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Abstract: Air temperature is one of the most important factors in crop growth monitoring 
and simulation. In the present study, we estimated and mapped daily mean air temperature 
using daytime and nighttime land surface temperatures (LSTs) derived from TERRA and 
AQUA MODIS data. Linear regression models were calibrated using LSTs from 2003 to 
2011 and validated using LST data from 2012 to 2013, combined with meteorological station 
data. The results show that these models can provide a robust estimation of measured daily 
mean air temperature and that models that only accounted for meteorological data from rural 
regions performed best. Daily mean air temperature maps were generated from each of four 
MODIS LST products and merged using different strategies that combined the four MODIS 
products in different orders when data from one product was unavailable for a pixel. The 
annual average spatial coverage increased from 20.28% to 55.46% in 2012 and 28.31% to 
44.92% in 2013.The root-mean-square and mean absolute errors (RMSE and MAE) for the 
optimal image merging strategy were 2.41 and 1.84, respectively. Compared with the  
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least-effective strategy, the RMSE and MAE decreased by 17.2% and 17.8%, respectively. 
The interpolation algorithm uses the available pixels from images with consecutive dates in 
a sliding-window mode. The most appropriate window size was selected based on the absolute 
spatial bias in the study area. With an optimal window size of 33 × 33 pixels, this approach 
increased data coverage by up to 76.99% in 2012 and 89.67% in 2013. 

Keywords: daily mean air temperature; land surface temperature; MODIS; meteorological 
station data; Shaanxi 

 

1. Introduction 

Air temperature is an important parameter of the climate system and useful for a wide range of 
agriculture applications, including crop growth simulation [1,2], yield prediction [3,4], estimation of heat 
accumulation during the growing season [5], assessment of high-temperature damage [6], evaluation of crop 
freeze injury [7,8], and crop insect development prediction [9]. Currently, near-surface temperature data 
is collected by meteorological stations, and although such measurements offer the advantage of high 
accuracy and temporal resolution, their spatial resolution may be low and they may not adequately represent 
surface temperatures in areas with rugged or heterogeneous surfaces [10].These limitations can bias 
estimates of the spatial distribution of air temperature, even when researchers use advanced spatial 
interpolation methods [11].With the development of remote sensing technology, it has become possible 
to use thermal images from satellites to obtain land surface temperatures (LSTs) over wide areas, and 
this data can be used to instantaneously estimate spatially contiguous air temperatures [12–15]. By combining 
remote sensing data with meteorological station data, it becomes possible to upscale point data from 
meteorological stations to create meso-scale maps of the distribution of LSTs. 

The advent of the Advanced Very High Resolution Radiometer (AVHRR) sensors on board the 
NOAA satellites series in the 1970s provided an opportunity to estimate air temperatures by means of 
remote sensing [16–21]. In 1999 and 2002, the Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor was launched as a payload on the TERRA and AQUA satellites. MODIS improved upon the 
performance of AVHRR by providing both higher spatial resolution and greater spectral resolution, and 
therefore represents an excellent sensor for monitoring the temporal and spatial variation of air 
temperatures over large areas [22,23]. Colombi et al. [24] explored the feasibility of the estimation of 
instantaneous air temperature measured at the corresponding time of satellite overpass using MODIS 
LST product (MOD11_L2), and used this data to estimate the daily mean air temperature in the Italian 
Alps. Vancutsem et al. [10] found that the MODIS nighttime products provided a good estimation of 
daily minimum air temperature over different ecosystems in Africa using the AQUA 8-day nighttime 
LST (MYD11A2), but that developing robust retrieval methods for daily maximum temperature using the 
TERRA 8-day daytime LST product (MOD11A2) will require further study. Zhang et al. [6] demonstrated 
that night-time LST was the optimal factor for estimating daily minimum, maximum and mean air 
temperatures in China. Benali et al. [25] noted that the integration of MODIS TERRA and AQUA data 
has great potential for air temperature estimation. Tomlinson et al. [12] compared the nighttime LST 
from MODIS with ground-measured air temperature across a conurbation and found that the measured 
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air temperature was always greater than the MODIS-derived LST. Hachem et al. [26] found that the 
mean daily LST was more strongly correlated with near-surface air temperature in an area with continuous 
permafrost when the TERRA/AQUA MODIS data were combined than when these values were considered 
separately (TERRA or AQUA, daytime or nighttime). Zhu et al. [13] showed that daily maximum and 
minimum air temperatures could be retrieved effectively from MODIS LST products by using 
temperature-vegetation index method in the Xiangride River basin of the northern Tibetan Plateau. 
However, cloud contamination of satellite thermal images makes it challenging to apply estimation 
models to map spatially continuous daily mean air temperatures on a regional scale using LST datasets 
as predictors, which is an important goal for agricultural applications. Few studies have focused on 
merging daily mean air temperatures estimated by daytime and nighttime LST products derived from 
TERRA/AQUA MODIS to increase the spatial coverage. There have been even fewer studies of creating 
a map of daily mean air temperature with wide spatial coverage using advanced gap-filling techniques. 
Therefore, it is necessary to develop a model for estimation of daily mean air temperature using LST 
datasets. One promising option would be to merge four daily LST products (nighttime and daytime data 
from both TERRA and AQUA) and apply gap-filling techniques to produce spatially continuous maps 
of daily mean air temperature, especially in rural areas. 

