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Abstract: Methods using extensive field data and three-season Landsat TM and PALSAR 

imagery were developed to map wetland type and identify potential wetland stressors  

(i.e., adjacent land use) for the United States and Canadian Laurentian coastal Great Lakes. 

The mapped area included the coastline to 10 km inland to capture the region hydrologically 

connected to the Great Lakes. Maps were developed in cooperation with the overarching 

Great Lakes Consortium plan to provide a comprehensive regional baseline map suitable for 

coastal wetland assessment and management by agencies at the local, tribal, state, and federal 

levels. The goal was to provide not only land use and land cover (LULC) baseline data at 

moderate spatial resolution (20–30 m), but a repeatable methodology to monitor change into 

the future. The prime focus was on mapping wetland ecosystem types, such as emergent 

wetland and forested wetland, as well as to delineate wetland monocultures (Typha, 
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Phragmites, Schoenoplectus) and differentiate peatlands (fens and bogs) from other wetland 

types. The overall accuracy for the coastal Great Lakes map of all five lake basins was 94%, 

with a range of 86% to 96% by individual lake basin (Huron, Ontario, Michigan, Erie and 

Superior). 

Keywords: wetlands; synthetic aperture radar; PALSAR; Landsat; thermal; optical imagery; 

Typha; Phragmites; Schoenoplectus 

 

1. Introduction 

As the link between land and water, coastal wetlands of the Great Lakes serve major ecologic and 

economic roles contributing to the overall health and maintenance of the Great Lakes. These coastal 

wetlands provide habitat, sources of food, and breeding grounds for many common and regionally rare 

bird, mammal, herptile, and invertebrate species [1]. They also provide many other ecosystem services 

including water filtration, flood control, shoreline protection, and recreation. Managing such an 

important resource requires periodic mapping of the extent, type, and location of the wetlands and 

adjacent land use and land cover (LULC), as well as field monitoring of indicator variables such as water 

chemistry, water levels, and biodiversity of flora and fauna. Wetlands are highly vulnerable to both 

climatic [2] and anthropogenic changes such as drainage, dredging, filling, shoreline modification, 

water-level regulation, nutrient enrichment, introduction of non-native species, and road development. 

Historically, more than two-thirds of wetlands in the Great Lakes region have been drained for 

agriculture and other development [3], making the management of the remaining wetlands  

essential. Monitoring at a regional scale is necessary for effective coastal land and water management  

to understand and mitigate the increasing risk posed to the Great Lakes from LULC change and  

climatic influences. 

The Great Lakes Coastal Wetland Consortium (GLCWC) developed a monitoring plan that is designed 

to not only assess the health and quality of the ecosystems, but also to provide a baseline for assessing 

effects of climate change and to provide key inputs to decision support for coastal management [4]. The 

monitoring plan requires a baseline map of wetland type and areal extent and adjacent land, as well as 

periodic updates. Such a map has been lacking in comprehensive form for the basin. In the past, mapping 

efforts have stopped at political boundaries. On the United States (U.S.) side there are the U.S. Fish and 

Wildlife Service’s (USFWS) National Wetlands Inventory (NWI), National Oceanic and Atmospheric 

Administration’s Coastal Change and Analysis Program (NOAA C-CAP), and a host of state-based maps 

such as the Ohio Wetland Inventory and Michigan’s Integrated Forest Monitoring Assessment and 

Prescription. On the Canadian side, there are the Ontario Great Lakes Coastal Wetlands Atlas and the 

Canadian Wetland Inventory. To date, the best map of both the U.S. and Canada coastline has been the 

Great Lakes Coastal Wetland Inventory [5], which used a hydrogeomorphic classification scheme and 

integrated existing databases including the NWI, the Ohio Wetland Inventory, USFWS reports and 

hardcopy maps, and the Ontario Great Lakes Coastal Wetland Atlas. The Great Lakes Coastal Wetland 

Inventory includes the U.S. and Canada coastline and extends inland 1 km, but lacks information on 
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wetland stressors (e.g., LULC categories such as agriculture and urban) and is outdated (circa 1970s–80s). 

The mapping methods were mixed and the accuracy varied among the sources. 

In 2010, under the Great Lakes Restoration Initiative, the U.S. Environmental Protection Agency 

(EPA) solicited the production of a map of the entire U.S. and Canadian coastal basin using a consistent 

methodology, such as the hybrid radar and optical satellite based approaches that had been demonstrated 

in a pilot study under the Great Lakes Coastal Wetlands Consortium [6]. That 2008 pilot study focused 

on archival Japanese Earth Resources Satellite 1 (JERS-1), Radarsat-1, and Landsat data and relied on 

existing maps and expert knowledge for training, rather than field data. The method included: (1) 

creating a categorical map from multi-date Landsat data; (2) creating a separate categorical map from 

multi-date JERS-1 and Radarsat-1 data; and (3) merging the two maps. A maximum likelihood classifier 

was used to create categorical maps for three 70 km × 70 km regions of the Great Lakes. The merged 

SAR-optical maps were found to have greater detectability of wetlands and reduced commission and 

omission errors, particularly for the wetland classes [6]. This pilot effort demonstrated the importance 

of using both optical and SAR data for mapping Great Lakes wetlands for three small areas of the Great 

Lakes and, thus, provided the basis for a complete mapping of the entire coastal basin. Since 2008, there 

have been many advances in remote sensing technology and software, as well as computing capability, 

which allow for such a large mapping effort with multiple datasets to be efficiently implemented. 

The goal of the mapping effort presented in this article was to create a high accuracy map of not only 

wetlands, but also adjacent LULC for the Coastal Great Lakes basin such that the map could be used for 

management purposes to better understand the wetland distribution and wetland health through 

indicators of wetland stressors (i.e., land use). The objective was to develop a mapping approach that 

utilized the fusion of moderate resolution (20–30 m) SAR and optical data from multiple seasons and 

integrated air photo interpretation and field data for training and validation to: (1) map broad land cover 

classes, with a focus on the wetland ecosystem classes (e.g., emergent, shrub wetland, forested wetland); 

(2) distinguish forested bog, open, shrubby and treed fen versus inundated shrub and forested wetlands 

(non-peat, swamps); (3) delineate monocultures of wetland plant species including invasive (Typha spp. 

and Phragmites australis) and non-invasive (Schoenoplectus spp.) species; and (4) target overall map 

accuracies greater than 90% and individual class accuracies greater than 70%. In this article, the 

approach and methods are detailed and the map results are presented and tested through accuracy 

assessments of independent datasets. 

2. Background 

Image fusion has long been used both to increase spatial resolution and classification accuracy by 

gaining additional spectral information [7]. Whereas several researchers have evaluated the use of optical 

or SAR data alone for mapping wetlands, until more recently few had evaluated SAR and optical fusion 

for wetland mapping [6,8–14] and most ignored the coarser-resolution thermal bands. 

