Figure 3), especially their importance for the calibration, was obtained from a score plot of 

samples from the PLS model for CP (Figure 7). To assess CP and NDF, the first three and two, 

respectively, LV components in the PLS model explained 100% of the X variance (slope spectra), and 

83% (for CP) and 98% (for NDF) of the Y variance (chemical components). This indicated that most 

of the spectral variation in the eight selected spectral domains is related to the CP, NDF and water 

components which were modeled by PLS. Furthermore, a score plot of samples from PLS modeling 

demonstrated the good correlation between slope spectra and chemical constituents (CP and NDF) 

with an increase from the top down. The score plot for the CP model (Figure 7) indicated that a 

significant part of the spectral variations observed in the dry and fresh samples are indeed related to 

the protein, as predicted by the PLS model. There was an increasing trend in CP content among 

samples from the top down (Figure 7) following a slight diagonal, presumably due to the difference in 

water content. To further investigate this assumption, we calculated the total absorption area between 

1838 and 2238 nm (the spectral range between the shoulders of the absorption peak of water at  

1940 nm), used as an indicator of water content in materials. 

Figure 8 presents the absorption area of two dry samples with similar CP content (see Figure 7a) and 

two fresh samples with similar CP content (see Figure 7c). The difference in water content between the 

dry and fresh samples is remarkable (Figure 8, right), as are the differences in water content between the 

two dry samples and between the two fresh samples (Figure 8, left). The calculated results of the total 

area of water absorption were uploaded into the score plot and are presented in Figure 9. When moving 

from left to right on the plot, there is an increase in water content among samples. The top down and 

slightly diagonal tendency of changing CP content and right to left change in the water content occurred 

in all three groups of vegetation: dry, partially dry and fresh (Figures 7 and 9). The partially dry samples 

were collected in November, before the rainy season, at Nachal Patish basin, and are therefore located 

between the dry and fresh samples on the plot. In this context, Figures 7 and 9 reflect the fact that, 
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despite the original reflectance containing high water absorption, the LV components are direct 

approximations of the pure chemical (CP, NDF, water) [57,58], influencing the calibration. Importantly, 

for fresh vegetation, slopes in the spectral ranges 2070–2088 nm and 2334–2344 nm (Table 1) are 

relatively sensitive to increasing/decreasing CP/NDF amounts relative to the rest of the calculated slopes. 

  

Figure 7. Score plot for the partial least squares (PLS) model for crude protein (CP) using 

eight slopes. Numbers next to gray circles represent the protein values (reference). Black 

circles indicate two specific dry samples (177 and 225) and two specific fresh samples  

(F-1, F-2). Arrows indicate the change from top to bottom in protein content measured in 

the samples. (a) Zoom in on dry samples, (b) Partially fresh samples, (c) Zoom in on  

fresh samples. 
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Figure 8. Continuum removal (CR) of four samples to demonstrate the difference in 

absorption area between the dried and fresh samples. 

 

Figure 9. Result of uploading the total area absorption into the score plot of the partial 

least squares (PLS) model for crude protein (CP). Numbers next to gray circles represent 

the total area of water absorption. (a) Zoom in on dry samples, (b) Zoom in on partially 

fresh samples, (c) Zoom in on fresh samples. 
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Table 2 presents the impact of using different numbers of samples in the calibration and validation 

sets on the prediction of CP and NDF. When only fresh samples were used to construct the model 

(Table 2, 100% fresh samples), the accuracy of the CP and NDF predictions was low (i.e., not 

applicable for CP and R2 = 0.56 for NDF). On the other hand, when using only dry samples, the 

accuracy of the estimates for dry samples only was very high (Table 2, 100% dried samples). To 

identify the required threshold ratio to predict CP and NDF content in fresh vegetation, as mentioned 

in section 2.5, we reduced the original proportion of the dried samples from 85% to 75%, 50% and 

35%, and PLS regression models were constructed (Table 2). In general, as the number of dry samples 

decreased, the R2, slope and RPD decreased, whereas the RMSE increased. We selected only the fresh 

samples from the prediction dataset and ran a simple regression analysis between the predicted and 

reference values to compare the results of the combined model predictions as might be obtained in 

future in-situ measurements. These results are presented in Figure 10. As the proportion of dry samples 

increased in the dataset, the total accuracy of the model improved. When we consider both these 

regression results (Figure 10) and RPD values (Table 2), we conclude that the threshold for 

satisfactory prediction of CP and NDF content of fresh vegetation requires 50% : 50% and 75% : 25% 

dry-to-fresh vegetation, respectively. 