The main objective of the present paper was to develop a systematic method to create spatially 
continuous maps of daily mean air temperature by merging daytime and nighttime TERRA/AQUA 
MODIS LST products and using gap-filling techniques. Specifically, we first developed, calibrated and 
validated estimation models of daily mean air temperature (TA) using TERRA and AQUA MODIS LST 
data for China’s Shaanxi province. Next, we tested the possible combinations of four MODIS datasets: 
daily mean air temperature estimated from the TERRA daytime LST (TATD), daily mean air temperature 
estimated from the TERRA nighttime LST (TATN), daily mean air temperature estimated from AQUA 
daytime LST (TAAD), and daily mean air temperature estimated from AQUA nighttime LST (TAAN). We 
used data from 2003 to 2011 in this analysis, then used 2012 and 2013 datasets to identify the optimal 
combination. Finally, we developed a merging strategy to fill spatial gaps created by cloud-contaminated 
pixels by using spatially and temporally adjacent data to create spatially continuous maps of daily mean 
air temperature. 

2. Materials and Methods 

2.1. Study Area and Ground Observation Data 

The study area is located in central China’s Shaanxi Province, and covered 205,800 km2 (Figure 1). 
Shaanxi extends from 31°42′N to 39°35′N and from 105°29′E to 111°15′E. This represents a distance of 
880 km from north to south and 160 to 490 km from west to east. The area includes three distinct natural 
regions: the mountainous southern region (Qinling), the Wei River valley (the Guanzhong plains), and the 
northern upland Loess plateau. 

Shaanxi has a continental monsoon climate, but the climate varies widely due to its large span in 
latitude and altitude. The northern parts, including the Loess Plateau, have either a cold arid or cold 
semi-arid climate. The middle area in the Guanzhong plains is mostly warm and semi-arid and the 
southern portion lies in the humid subtropical zone. Due to the influence of the monsoon climate, 
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Shaanxi has a hot summer and cold winter. The annual mean air temperature ranges between 8 °C and 
16 °C, with January mean air temperatures ranging from −11 °C to 3.5 °C and July mean air temperatures 
ranging from 21 °C to 28 °C. The annual precipitation range between 500 and 1000 mm in the southern 
mountain area, between 500 and 640 mm in the Wei River valley, and is only about 250 mm on the 
Loess Plateau. The daily mean air temperature (TA) data from 23 meteorological stations belonging to 
the Shaanxi Provincial Meteorological Bureau were downloaded from the China Meteorological Data 
Sharing Service System [27]. Based on the MODIS Land Cover Type product (MCD12Q1) in 2012, the 
land cover in Shaanxi includes mixed forest (38.65%), cropland (28.23%), grassland (26.71%), 
deciduous broadleaf forest (4.72%), urban and built-up area (0.85%), and other land use types (water, 
evergreen needle-leaf forest, evergreen broadleaf forest, deciduous needle-leaf forest, closed shrub-
lands, open shrub-lands, savannas, permanent wetland, and barren or sparsely vegetated areas). There is 
no snow and ice in the study region. 