It has been well documented that multispectral data that include near-infrared (NIR) and shortwave 

infrared bands allow improved wetland detection and mapping over visible sensors alone because the 

near-infrared portion of the electromagnetic spectrum allows identification of plant and hydrologic 

wetland conditions [15]. Similarly, the thermal wavelengths, although often neglected in mapping efforts 

due to the coarse spatial resolution on satellite systems (e.g., Landsat 5 TM band 6 at 120-m resolution), 
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are of high utility for mapping wetlands. The fact that water has a high thermal inertia results in 

temperature differences between uplands and wetlands, thus allowing them to be distinguished. Despite 

these advantages of infrared and thermal data, optical sensors have limitations in dense vegetation settings, 

particularly for detection of inundation beneath a dense shrub or forest cover. 

Synthetic Aperture Radar (SAR) data are capable of detecting flooding beneath a vegetation canopy, 

monitoring water levels and soil moisture, and distinguishing other biophysical vegetation characteristics 

such as biomass and structure. Several researchers have evaluated the utility of SAR for wetland mapping 

using single and multi-date single channel SAR data [16–18], and others have evaluated polarimetric 

SAR [19–23]. The horizontal send and horizontal receive (HH) polarization of SAR systems have long 

been known to improve distinction of swamp from other wetland classes and uplands [9,10,19,24,25] due 

to an enhanced double bounce effect from the water surface to the tree trunks and back to the sensor (or 

vice versa). Non-flooded forests have more diffuse scatter from the ground surface, and less energy is 

returned to the SAR sensor than for flooded forests. If the vegetation in a non-forested wetland is of 

great enough biomass relative to the L-band wavelength (~24 cm), then a strong return due to some 

double bounce scattering will occur in that case, as well, although the strength of the return is typically 

less than in a flooded forest. This allows for the detection of the large invasive Phragmites australis 

(Phragmites), for example, which tends to dominate large patches of wetlands with tall (up to 5 m), 

dense stems [26]. 

In addition to multi-sensor datasets, there are advantages to using multi-temporal imagery datasets, 

which capture differences in vegetation and flood condition over the course of a growing  

season [27,28]. A multi-temporal and multi-sensor image fusion approach was applied in the work 

presented here using Landsat 5 TM and PALSAR imagery. The impetus for using this combination was 

based on the need for the detection of the presence of surface water, both in open areas and beneath 

canopies, as well as for improved detection of vegetation type. Previous research has noted that in 

practice it is difficult to accurately classify wetland species types based solely on optical spectral 

characteristics [29,30]. However, fusion with a complementary sensor type, such as SAR, should allow 

for a larger set of wetland characteristics to be detected. Further, by using spring, summer, and fall imagery 

the phenological and hydrological characteristics that define different wetland types should be captured, 

allowing for improved mapping (Figures 1 and 2). As an example, much of the variation within the 

wetland landscape is confused when observing the region only at a particular time of year, such as in the 

summer Landsat 5 TM image of the St. Clair river delta (Figure 1 top center). However, when considering 

the phenological changes through the seasons (Figure 1 top row) better distinction of various wetland 

types in this river delta are revealed. The L-HH three-season false-color composite of this area (Figure 

1 bottom center) shows variations in hydroperiod during spring, summer, and fall; and L-HV (horizontal 

send, vertical receive) composite shows variations in biomass in the different seasons (Figure 1 bottom 

right). The thermal channel of Landsat TM (band 6; Figure 1 bottom left and Figure 2) aids in 

distinguishing wetland (darker regions) from upland, but the specific wetland type classes are confused. 

The spectral signatures from Landsat 5 for the various wetland classes of the St. Clair River Delta show 

the importance of the NIR band (band 4) and the seasonal patterns of reflectance for the wetland types 

(Figure 2). The reflectance signatures are based on the mean of a minimum area of 500 ha for each class. 

For Schoenoplectus, band 4 reflectance is much lower than all other wetland types and it peaks in the 

fall (Figure 2) whereas all other wetland types peak in mid-summer. There is a similar trend for L-band 
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HV backscatter for Schoenoplectus, with a peak in the fall. Typha, on the other hand, peaks mid-summer 

in L-HV and L-HH backscatter, when most of the other wetland classes (except aquatic bed) are 

somewhat constant in backscatter between summer and fall. When using three seasons of data, each 

sensor appears to provide a unique set of information, which when used in combinations should provide 

a powerful means to distinguish different types of LULC, and in particular, different wetland types. 

 

Figure 1. Multi-temporal and multi-sensor depiction of a large wetland complex on the  

St. Clair River Delta bordering the U.S. and Canada. Top row of images show spring, 

summer, and fall Landsat 5 TM imagery (bands 5, 3, 2). Bottom row shows Landsat 5 TM 

thermal false-color composite (spring, summer, and fall); PALSAR spring, summer, and fall 

HH false-color composite; and PALSAR spring, summer, and fall HV false-color composite. 

Image dates: Landsat spring = 5 May 2011, summer = 8 July 2011, fall = 9 October 2010; 

PALSAR spring = 26 May 2008, summer = 17 July 2010, fall = 17 October 2010. 
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Figure 2. Plots showing spring, summer, and fall signatures for different land cover types: 

Landsat 5 TM band 6 temperature (top left), PALSAR L-band backscatter for HH and HV 

polarizations (top right), and Landsat 5 TM bands 1–5 and 7 for wetland classes and urban, 

water, and agriculture. Image dates are listed in Figure 1. 

3. Methods 

3.1. Study Area 

The study area spans the United States and Canada coastline and the land within 10 km of the 

shoreline for lakes Ontario, Erie, Huron, Michigan, and Superior. In addition, included in the study area 

are the connecting waterways, consisting of Lake St. Clair and the St. Mary’s, St. Lawrence, Detroit, 

and St. Clair rivers. The 10-km shoreline buffer provides coverage of coastal wetlands and additionally 

encompasses areas of hydrologic, biological, and geophysical transition between the interface of upland 

land cover and the deep-water boundary of the Great Lakes. Furthermore, a 10-km spatial extent captures 

the dynamics of anthropogenic influence, as land use interacts in a “downstream model” with surrounding 

land cover types. In total, the study area covers 9,056,410 ha inland in the U.S. and Canada, as well as 

captures all large offshore islands lying within the Great Lakes. Although the entire Great Lakes 

watershed affects the health of the coastal wetlands and the quality of water entering the lakes, mapping 

of areas further inland than the 10-km shoreline buffer was beyond the mapping goals and budget 

constraints. 
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3.2. Field Data 

Field data on wetland ecosystem types were collected specifically for Great Lakes Restoration 

Initiative (GLRI) funded mapping projects and supplemented by other sources from independent projects 

throughout the 2007–2014 timeframe (Table 1). These supplemental datasets were systematically 

included or excluded, depending on their ability to assist image analysts. GPS locations had to have been 

collected within the wetland ecosystem for the field data to be usable, and the field data had to define an 

area that was at least the minimum mapping unit of the map to be produced (0.2 ha). 