Table 2. Partial least squares (PLS) regression model results of different ratios of dry to 

fresh vegetation samples and predicted crude protein (CP) and neutral detergent fiber 

(NDF) contents. 

CP Model Statistical Characteristics NDF Model Statistical Characteristics 

Calibration Validation Prediction Calibration Validation Prediction 

100% Dry Samples 

Total dry samples 198 198 26 197 197 35 

Slope 0.95 0.94 0.99 0.96 0.96 0.98 

Offset 0.34 0.36 -0.15 1.56 1.60 0.32 

RMSE 1.76 1.82 1.33 6.12 6.17 4.69 

RPD 3.74 3.62 5.92 1.96 1.94 2.72 

R2 0.98 0.97 0.97 0.99 0.99 0.85 

85%:15% (Dry/Fresh Samples) 

Total dry samples 198 198 26 197 197 35 

Total fresh samples 36 36 12 32 32 11 

Slope 0.91 0.90 1.01 0.90 0.90 0.95 

Offset 0.55 0.64 -0.55 4.98 5.10 2.63 

RMSE 2.34 2.52 1.45 7.49 7.57 4.75 

RPD 2.50 2.70 4.80 1.68 1.67 2.59 

R2 0.96 0.95 0.95 0.98 0.98 0.84 

75%:25% (Dry/Fresh Samples) 

Total dry samples 122 122 23 113 113 32 

Total fresh samples 38 38 10 31 31 11 

Slope 0.90 0.89 1.01 0.88 0.87 0.95 

Offset 0.62 0.75 -0.78 5.78 6.01 2.60 

RMSE 2.63 2.82 1.26 8.18 8.32 4.63 

RPD 2.43 2.27 5.15 1.59 1.57 2.49 

R2 0.95 0.94 0.95 0.98 0.97 0.82 
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Table 2. Cont. 

CP Model Statistical Characteristics NDF Model Statistical Characteristics 

Calibration Validation Prediction Calibration Validation Prediction 

50%:50% (Dry/Fresh Samples) 

Total dry samples 42 42 10 43 43 10 

Total fresh samples 38 38 10 32 32 10 

Slope 0.89 0.86 0.92 0.78 0.77 0.97 

Offset 0.64 0.99 0.43 11.2 11.7 3.01 

RMSE 2.74 3.19 1.75 8.9 9.2 8.3 

RPD 2.18 1.89 3.74 1.42 1.39 1.63 

R2 0.94 0.92 0.92 0.97 0.97 0.51 

35%:65% (Dry/Fresh Samples) 

Total dry samples 20 20 5 22 22 5 

Total fresh samples 38 38 10 31 31 10 

Slope 0.89 0.86 0.73 0.69 0.67 0.81 

Offset 0.67 1.05 1.73 15.7 16.6 11.1 

RMSE 2.88 3.36 2.14 9.69 9.99 8.43 

RPD 2.15 1.87 1.97 1.27 1.23 1.55 

R2 0.94 0.91 0.72 0.96 0.96 0.50 

100% Fresh Samples 

Total fresh samples 38 38 10 33 33 10 

Slope 0.4 0.38 -0.08 0.47 0.48 0.58 

Offset 5.32 5.54 11.7 25.47 25.6 23.9 

RMSE 3.18 3.3 4.2 11.5 12.2 8.04 

RPD 0.87 0.84 0.35 0.99 1.00 1.20 

R2 0.89 0.88 NA 0.95 0.94 0.56 

 
Figure 10. Regression between the reference and prediction for fresh samples only from 

the external dataset. R2 decreases with number of dried samples.  

A much clearer picture of spectral slope vs. changes in CP content is obtained from a plot of 

regression coefficients vs. spectral slope for each PLS model (Figure 11). Three slopes were found to 

be significant for all models: 2070–2088 nm, 2024–2090 nm and 2090–2160 nm. Note that these three 

slope ranges are fully within the wide water absorbance around 1940 nm in the CR reflectance  
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(Figure 3b). This strengthens our assumption that it possible to predict CP and NDF of fresh vegetation 

using mixed spectral information of dried and fresh vegetation samples. 