 

Figure 1. Location of the 23 meteorological stations in Shaanxi province and range of 
elevations in the study area. 

2.2. Daytime and Nighttime MODIS LST Data 

To provide more comprehensive support for studies of the Earth, the U.S. National Aeronautics and 
Space Administration (NASA) developed its earth observation system (EOS) program in the 1990s. The 
TERRA (EOS-AM) and AQUA (EOS-PM) satellites were specifically designed to support this program. 
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The TERRA satellite was launched in December 1999 and the AQUA satellite was launched in May 
2002. TERRA descends past the equator at about 10:30 AM and ascends at about 10:30 PM; in contrast, 
AQUA passes in the opposite directions over the equator at around 1:30 AM and 1:30 PM, respectively. 
The MODIS sensors on board the TERRA and AQUA satellites have 36 spectral channels that cover the 
electromagnetic spectrum from 0.4 µm to 14 µm with a viewing swath width of 2330 km [28], and their 
orbital parameters provide global coverage for 1 to 2 days. 

We used two MODIS LST products (Collection 5) in this study: (i) the MOD11A1 daily Land Surface 
Temperature & Emissivity product derived from MODIS on board the TERRA satellite and its corresponding 
information from quality control (QC); and (ii) the MYD11A1 daily Land Surface Temperature & 
Emissivity product derived from MODIS onboard the AQUA satellite and its corresponding information 
from QC. The MODIS LST is generated using a split-window algorithm [29,30] with two thermal 
infrared bands: band 31 (10.78 to 11.28 µm) and band 32 (11.77 to 12.27 µm). The MOD11A1 from 
TERRA and the MYD11A1 from AQUA are created in tiles that contain 1200 rows by 1200 columns 
for each tile at approximately 1-km resolution. The MODIS Cloud Mask algorithm, which is based on a 
series of visible and infrared threshold tests, is used to determine the confidence of the satellite’s view 
of the Earth’s surface, because clouds often obscure parts or even the entirety of the satellite images. The 
LST data will not be available for a location if clouds are present [31]. These data can be downloaded from 
the Land Processes Distributed Active Archive Center [32]. 

2.3. Preprocessing of the MODIS LST Data 

The MODIS LST products are created in tiles with 1-km resolution and their accuracy has been 
assessed and found to be satisfactory using several ground reference and validation efforts [29,30].  
In the present study, the MODIS LST products were preprocessed to build valid LST maps of Shaanxi 
Province. First, we used the MODIS Reprojection Tool to extract the corresponding bands 
(LST_Day_1km, QC_Day, LST_Night_1km, QC_Night) from MOD11A1 and MYD11A1. Next, we 
created a mosaic of two tiles of LST products (h26v05 and h27v05) that covered the study area and 
reprojected the geographic coordinates to use the Albert Conic Equal Area projection (SD1 = 25, SD2 = 47, 
CM = 105). Using an Interactive Data Language (IDL) program, we clipped the re-projected MODIS 
LST datasets using the boundary polygon that defined the study area. The valid LST values were stored 
for subsequent processing only when the QC values equaled zero. In the final step, we converted the 
LST values in the satellite products from Kelvin to Celsius values using the following formula: 

C = 0.02 T − 273.15 (1) 

where C is Celsius temperature (°C), T is the absolute temperature (in Kelvins), and 0.02 is a scale factor 
that converts the scientific data sets values to real LST values in Kelvin degrees [30]. Table 1 summarizes 
the key terms used in this study and their descriptions. 
 