Table 1. Sources of field data collection used to aid in image interpretation. The top four 

sources were used for the development of training and validation data for the coastal Great 

Lakes map. The bottom two sources provided ancillary information. 

Source Region Years of Collection No. of Sites

MTU 1 (USGS 2/USFWS funded) USA: All 5 Lakes 2010–2011 1191 

MTU (EPA funded) 
USA and Canada: Lakes Huron, 

Superior, Erie, Michigan 
2011–2014 147 

McMaster University 
Canada: Lakes Huron,  

Erie Ontario 
2013 70 

Michigan State  
University (EPA funded) 

Canada: Lakes Superior,  
Huron, USA: Lake Michigan 

2012–2013 343 

Great Lakes Instrumentation  
Collaboratory (GLIC) 

USA and Canada:  
All Lakes 

2011–2013 -- 

McMaster University Canada: Georgian Bay 2007–2009 249 
1 Michigan Technological University; 2 U.S. Geological Survey. 

The main source of training and validation data came from extensive field campaigns in 2010–2011 

under GLRI cooperative agreements with the USGS Great Lakes Science Center and USFWS for 

mapping areas of the problematic invasive species, Phragmites. That project was focused on mapping 

large stands of the invasive plant along the U.S. coastline; a detailed description of this methodology  

is outlined in Bourgeau-Chavez et al. [26]. From May–October in 2010 and 2011 field data were 

collected by regionally located teams at 1191 locations. Field-visited locations represented a pool of  

randomly selected data points primarily within the emergent wetland category of the NWI and additional 

observer-selected points of interest (see [26] for details). However, many of the field sites turned out to 

be forested or shrub wetlands. Field crews were instructed to supplement pre-selected random field 

points with additional opportunistic field points. The goal of additional observer-selected field points 

was to characterize and delineate areas of vegetative transition, possible unique spectral signals, and 

areas of likely classification confusion. At all field locations, data collections followed a standardized 

protocol. Field crews used a hand held GPS, a GPS camera, laminated maps of aerial photographs (30-

cm to 1-m resolution), density grids, and tape measurers. At each location a vegetative index was 

constructed; wetland type was assigned, species diversity noted, dominant species composition assigned, 

water level measured, vegetation life stage recorded, and for Phragmites and Typha spp., height and 

density measures were collected. Additionally, hand drawn maps and delineations of laminated aerial 

photograph maps distinguished unique vegetation types and species transition areas within wetland 
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complexes. Finally, geolocated photographs were taken in the four cardinal directions at a centralized 

location providing an additional layer of validation and ground truth for each data location. The 

Phragmites map product, as well as the data characterizing other LULC features, was used in the coastal 

wetland and upland mapping. 

The field data collection methodology used as a part of the Phragmites mapping project provided the 

foundation on which subsequent field data collects were organized. During 2012–2014, the field 

campaign was extended to inform the basin-wide bi-national map on not only emergent wetland types, 

but also shrub, forest, and peatland classes, and to gather additional field data for the Canadian side of 

the basin. For this field effort, the locations of the field sampling were not random, but specifically 

selected to target those areas within the study region that were data-poor and/or for wetland classes that 

were unrepresented. An additional 560 field data locations were sampled in 2012–2014, with  

70 locations provided by McMaster University with their 2013 collections along lakes Erie, Ontario, and 

Huron using the project field collection protocol. Additionally, McMaster had collected 249 field locations 

in 2007–2008 in Georgian Bay that provided ancillary information. Another source of field data was the 

vegetation species dominance metrics from the Fish and Invert database of the Great Lakes 

Instrumentation Collaboratory (GLIC) project, also funded by the GLRI. These data were not included 

in classification training or validation, but provided ancillary information to inform the image analysts 

for specific wetland classes. Upland areas were not field visited because the identification and 

delineation of upland classes were conducted using air photo interpretation techniques. 

The wetland field data collection resulted in a total of 1751 sampled sites. All wetland field sites in 

the database were checked for quality by comparing the location and information input to the database 

against the original field sheet, site description, field photos, and GPS location from both the GPS camera 

and the Garmin GPS unit. The breakdown of field sites by dominant cover type (Figure 3) shows a fairly 

good distribution of field samples, however, there were some regions along northern lakes Superior and 

Huron that were inaccessible due to lack of roads and/or rough terrain. Only those field collections that 

were sampled with the project-designated sampling design, as described above, are shown on the map. 

There were additional locations (GLIC and 2007–2008 McMaster) used to aid the image interpreters in 

defining training polygons, as noted above. 

3.3. Image Data 

Satellite imagery from both Landsat 5 TM and PALSAR that were collected in three seasonal time 

frames (spring, summer, and fall) were used for the mapping. Most imagery was collected in 2010 for 

PALSAR, but additional years (2007–2011) were needed to fill gaps to obtain the triplicate datasets from 

the three seasons. Similarly, for Landsat 5 TM, due to cloud cover, multiple years of data were 

aggregated to obtain complete coverage of the entire coastline. Thus, the seasonal triplicates of Landsat 

5 TM data spanned the time frame between the years of 2007 and 2011. Note that only spring data were 

available from PALSAR for 2011, as it went out of commission thereafter. Seasonal date cutoffs for 

imagery were based on an approximation of early growth after leaf flush (spring: April–May), peak growth 

(summer: June–August), and early senescence (fall: September–October). These dates were adjusted 

based on latitude within the basin; for example, spring was later in the northernmost reaches of the basin. 
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Figure 3. Map of field data locations, color-coded by dominant cover type. “Other/mixed” 

green triangles include all peatland, shrub, and forested wetland, as well as mixed emergent 

and wet-meadow wetlands. 

Both Landsat 5 TM and SAR sensors required independent pre-processing procedures before the data 

were suitable for building a classified map. These steps are detailed in the sections below. After  

pre-processing, the images were combined into image stacks before being classified. The number of 

seasonal PALSAR scenes required to obtain the spatial and temporal coverage of the study area was 520 

and the number of Landsat scenes needed was 159 (Table 2). 

Table 2. Number of scene footprints required from each satellite sensor to map the coastal 

Great Lakes. Note that scenes covering Lake St. Clair are included in Huron. 

Lake Basin Number of PALSAR Scenes Number of Landsat 5 TM Scenes 

Erie 57 27 
Huron 117 27 

Michigan 107 26 
Ontario 66 12 
Superior 173 67 

3.3.1. Landsat Data Selection and Processing 

Image interpreters used EarthExplorer to identify and download clear Landsat 5 TM scenes acquired 

between the years of 2007–2011. When possible, the seasonal dataset for each area of interest (AOI; a 

PALSAR frame area) was created using scenes from the same year, and efforts were made to use the 

most recent imagery possible. For lakes Ontario, Erie, Huron, and Michigan the spring scenes were 

acquired in April and May, summer scenes were from June, July, August, and fall scenes were from 
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September and October. Lake Superior is farther north and green up typically occurs later, so the month 

of June was included in the spring scenes. Cloud-free imagery was not always available for the specified 

time frames; therefore, for some AOIs it was necessary to composite Landsat scenes from multiple dates. 