Importantly, to compare the accuracy of the spectral slope approach, PLS analyses were run on the 

entire spectral range. To that end, reflectance values were considered as first-derivative values and the 

PLS model was run using the same calibration samples as the spectral slope models. Although the 

overall accuracy of the constructed model comprised of 85% dry vegetation and 15% fresh vegetation 

was excellent (R2 = 0.95, slope = 0.88, RPD = 2.7), the model prediction for the external validation 

dataset was not satisfactory for fresh samples (R2 = 0.85 for the whole external dataset, but R2 = 0.032 

when dry samples were excluded). In contrast, the spectral slope approach generated comparatively 

high prediction accuracy, albeit less so for fresh samples (using a similar comparison, Figure 10).  

 

Figure 11. Regression coefficients of partial least squares (PLS) crude protein (CP) model 

for different ratios of dry to fresh vegetation samples (filled rectangle indicates less 

important slope).  

Many studies have used spectral reflectance data collected both in situ at the field level (fresh) and 

in the laboratory (dry) to measure forage quality, using chemical components such as NDF, ADF, 

digestible energy, nitrogen and protein. Guo et al. [59] used six known chemical absorption regions, 

and showed that at the field level, a prediction of protein in mixed grass species is possible (R2 = 0.63). 

However, the relationship between canopy reflectance and the other forage quality variables was not 

very strong. Starks et al. [60] found that calibration equations could be developed from reflectance 

data collected from live standing grass canopies to predict nitrogen (R2 = 0.76), NDF (R2 = 0.63) and 

ADF (R2 = 0.69). Zhao et al. [61] compared several different methods of data analysis to predict 

forage quality using canopy reflectance measurements. Their results indicated the potential of using 

canopy reflectance data to estimate forage quality variables of warm-season grass pastures  

(R2 = 0.27–0.72 for NDF and 0.67–0.74 for CP). Furthermore, Adjorlolo et al. [62] found that using a 

spectral resampling technique for a few strategically selected band centers of known absorption or 

reflectance features is sufficient to estimate forage nutrients. Their results indicated prediction 

accuracies for CP content ranging from R2 = 0.51 to 0.62. 
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Our study, based on the spectral slope approach, indicated accurate prediction of CP and NDF (R2 

values of 0.92–0.95 and 0.82–0.84, respectively; Table 2). Therefore, we suggest further testing this 

method for future field studies. 

4. Conclusion 

In this study, we hypothesized that changes in the spectral slopes of dried/ground and fresh vegetation 

samples can be used for the quantitative assessment of plant composition of fresh vegetation. Eight 

spectral regions across the NIR-SWIR region were identified: 1748–1764 nm, 1766–1794 nm,  

1940–2226 nm, 2070–2088 nm, 2024–2090 nm 2090–2160 nm, 2278–2286 nm and 2334–2344 nm. 

Slopes across these ranges were calculated and PLS analytical models were constructed for the slopes vs. 

CP and NDF contents. When using a mixed-sample dataset with a dry-to-fresh vegetation ratio of  

85%–15%, the correlation was almost as high as when using only dry samples. Furthermore, we found 

that when the ratios between dry and fresh samples are 50%:50% and 75%:25%, a satisfactory prediction 

of CP and NDF content, respectively, in fresh vegetation was obtained. 

Importantly, it was also found possible to combine spectral measurements from different 

spectroradiometers—the Foss NIRS system and ASD Fieldspec-Pro JR (laboratory and field spectrometer, 

respectively). The ability to use mixed vegetation samples and different spectrometers in PLS 

modeling is important, because the spectral information acquired using different instruments and 

chemical references from dried plants are available, and all that remains is to apply the proposed 

method to fresh vegetation samples.  

Finally, the results of our study are especially encouraging because even though some of the 

selected spectral regions are directly affected by atmospheric water vapor or water in the plants, it is 

still possible to predict CP and NDF contents. Therefore, the slope method can be further adapted to 

evaluate the quality of various types of vegetation in in-situ analyses of pasture areas using a field 

spectrometer. To that end, future in-situ studies that consider field canopy reflectance, passive light 

source (sunlight) and mixed pixels of vegetation and soil are warranted. 
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