  



Remote Sens. 2015, 7 8733 
 

 

Table 1. Descriptions of the key terminology used in this study. 

Terms Description 
LST (°C) land surface temperature derived from the remotely sensed data 

LSTTD (°C) Daytime LST derived from the TERRA MODIS data 
LSTTN (°C) Night-time LST derived from the TERRA MODIS data 
LSTAD (°C) Daytime LST derived from the AQUA MODIS data 
LSTAN (°C) Night-time LST derived from the AQUA MODIS data 

TA (°C) Daily mean air temperature observed at the meteorological stations 
TATD (°C) Daily mean air temperature estimated using LSTTD 
TATN (°C) Daily mean air temperature estimated using LSTTN 
TAAD (°C) Daily mean air temperature estimated using LSTAD 
TAAN (°C) Daily mean air temperature estimated using LSTAN 

2.4. Calibration and Validation of the Estimation Models for Daily Mean Air Temperature 

In previous studies, linear regression has been the most common method used to infer daily mean  
air temperature (TA) directly from satellite thermal infrared data [33–37]. Therefore, we used linear 
regression to estimate the daily mean air temperature from the MODIS LST data: 

TA = a LST + b (2) 

where a and b are regression coefficients estimated by means of ordinary least-squares regression. TA 
for specific date t is calculated as: 

!"# =
!"#%&,() + !"#,( + !"#,+ + !"#,&,

4  (3) 

where TAt is the daily mean air temperature on date t. TAt–1,20is the air temperature at 8 PM on date t-1. 
TAt,2, TAt,8, and TAt,14 are the air temperatures at 2 AM, 8 AM, and 2PM on date t respectively. Therefore, 
the LST derived from MODIS data at 8 PM on date t-1 (LSTt–1,20) was used to estimate the daily mean 
air temperature on date t (TAt). 

The daytime and nighttime LST derived from the TERRA MODIS data (LSTTD and LSTTN) and from 
the AQUA MODIS data (LSTAD and LSTAN) can be used as independent variables. This offers the possibility 
of four types of estimation model for daily mean air temperature on a clear day. This will greatly increase 
the potential data coverage and estimation accuracy.  

The first type of model was constructed using year-round daily mean air temperatures from the  
23 meteorological stations. Because previous studies have shown that the relationships between daily 
mean air temperature and LST may change seasonally [24,38,39], we created a second type of model 
based on the use of separate temperature data for spring (March, April, and May), summer (June, July, 
and August), fall (September, October, and November), and winter (December, January, and February). 
Because air temperatures in urban areas are higher than those in rural and agricultural areas by an average 
of 2 to 5 °C and because the urban structure influences air temperatures and the relationship between 
LST and vegetation cover [40], we built a third type of model that reduces the effect of this phenomenon 
by using only seasonal data from meteorological stations in agricultural region. This reduced the total 
number of stations that provided data from 23 to 14 for our study area including 14 meteorological 
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stations in rural areas (Changwu, Dingbian, Fengxiang, Foping, Wuqi, Hengshan, Jinghe, Lueyang, 
Luochuan, Shiquan, Suide, Wugong, Yaoxian and Zhen’an). 

To avoid problems with autocorrelation, we divided the available data from 2003 to 2013 into two parts: 
we used data from 2003 to 2011 to calibrate the estimation models, and then used data from 2012 and 2013 
to validate the calibrated models. We evaluated the models’ performance using the coefficient of 
determination (R2), the root-mean-square error (RMSE), the mean absolute error (MAE), and the bias [25]. 
These parameters were calculated as follows: 
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where TAob,t is the daily mean air temperature observed at a meteorological station on date t, TAest,t is the 
estimated daily mean air temperature from the MODIS LSTs at that station on date t, n is the number of 
observations at that station, and !"78 is the mean of the observed daily mean air temperatures at that 
station (!"34 =

&
A

!"34,#5
#6& ). 

3. Results and Discussion 

We generated the estimation models for daily mean air temperature based on the year-round LST data 
(Model I), the seasonal LST data (Model II), and the seasonal LST data for rural areas (Model III).  