Julian day was included in each image stack to keep track of image sources. Multispectral Landsat TM 

data used in mapping coastal areas included bands 1–7 from spring, summer, and fall scenes. Optical 

bands were converted to radiance values, then to top-of-atmosphere (TOA) reflectance to normalize 

differences in illumination due to temporal changes in sun angle and earth-sun distance. The thermal 

bands were converted to TOA temperature brightness in degrees C assuming all pixels had an emissivity 

of water [31]. This assumption resulted in a relatively small underestimation of land surface temperature. 

Typically, in the warmer months the thermal difference between land and water is greater than the 

underestimation, making such an assumption suitable for mapping purposes. 

Atmospheric correction using the latest Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) software to convert Landsat digital counts to surface reflectance [32] is considered by many 

to be the best correction; however, we found TOA to produce comparable results with less computational 

burden. The effects of atmospheric correction were tested by comparing classification results using TOA 

reflectance and surface reflectance. Image classification and error analysis was then carried out using 

both TOA reflectance and LEDAPS surface reflectance. Atmospheric correction did not improve 

classification accuracy, but added considerable computational burden to each scene. Other previous 

large-scale mapping projects have found that using TOA reflectance values for image classification 

yielded more accurate results than using atmospherically corrected data [32–34]. 

Normalized Difference Vegetation Index (NDVI) images created from the visible-red (band 3) and 

NIR (band 4) bands [35] were also produced for inclusion in the map classification. This ratio works 

well for mapping green vegetation, as the reflectance in the red band is low due to absorption by 

chlorophyll and high in the near infrared band due to chlorophyll reflectance. The thermal and spectral 

indices allow for improved wetland detection and mapping over the optical sensors alone. All Landsat 

TM data and NDVI products were resampled using nearest neighbor to match the PALSAR Fine Beam 

Dual mode pixel size of 12.5 m and output as 32-bit data. 

3.3.2. SAR Processing 

SAR data for the study area were acquired from the Japanese ALOS PALSAR satellite, which has an 

L-band (~24 cm wavelength) SAR sensor. PALSAR data are collected in various modes, and for this 

project the single channel and dual channel modes were used. In Fine Beam Single mode (FBS), the 

sensor transmits and receives horizontally polarized signals (HH) with 10 m spatial resolution. In Fine 

Beam Dual mode (FBD), the sensor transmits horizontally polarized signals and receives horizontally 

and vertically polarized signals (HH and HV) with 20 m spatial resolution. PALSAR imagery used for 

this project was processed at the Alaska Satellite Facility (ASF) via a service contract. ASF downloaded 

the data from the ALOS satellite, processed, terrain corrected, and georeferenced it to within 1.5 

PALSAR pixels (12.5 m), and delivered the 32-bit data with 12.5 m pixel spacing for the FBD data and 

6.25 m pixel spacing for the FBS. Upon receipt, the FBS data were resampled using bilinear interpolation 

to match the FBD PALSAR pixel size of 12.5 m. 
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Once received from ASF, the data were checked to ensure geographic accuracy. Images that shared 

the same spatial extent were required to be within one pixel (12.5 m) of each other for mapping. If images 

did not meet this accuracy requirement they were processed through a co-registration algorithm. The 

SAR images were checked for alignment using Landsat TM images. If the SAR images were found to 

be misaligned they were georeferenced to a corresponding cloud-free Landsat 5 TM image. Spatial 

accuracy was calculated for each image using the root mean square error (RMSE). Lastly, a 3 × 3 median 

filter was applied to the PALSAR images to reduce speckle. Speckle is the coherent addition of 

backscatter from multiple scatterers in the same resolution cell. The result is random constructive and 

destructive interference, manifesting itself in bright and dark neighboring pixels, a “salt and pepper” 

effect. Because of speckle, a single pixel in SAR imagery cannot be used to measure features on the 

ground. Filtering of the data must be applied to reduce inherent speckle when producing a map. 

3.4. Mapping Technique 

Several image classification methods were evaluated, including hierarchical classification, object 

based image analysis (OBIA with eCognition), maximum likelihood (Erdas Imagine) classification of 

optical and SAR data separately and then recombination of the classes [6], and Random Forests (in R). 

Each of these approaches has advantages and disadvantages, and was evaluated for accuracy, consistency 

(between scenes and image analysts), and time consumption. These approaches were assessed in three 

experimental study areas with varying amounts of developed land (Northern Lake Michigan coastal 

wetland, Lake St. Clair coastal wetland, and Lake Huron coastal wetland). Random Forests [36] provided 

the best combination of high classification accuracy and time efficiency and was selected for our study. 

As a machine learning algorithm, Random Forests is an ensemble classifier consisting of multiple 

decision trees generated from a random subset of training data sites and bands from a stack of all data. 

Once the forest of decision trees is created, an individual pixel’s classification is determined by which 

class receives the most “votes” across all decision trees. Random Forests is able to handle datasets with 

a small number of observations and a large number of attributes, is well suited to parallel processing, 

and is relatively insensitive to non-predictive inputs [37]. Additionally, the algorithm can easily handle 

missing attributes, such as cloud obscured pixels, as decision trees built without the missing attributes 

can be used to classify the compromised data. 

A minimum mapping unit of 0.2 ha was used for the project. This unit was determined by application 

needs and limitations of the SAR imagery. Although the original multi-looked SAR imagery has 10–20 m 

resolution in the ground plane, due to inherent SAR image speckle the effective mapping unit must be a 

multiple of the resolution cell. Based on field data comparison with the fused Landsat-PALSAR map 

products and in reference to the coarsest SAR spatial resolution used (20 m), 0.2 ha, or 2 × 2.5 resolution 

cells, was the minimum size that could be confidently mapped [6]. 