3.1. Calibration and Validation of the Estimation Models Using MODIS LSTs 

3.1.1. Model I: The Estimation Models of Daily Mean Air Temperature Using Year-Round LST Data 

Figure 2 shows the relationships between daily mean air temperatures (TA) based on data from all 
meteorological stations and the LSTs derived from the TERRA and AQUA MODIS products. The results 
show that TA was lower than daytime LST but higher than nighttime LST derived from both satellites. 
This is because the land surface is the source of heat for air near the surface, and absorbs solar radiation 
during the daytime and releases that heat at night through long-wave radiation. Differences between TA 
and LST would be accentuated by heat absorption during the insolation period. Therefore, the differences 
between TA and LST derived from AQUA MODIS (with an overpass at 1:50 PM local time) are greater 
than those derived from TERRA MODIS (with an overpass at 10:50 AM local time) during the daytime.  
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Figure 2. The relationship between observed TA at the 23 meteorological stations and the 
daytime and nighttime MODIS LSTs (2003 to 2011). The diagonal line from the origin 
represents the relationship TA = LST; the shorter lines represent the linear regression lines. 

Figure 2 also shows a clear linear relationship between TA and the MODIS LSTs. Therefore, we used 
linear regression to establish the estimation models for TA as a function of the MODIS LST. The model 
fit was good (R2 > 0.77, p < 0.001), with low errors (RMSE < 4.2 and biases < 0.001) for all models. 
When nighttime LSTs were used as estimators instead of daytime LSTs, the R2 improved to values 
greater than 0.86. This means that LSTTD or LSTAD can explain at least 77% of the variance in TA, whereas 
LSTTN or LSTAN can explain at least 86% of the variance. In addition, the RMSEs for the regression 
equations based on nighttime LSTs as estimators were at least 20% smaller than those using daytime 
LSTs as estimators. This means that the night-time LSTs are better estimators of TA than the daytime 
LSTs. These results are consistent with other studies conducted in various regions [6,10,41].  

There were differences between the AQUA and TERRA night point clouds. These point clouds are 
from measured and estimated data at the Huashan station. Huashan, located about 120 km east of Xi’an, is 
one of China’s Five Great Mountains. The highest point is the South Peak (Huashan station) at 2154.9 m. 
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The complicated interlinks between ambient TA and LST can be explained by the balance between 
incoming shortwave radiation, incoming and outgoing long wave radiation, the surface albedo, the 
ground heat flux, and the sensible and latent heat fluxes. As a general rule, the land surface cools rapidly 
during the night to yield a negative LST−TA difference, and the longer after sunset, the bigger the 
difference. Therefore, the intercept of the equation between TA and LSTAN (7.3256) is greater than the 
intercept of the equation for the relationship between TA and LSTTN (5.5517) because the average 
overpass time for AQUA at night (1:50 AM) is later than that of TERRA at night (10:50 PM) for our 
study area. This is similar to the results of Shamir and Georgakakos’ [8]. However, TA is lower at the 
Huashan station because atmospheric temperature decreases with increasing altitude. Thus, the scatter 
plot between TA and LSTAN at Huashan station differs from that at the other stations and is closer to the 
line for TA = LSTAN. Therefore, LSTTN is a better predictor of TA than LSTAN in this context. 

3.1.2. Model II: Estimation of Daily Mean Air Temperature Using Seasonal LST Data 

Table 2 presents the linear regression equations for the relationship between TA and LST based on 
separate data for the spring, summer, fall, and winter. As in the case of Model I, all models were statistically 
significant (p < 0.001), but the nighttime LSTs were better estimators of TA than the daytime LSTs. The 
biases for all models were less than 0.04. We found that the RMSE values for the model estimates during 
the summer were equivalent to or slightly better than those in the other seasons. RMSE ≤ 2.7 for the 
summer estimation models, versus RMSEs ≤ 4.4, 3.2, and 3.1 for models in the spring, fall, and winter, 
respectively. The lowest R2 and RMSE occurred during the summer. However, the diurnal temperature 
variation differs between the land surface and the air above it.  