The classification scheme applied to the datasets consisted of a combination of Anderson Level I upland 

classes [38], USFWS NWI classes, additional specific wetland classes (peatlands, invasive monotypic 

vegetation types including Phragmites, Typha spp., and Schoenoplectus spp.), and other upland classes 

that aided in improving map accuracy by reducing confusion (e.g., urban grass, fallow field). All upland 

and wetland classes are defined in Table 3. 
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The mapping process was iterative (Figure 4). First, wetland vegetation types were identified using 

field data and air photo interpretation. Next, polygons were drawn in ESRI ArcMap to spatially expand 

the field sampled locations and avoid edges of transitions between covertypes or land categories. These 

polygons were used as training and validation data, with a reserved priority of the field sampled sites for 

validation. Training data for uplands were created by image interpretation of current aerial photographs 

and were not field visited. Homeland Security Border 2009 Flight Imagery collected at 30-cm resolution 

was used for assessment of the coastlines of lakes Ontario, Erie, Huron, and Superior. The Border Flight 

data were not collected for Lake Michigan or Georgian Bay in Lake Huron, so a combination of publicly 

available satellite and aerial imagery was used. USDA National Agricultural Imagery Program (NAIP) 

1-m data from 2009 to 2010 were used for Lake Michigan. For Georgian Bay, ESRI’s World Imagery 

and Google Earth were used. These upland and wetland polygons provided the supervised training data 

and validation data (Figure 4). The supervised data were input to Random Forests with the three-date 

Landsat TM-PALSAR image stack that included all Landsat TM bands (21) and PALSAR bands (6), as 

well as an NDVI layer for each Landsat TM date (3), for a total of 30 input remote sensing bands. Post-

classification, the classified images were filtered to eliminate isolated pixels and reduce the errors 

introduced by mixed pixels. Each classified pixel’s value was replaced by the majority class of its eight 

neighbors using the ESRI majority filter. This resulted in the reduction of some errors at the expense of 

some correctly classified small linear features. 

 

Figure 4. Schematic showing the mapping methodology from field data, aerial image 

interpretation, and satellite imagery to classified map. 
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Table 3. Description of each class mapped. 

Class Description 

Urban Residential areas, cites, towns, industrial areas, utilities, commercial services where the manmade structures have >75% coverage. 

Suburban 
Primarily residential areas where manmade structures (i.e., buildings, farm equipment)  
are present, with more than or equal to 25% vegetation (trees, shrubs, grass) interspersed. 

Urban Grass Lawns, golf courses, athletic fields, urban parks, and mowed transitional zones such as medians or airfields. 

Urban Road 
Linear transportation routes, large driveways, and parking areas. Transportation routes can include highways,  
small two-lane roads, railroad beds, airfield landing areas, parking lots, and off- and on-ramps. 

Agriculture 
Hay fields and croplands where row crops such as corn, beans, and grains are in production. Land used for production of  
food or fiber; land use distinguishes agricultural land from similar natural ecosystem types (i.e., wetlands and rice paddies). 

Fallow Field Agriculture fields not in row crop production, such as areas of native grasses or meadows and pastures. 

Orchard Orchards, vineyards, and ornamental plants/trees. 

Forest 
Broadleaf and needle leaf deciduous and evergreen trees and dead forests.  
Characterized by woody vegetation with a height >6 m. Crown closure percentage (i.e., aerial view) >75%. 

Pine Plantation 
Needle leaved deciduous and evergreen trees with distinct row structure and typically planted in defined  
geometric plot. Crown closure percentage (i.e., aerial view) >75%. 

Shrub 
True shrubs, immature trees, or stunted growth trees/shrubs. Characterized by woody vegetation with a height <6 m.  
May represent a successional growth stage that has not yet matured to forest,  
or stable communities of shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >50%. 

Barren Light 
 Salt flats, beaches, sandy areas, bare rock, strip mines, quarries, gravel pits, and transitional areas (on gray scale >50% white).  
Land with limited ability to support life. Contains less than 33% vegetative cover. May include thinly dispersed scrubby vegetation. 

Barren Dark 
Salt flats, beaches, sandy areas, bare rock, strip mines, quarries, gravel pits, and transitional areas (on gray scale ≥50% black).  
Land with limited ability to support life. Contains less than 33% vegetative cover. May include thinly dispersed scrubby vegetation. 

Water 
Streams, canals, rivers, lakes, estuaries, reservoirs, impoundments, and bays. Areas persistently inundated by water that do not  
typically show annual drying out or vegetation growth at or above the water’s surface. Depth of water column is >2 m, such that  
light attenuation increases significantly and surface and subsurface aquatic vegetation persistence declines or is less detectable. 
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Table 3. Cont. 

Class Description 

Aquatic Bed 
Algal beds, aquatic mosses, rooted vascular plants (e.g., eelgrasses and sea grasses, pond weeds, lily pads, milfoil) and floating  
vascular plants (e.g., lemna, water hyacinth, coontails, and bladderwarts). Inundated wetlands or water <2 m (excluding  
deep water zones). Habitats dominated by plants that grow principally on or just below the water’s surface. 

Wetland 
Emergent wetland and wet meadow vegetation not represented by other classes. These are areas where the water table is at or  
near the Earth’s surface. Seasonal inundation and/or drying are common. Vegetative species distributions are strong  
indicators of wetland condition. Does not include cultivated wetlands, such as rice paddies or cranberry farms. 

Schoenoplectus Dominate species is Schoenoplectus spp. and crown closure percentage (i.e., aerial view) >50%. 

Typha Dominate species is Typha spp. and crown closure percentage (i.e., aerial view) >50%. 

Phragmites Dominate species is Phragmites australis and crown closure percentage (i.e., aerial view) >50%. 

Open Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow;  
minerotrophic. Crown closure percentage (i.e., aerial view) >75%. 

Shrub Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow; minerotrophic.  
May represent a successional stage growth that has not yet matured to forest, or stable communities of  
shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >50%. 

Treed Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow; minerotrophic.  
Characterized by woody vegetation with a height >2 m. May represent a successional growth stage that has not yet  
matured to forest, or stable communities of shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >75%. 

Wetland Shrub Wetlands dominated by shrubs <6 m in height. Crown closure percentage (i.e., aerial view) >50%. 

Forested Wetland 
Wetlands dominated by woody vegetation (dead or alive) >6 m in height. Includes seasonally flooded forests.  
Crown closure percentage (i.e., aerial view) >50%. 
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The mapping process (Figure 4) was applied individually to AOIs nominally defined by each  

70 km × 70 km PALSAR frame area (Figure 5). This approach was required because even small 

differences in adjacent PALSAR scene collection dates can result in great differences in SAR 

backscatter, depending on moisture conditions. The study area also covered a transition in ecoregions 

from southern boreal in the north to temperate conditions in the south, and a range in LULC from 

primarily rural in the north to highly urban in the south. An effort was made to collect field data within 

each 70 km × 70 km frame area for training. Note that there were small areas of the map that did not 

have PALSAR imagery available. These were generally slivers of the map where overlapping PALSAR 

coverage was unavailable for the seasons used in mapping. In these cases the maps were produced solely 

from Landsat 5 TM data. Once all of the AOIs were completely mapped, they were mosaicked to the 

extent of each of the five lake basins and accuracy was assessed. 

 

Figure 5. Map of extent of each area of interest (AOI) mapped. The AOIs are based on 

PALSAR image extents within the 10 km coastline buffer. Due to overlap of scenes, some 

AOIs are smaller than the full 70 km × 70 km PALSAR extent. 

3.5. Accuracy Assessment 

To ensure a robust set of validation data (polygons) for the Great Lakes coastal wetland maps, a 

percentage of the input training polygons was reserved for validation. Specifically, this was carried out 

by setting aside 20% of the training polygons as validation for each class. Whole polygons, not partial 

polygons, were set aside. The validation data were prioritized to include polygons derived from field 

verified sites. If less than 20% of a class’s training polygons included field sites, then polygons derived 

from photo interpretation were also reserved. When more than 20% of the polygons were field verified, 

then validation polygons were randomly selected to be included in the training data. The average number 
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of validation polygons per class was 328, exceeding the 75–100 recommended by Congalton and Green 

2008 for large areas [39]. 

The Random Forests algorithm generates an “out of bag” estimate of classification accuracy using 

the random subset of training data not used in generating each tree. However, these data are used to 

generate other trees within Random Forests and, thus, they are not independent. The “out of bag” 

accuracy was typically inflated compared to the independent assessment. Therefore, to ensure a robust 

and independent validation set, all accuracies presented in this article are based on the twenty percent of 

the training data that were reserved for validation. 

4. Results 

The mapping was completed in the summer of 2014 for all five lake basins (Figure 6). The results are 

presented below for the whole Great Lakes Basin and can be viewed on a webpage and requested for 

download [40]. The area of wetland mapped by class type in each lake basin is shown in Table 4.  

A total of 2,200,631 ha of wetlands were mapped in the bi-national Great Lakes coastal region to within 

10 km of the coastline. This represents 24% of the total land area within the study extent (9,056,410 ha 

mapped). Of these coastal wetlands, a majority were forested or shrubby wetlands (18.2% of mapped 

area), with 3.7% of the mapped area representing emergent wetland types. Within the emergent wetland 

class, 24% of the area mapped was dominated by Typha spp. and 11% was dominated by invasive 

Phragmites. 

 

Figure 6. LULC map of the coastal Great Lakes, with a total accuracy of 94%. 

The targeted goal for overall accuracy was 90% and the goal for individual classes was 70% accuracy. 

The overall accuracy of the entire basin map is 94% (Table 5), and for individual lakes it is greater than 

90% for all lakes except Ontario, which is 86% (Table 6). If water is excluded, then overall accuracy 

reduces to 85%–87% and when all the wetland classes are lumped, overall wetland class accuracy is 

75%–82%. 
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Table 4. Summary of area mapped by wetland class type (ha) and percentage of each class 

type mapped within the study area. 

Wetland Type 
Lakes Erie  

and St. Clair 

Lake  

Ontario 

Lake 

Michigan 

Lake 

Huron 

Lake 

Superior 

Emergent (including Typha and Phragmites) 63,216 53,800 54,921 97,201 63,166 

Typha 18,707 19,552 15,190 18,906 6509 

Phragmites 20,129 2036 8851 6266 0 

Woody Wetlands (Ha: Shrub and Forest) 111,049 108,738 361,307 525,446 539,624 

Peatland (Bogs and Fens—open and woody) 0 0 11,522 33,439 46,635 

Total Wetlands 194,527 179,570 447,005 708,647 670,882 

Total Mapped Area 1,280,800 1,224,930 1,746,030 2,508,840 2,295,810 

% Area Mapped as Wetland 15.2% 14.7% 25.6% 28.2% 29.2% 

% Area Mapped as Emergent Wetland 4.9% 4.4% 3.1% 3.9% 2.8% 

% Area Mapped as Woody Wetland 8.7% 8.9% 20.7% 20.9% 23.5% 

The producer’s accuracy represents how well the reference pixels are classified, whereas the user’s 

accuracy represents the probability that a classified pixel actually represents that class on the ground. 

For individual classes for the entire basin, all of the producer’s class accuracies are greater than 69% and 

all of the user’s accuracies are greater than 61% except for one class, Schoenoplectus (35%; Table 5). 

A single AOI covering the St. Clair Flats area provides an example of the details of the map (Figure 7). 

The St. Clair Flats is home to a large river delta wetland complex with a variety of herbaceous and woody 

wetlands, including large expanses of the invasive Phragmites and Typha spp., as well as large areas of 

Schoenoplectus spp. along the coastline. For this AOI, most of the producer’s class accuracies are greater 

than 70%, except wetland, which is 65%, and all of the user’s accuracies are greater than 70%, except 

wetland (38%), Schoenoplectus (59%), and forested wetland (60%; Table 7). 

One of the outputs of Random Forests is a plot of band importance (mean decrease in accuracy).  

The mean decrease in accuracy is computed by permuting the out-of-bag data [38]. For each tree, the 

prediction error on the out-of-bag portion of the data is recorded and then the calculation is repeated 

after permuting each predictor (input band) variable. The difference between the two are then averaged 

over all the trees, and normalized by the standard deviation of the differences. The band importance from 

the mean decrease in accuracy plot for the St. Clair Flats AOI, which is dominated by wetlands (Figure 8), 

was very different than the plot for all 40 AOIs over Lake Michigan, of which a majority of the landscape 

was upland classes (Figure 9). For the wetland dominated AOI (Figure 8), the three most important bands 

were spring Landsat TM NDVI, spring Landsat TM thermal, and spring L-HH, followed by L-HV from 

summer and L-HH from fall. In contrast, for the upland dominated landscape (Figure 9) the three most 

important bands were the Landsat TM thermal (band 6) from spring, NIR (band 4) from spring, and NIR 

from fall. PALSAR L-HV from spring was 12th in band importance, with the other two HV bands at 14th 

and 15th, and the HH bands at 17–19th in importance. 
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Table 5. Error matrix for all coastal Great Lakes. Numbers represent pixels. Some classes have been collapsed to higher-order classes for  

display purposes. 

Classified 

Ground Truthed Values 

Urban Agriculture Forest Shrub Barren Water 
Aquatic 

Bed 
Wetland 

Schoeno-

plectus 
Typha Phragmites Peatland 

Shrub 

Wetland 

Forested 

Wetland 
Sum 

Comm-

ission 

User 

Acc. 

Urban 55,555 7257 315 519 4222 204 26 31 0 139 64 11 94 9 68,446 19% 81% 

Agriculture 1575 650,640 452 3051 1149 65 82 585 0 121 61 13 394 43 658,231 1% 99% 

Forest 88 1714 108,758 3027 39 15 14 145 3 12 14 173 1174 5069 120,245 10% 90% 

Shrub 381 5625 3034 123,911 290 44 32 470 8 78 34 351 2775 3097 140,130 12% 88% 

Barren 534 1979 7 80 43,168 566 0 38 0 63 1 0 24 0 46,460 7% 93% 

Water 0 0 0 20 363 184,5154 324 1 96 7 0 15 4 8 1,845,992 0% 100% 

Aquatic Bed 40 1034 0 31 64 7597 17,777 534 233 144 103 92 153 157 27,959 36% 64% 