Compared with the RMSEs of estimation models based on year-round data (i.e., Model I), using 
seasonal LSTTD, LSTTN, LSTAD, and LSTAN as the independent variables (Figure 2) improved the model’s 
performance greatly in the summer, fall, and winter (Table 2). The RMSE of the estimation model for 
TA was 4.2 when year-round LSTTD was used as estimator, versus 2.6, 3.2, and 3.0, respectively, for the 
summer, fall, and winter models. The corresponding RMSEs for the LSTTN model were 1.9 (summer), 
1.9 (fall), and 2.2 (winter), and were less than the RMSE for the year-round data (2.5) The RMSE for 
the model based on year-round LSTAD was 4.2 and was greater than those of the models for summer 
(2.6), fall (3.2), and winter (3.1). With the LSTAN models, the RMSEs for models in the summer (2.7), 
fall (2.8), and winter (2.7) were less than the RMSE (3.3) with the year-round data. The models for 
spring had estimation power similar to that of the models using the year-round data. 

3.1.3. Model III: Estimation of Daily Mean Air Temperature for Agricultural Regions Using Seasonal 
LST Data 

In the past few decades, with the accelerating rate of urbanization in China, the increasing amount of 
buildings, public squares, and roads in Shaanxi Province has decreased the amount of green space, water, 
and other natural surfaces. The surface thermodynamic properties differ greatly between urban and rural 
land. Buildings and artificial pavement represent the dominant urban surface, and because their materials 
have a high thermal conductivity, they absorb more of the incident solar radiation. This can cause greater 
atmospheric warming than would occur over natural surfaces such as vegetation, creating what is known 
as the “urban heat island” effect. As a result of urbanization, the urban temperature has therefore risen 
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steadily [39]. In summer, when the surface temperature of grass lawns is 32 °C, cement roads may have 
a surface temperature of up to 57 °C, and asphalt surface temperatures may rise as high as 63 °C [42]. 
These high-temperature surfaces become a huge heat source for the surrounding atmosphere. High 
concentrations of air pollutants and increasing levels of aerosol particles also retain this heat by acting 
to some extent as insulators that trap outgoing radiation [43]. Kawashima et al. [44] pointed out that 
LSTs generally determine the variations of the surrounding air temperature. Therefore, the relationship 
between TA and LST derived from satellite data for urban environments will be quite different from that 
in rural regions. To enhance the estimation accuracy of TA for rural areas, we repeated our analysis after 
excluding data from urban stations and mountainous area. 

Table 2. Estimation models for daily mean air temperature (TA) in the spring, summer,  
fall, and winter using the MODIS-derived land surface temperatures (LSTs) as the 
independent variable. 

Independent 
Variable 

Season Model II R2 RMSE bias N 

LSTTD 

Spring TATD = 0. 529LSTTD + 1.185 0.4390 4.4 0.0002 3698 
Summer TATD = 0.232LSTTD + 15.73 0.2280 2.6 0.0237 3007 

Fall TATD = 0.8149LSTTD − 4.5194 0.7487 3.2 0.0168 3256 
Winter  TATD = 0.8542LSTTD − 6.0169 0.6620 3.0 0.0007 1589 

LSTTN 

Spring TATN = 0.8626LSTTN + 7.7517 0.8241 2.5 0.0051 4213 
Summer TATN =0.7113LSTTN + 10.503 0.6355 1.9 0.0082 3525 

Fall TATN = 0.9039LSTTN + 4.7326 0.9015 1.9 0.0071 3654 
Winter  TATN = 0.8714LSTTN + 4.0055 0.879 2.2 −0.0011 2073 

LSTAD 

Spring TAAD = 0.512LSTAD − 0.044 0.4070 4.2 0.0169 3473 
Summer TAAD = 0.239LSTAD +14.86 0.2530 2.6 0.0338 2545 