Wetland 165 3232 37 372 83 70 362 13,083 99 848 226 319 2359 92 21,347 39% 61% 

Schoenoplectus 2 2 0 2 1313 2065 375 290 2256 52 12 32 22 0 6423 65% 35% 

Typha 15 1514 16 175 38 43 423 1143 22 17,631 333 44 207 70 21,674 19% 81% 

Phragmites 52 2360 47 26 10 114 99 667 1 694 7775 0 210 77 12,132 36% 64% 

Peatland 19 427 236 878 28 13 45 168 1 83 0 14,945 1475 165 18,483 19% 81% 

Shrub 

Wetland 
209 1676 1595 3454 33 7 105 1432 8 250 84 828 27,942 3910 41,533 33% 67% 

Forested 

Wetland 
30 183 4261 4523 8 42 36 52 2 13 1 353 3804 63,097 76,405 17% 83% 

Sum 58,665 67,7643 118,758 140,069 50,808 1,855,999 19,700 18,639 2729 20,135 8708 17,176 40,637 75,794    

Omission 5% 4% 9% 13% 15% 1% 10% 30% 17% 14% 11% 13% 31% 17%    

Prod. Acc. 95% 96% 92% 88% 85% 99% 90% 70% 83% 88% 89% 87% 69% 83%   94% 
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Table 6. Summary of classification accuracy by lake basin. Included is the accuracy for 

wetland classes with water removed. 

Lake Basin Overall Accuracy All Classes Except Water Wetlands Classes Only 

Erie 92% 85% 82% 
Ontario 86% 85% 81% 
Huron 93% 85% 75% 

Michigan 96% 87% 82% 
Superior 95% 86% 82% 

 

Figure 7. Map of wetland type and LULC for the St. Clair Flats AOI. Overall accuracy  

is 97.5%. 
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Table 7. Error Matrix for the St.Clair Flats AOI. Numbers represent pixels. Some classes have been collapsed into higher-order classes for 

display purposes. 

Classified 

Ground Truthed Values 

Urban Agriculture Forest Shrub Barren Water 
Aquatic 

Bed 
Wetland 

Schoeno-

plectus 
Typha Phragmites 

Shrub 

Wetland 

Forested 

Wetland 
Sum 

Comm-

ission 

User  

Acc. 

Urban 1744 46 0 0 175 0 0 0 0 0 8 0 0 1973 12% 88% 

Agriculture 5 30,197 5 147 0 0 2 19 0 0 13 43 0 30,431 1% 99% 

Forest 0 1 214 11 0 0 0 0 0 0 0 52 0 278 23% 77% 

Shrub 0 44 0 2700 0 0 0 4 0 0 0 153 0 2901 7% 93% 

Barren 123 89 0 0 860 0 0 0 0 0 0 0 0 1072 20% 80% 

Water 0 0 0 0 0 80,981 0 0 5 2 0 0 0 80,988 0% 100% 

Aquatic Bed 0 0 0 0 0 15 347 0 0 0 0 0 0 362 4% 96% 

Wetland 0 56 0 0 0 0 0 53 0 0 23 9 0 141 62% 38% 

Schoenoplectus 0 0 0 0 0 166 1 0 283 27 0 0 0 477 41% 59% 

Typha 0 2 0 0 0 0 25 0 0 1000 0 1 0 1028 3% 97% 

Phragmites 0 76 0 0 0 4 17 5 0 100 1170 13 0 1385 16% 84% 

Shrub Wetland 0 0 0 17 0 0 0 0 0 1 32 733 0 783 6% 94% 

Forested 

Wetland 
0 2 45 0 0 0 1 0 0 0 0 22 106 176 40% 60% 

Sum 1872 30,513 264 2875 1035 81,166 393 81 288 1130 1246 1026 106    

Omission 7% 1% 19% 6% 17% 0% 12% 35% 2% 12% 6% 29% 0%    

Prod. Acc. 93% 99% 81% 94% 83% 100% 88% 65% 98% 88% 94% 71% 100%  97.5%  
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Figure 8. Band importance for the wetland dominated Lake St. Clair Flats computed from 

Random Forests. 

 

Figure 9. Average band importance for 40 AOIs in the upland dominated Lake Michigan 

Basin computed from Random Forests. 

5. Discussion 

5.1. Accuracy and Confusion Classes 

The overall accuracy for the coastal Great Lakes maps was 94%, with a range from 86% to 96% 

overall accuracy by lake basin (Huron, Ontario, Michigan, Erie, Superior). This overall accuracy is 

slightly higher than the rates of 80%–89% achieved in other large-area mapping projects around the 
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world [14,28,31,41,42] and comparable with the rate of 95% achieved for Alaska [16]. For the coastal 

Great Lakes maps, a few wetland classes had individual accuracies below the targeted 70% producer’s 

and user’s accuracies. For example, Schoenoplectus spp. had a producer’s accuracy of 83% and a user’s 

accuracy of only 35% for all the Great Lakes (Table 5). The low user’s accuracy suggests only 35% of 

all Schoenoplectus spp. pixels are indeed Schoenoplectus spp. on the ground. Schoenoplectus spp. proved 

difficult to map because the plants often grow in narrow, patchy stands along the coast. Schoenoplectus 

stands are also much less prevalent than the more common large monotypic stands of Typha spp. or 

Phragmites. Schoenoplectus spp. are often seen mixed with other vegetation and patches of open water 

or floating aquatics which can explain the confusion with the generic wetland class, aquatic bed, and 

open water classes. In areas dominated by wetlands, such as the St. Clair Flats AOI, the accuracy of 

Schoenoplectus spp. improves, with a producer’s accuracy of 98% and a user’s accuracy of 59%  

(Table 7). The specific dominant cover wetland classes could be collapsed into a higher-order class (e.g., 

Typha and Phragmites could be collapsed into “wetland” (NWI emergent wetland class; see Tables 4 

and 6) to increase the map accuracy. However, in many cases the major confusion is with similar or 

higher-order wetland classes, and lower accuracy of a specific cover type is compensated by the general 

ability to distinguish differences among classes. Schoenoplectus may be better collapsed with open water 

in many regions. For this genus a shorter wavelength SAR, such as C-band (~5.7 cm), would likely 

improve mapping. 

In some regions of the map, specifically those areas that are more developed, accuracies are slightly 

lower because of the higher variability in LULC over small spatial extents. In these areas, there are some 

noticeable classification discrepancies because of mixed pixel effects. For example, an area that 

transitions from urban to emergent wetland may show false instances of other classes in pixels where 

the transition occurs. Another example is fallow fields along woodlots, which result in false identification 

of Phragmites in a linear patch along the treeline. These errors were reduced as much as possible by 

clumping and sieving, but further filtering would actually remove true classes. 

There is some confusion of agriculture with many of the LULC classes (Table 5). Agricultural land 

often borders many of these LULC types and, depending on the crop planted, it can look spectrally 

similar to various LULC types. In addition, many of the agricultural lands are former wetlands and 

therefore may exhibit hydrological changes similar to intact wetlands, thus appearing “wet” in the 

PALSAR data. 

Due to the high confusion of Schoenoplectus with open water, the maps were adjusted  

post-classification to correct the problem. Using all available field data, a spatial query was conducted 

to retain areas mapped as Schoenoplectus that were field verified and relabel all other areas mapped as 

Schoenoplectus to open water. Unfortunately, using all field data to make the correction did not allow 

for an independent assessment of the new Schoenoplectus class accuracy. In making this adjustment 

some true Schoenoplectus areas are likely lost, but with the high errors from the unadjusted map it  

was justifiable. 

5.2. Importance of SAR-Optical Fusion in Wetland Mapping 

The plot of band importance for the St. Clair Flats AOI (Figure 8) shows that the most important 

bands for wetland type mapping when using three-season Landsat TM and PALSAR data were spring 
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Landsat TM NDVI, spring Landsat TM thermal, and spring L-HH, followed by L-HV from summer and 

L-HH from fall. The PALSAR L-HH band (which is sensitive to moisture/inundation), along with the 

spring Landsat TM NDVI and thermal band, are particularly important to the classification, and that 

importance was consistent across AOIs with large regions of wetland cover. However, for classifications 

generated in areas with a greater percentage of urban and suburban coverage (Figure 9), the output maps 

relied more heavily on the visible Landsat TM bands, and the PALSAR L-HV bands were ranked 12th, 

13th and 14th, slightly above the L-HH bands (ranked 17–19th). L-HV is more sensitive to biomass than 

moisture and Landsat TM bands are most useful for distinguishing upland cover types. It is for the 

wetland classes that PALSAR L-HH is of such high utility, as seen in Figure 8. However, the L-HV band, 

with its sensitivity to structure and biomass, aids in distinguishing shrub from forest from herbaceous 

wetland. It is notable that the thermal channel is of high importance (ranking 1st or 2nd) for both wetland-

dominated AOIs and urban/suburban-dominated AOIs. The thermal band, in conjunction with NDVI, has 

been shown to be effective for LULC classification [43–45]. Water has a high thermal inertia, therefore 

the temperature of water and wetlands changes more slowly than for surrounding uplands. In the 

summer, water is generally cooler than the land, and in the winter, it is warmer. Additionally, 

evapotranspiration from vegetation results in cooler temperatures than from barren or sparsely vegetated 

LULC classes [44]. Urban environments are also typically warmer due to solar heating of paved surfaces 

and heat generated from anthropogenic sources [45]. 

Other researchers have noted the importance of L-band in detection of woody wetlands  

(in particular [20,24,46]) and for detection of the large, dense forming invasive wetland grass Phragmites 

in the coastal Great Lakes [26]. L-band fused with optical data has been helpful in overall wetland 

mapping, such as for tropical peatland types in Peru [41], and when combined with C-band  

dual-band/dual-season data for distinguishing and mapping a diverse set of ecosystems in the vast 

wetland complexes of the Pantanal in South America [42]. Whereas most researchers find the L-HH 

band to be of greatest utility for wetland mapping due to its ability to detect inundation, others note the 

usefulness of the L-HV band for differentiating vegetation structure in wetlands (e.g., [41]). 

For the coastal Great Lakes map presented here, both L-HH and L-HV were found to be of high 

importance in wetland mapping. The methods developed for mapping coastal wetlands of the Great 

Lakes are unique in fusing three season Landsat 5 TM, including the thermal band, and three-season 

PALSAR L-HH/L-HV data over a large region. Whereas others have investigated multi-sensor fusion, 

and some have used dual-season multi-sensor fusion, few have used three-season datasets and most 

remove the Landsat 5 TM thermal band. The three-season data are crucial because they capture  

the phenologic differences in the vegetation and the seasonal variation in the hydrology. For example, 

Typha stands are typically fallen over in the spring with high water; in summer they are at peak 

vegetation height and density with lower water tables and less distinguishable from other wetland types. 

In contrast, stands of Phragmites have significant standing dead biomass in the spring that remains in 

the summer as new shoots sprout up. Using summer data alone makes distinguishing these two genera 

difficult, but using the phenology of the vegetation aids in distinguishing them, and the patterns of 

hydroperiod distinguish the wetlands from the uplands. Some of the wetlands are wet in spring and fall, 

such as the forested wetlands, and that provides two chances to detect the inundation, depending on the 

timing of the satellite collections. 
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The SAR-optical technique for mapping Great Lakes wetlands was demonstrated as a repeatable, high 

accuracy, and timely method (3.5 years including development of mapping methodology) that can be 

applied to large regional areas while integrating high accuracy image interpretation, field data and 

moderate spatial resolution remote sensing in a sophisticated machine-learning approach. Such an 

approach has wide applicability beyond the coastal wetlands of the Great Lakes. This approach to 

wetland mapping has been applied to non-coastal temperate regions, including the state of Michigan and 

the state of Maine, as well as to boreal peatlands of Alberta [47] and is currently being applied to map 

tropical peatlands of Peru. 

6. Summary and Significance 

The Great Lakes bi-national coastal wetland product represents a current, circa 2010, comprehensive 

basin-wide inventory of coastal wetlands, as defined by USFWS NWI types with additional classes for 

dominant plant species Phragmites, Schoenoplectus spp. and Typha spp and adjacent LULC classes as 

defined in the GLCWC Monitoring Plan protocol [6]. This effort represents the first comprehensive 

wetland delineation of the bi-national coastal Great Lakes using a consistent mapping technique. The 

map provides information not only on wetland extent and type, but also contemporary information on 

potential wetland stressors (e.g., invasive plant species and level and type of development surrounding 

the wetlands). More specifically, the map is designed to assist in identifying indicators of wetland health 

defined through the State of the Lakes Ecosystem Conference, including: (1) land cover adjacent to 

coastal wetlands; (2) land cover/land conversion; (3) urban density; (4) non-native terrestrial species, 

and (5) wetland extent and composition [48]. It was also developed to provide reference and input for 

the GLIC, which has a five-year plan for collection of biologic and other field-based indicators of 

wetland health throughout the Great Lakes [6]. 

Although the map produced represents a static point in time depicting the distribution of wetlands by 

type across the basin, it serves as a baseline for future mapping of change. The mapping methodology 

used is reproducible, allowing for the continual development of future maps for monitoring and detecting 

change in the Great Lakes Basin. With the launch of Landsat 8 in 2013 and PALSAR-2 in 2014, map 

updates and changes can be made in the next few years. The German Aerospace Center (DLR) has plans 

to launch L-band satellites (Tandem-L), as do NASA, India with NISAR (L-band and S-band SAR 

sensors), and Argentina with SAOCOM–1, thus extending the mapping capability into the longer-term 

future. In addition, mapping past conditions circa 1997 is possible with JERS-1 (predecessor to 

PALSAR) and Landsat 5 TM. A change mapping technique, such as is conducted by NOAA for C-CAP, 

could be applied to the hybrid PALSAR-Landsat methodology for efficiency. 
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