Fall TAAD = 0.784LSTAD − 6.012 0.7370 3.2 0.0180 3186 
Winter  TAAD= 0.716LSTAD − 7.752 0.6400 3.1 0.0048 1570 

LSTAN  

Spring TAAN = 0.801LSTAN + 9.198 0.6710 3.3 0.0014 4095 
Summer TAAN= 0.567LSTAN + 13.57 0.3941 2.7 0.0130 2971 

Fall TAAN = 0.817LSTAN + 6.532 0.7620 2.8 0.0041 3134 
Winter  TAAN = 0.795LSTAN + 4.924 0.8250 2.7 −0.0057 1553 

Table 3 presents the TA estimation models based on the data from meteorological stations in rural 
regions in each season and the corresponding LSTs. There was generally a strong and statistically significant 
positive linear relationship between TA and the LSTs derived from the TERRA or AQUA MODIS 
products during both the daytime and nighttime. Estimates of TA improved (lower RMSE; Model III in 
Table 3) compared to those that included data from urban areas (Model II in Table 2) when using LSTAN 
or LSTAD as the independent variable. The RMSEs of Model III with LSTAN as the estimator were 2.3 
(spring), 1.9 (summer), 1.9 (fall), and 2.3 (winter), which were less than the corresponding values of 3.3 
(spring), 2.7 (summer), 2.8 (fall), and 2.7 (winter) for Model II. The RMSEs of Model III using LSTAD 
as the estimator were 4.0 (spring), 2.4 (summer), 3.0 (fall), and 3.0 (winter), versus RMSEs of 4.2 (spring), 
2.6 (summer), 3.2 (fall), and 3.1 (winter) with Model II. With LSTTD or LSTTN as the estimator, Model 
III produced results similar to Model II. The RMSEs of Model III using LSTTN as the estimator were 2.5 
(spring), 1.9 (summer), 1.7 (fall), and 2.2 (winter), versus 2.5 (spring), 1.9 (summer), 1.9 (fall), and 2.2 
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(winter) using Model II. The RMSEs of Model III using LSTTD as the estimator were 4.2 (spring), 2.7 
(summer), 3.4 (fall), and 2.9 (winter), versus RMSEs of 4.4 (spring), 2.6 (summer), 3.2 (fall), and 3.0 
(winter) using Model II. 

Table 3. The seasonal estimation models for daily mean air temperature (TA) based on the 
corresponding land surface temperature (LST) data from meteorological stations in rural 
regions (i.e., Model III). 

Independent 
Variable 

Season Model III R2 RMSE Bias N 

LSTTD  

Spring TATD= 0.602LSTTD − 0.223 0.4860 4.2 0.0184 2460 
Summer TATD = 0.238LSTTD + 15.52 0.2370 2.7 0.0260 2426 

Fall TATD = 0.801LSTTD − 4.224 0.7250 3.4 0.0010 2657 
Winter  TATD = 0.844LSTTD − 5.819 0.6770 2.9 0.0047 1360 

LSTTN  

Spring TATN = 0.864LSTTN + 7.772 0.8249 2.5 0.0002 3300 
Summer TATN = 0.7215LSTTN + 10.279 0.6317 1.9 0.0195 2811 

Fall TATN = 0.9223LSTTN + 4.5128 0.9140 1.7 0.0032 2869 
Winter  TATN = 0.8868LSTTN + 4.1513 0.8744 2.2 −0.0032 1575 

LSTAD 

Spring TA AD = 0.519LSTAD − 0.134 0.4560 4.0 0.0099 2253 
Summer TA AD = 0.249LSTAD + 14.50 0.2330 2.4 0.0307 1656 

Fall TA AD = 0.848LSTAD − 6.987 0.7650 3.0 0.0057 2107 
Winter  TA AD = 0.737LSTAD − 7.824 0.6430 3.0 0.0011 1304 

LSTAN 

Spring TAAN = 0.886LSTAN + 9.105 0.8120 2.3 0.0024 2412 
Summer TAAN = 0.666LSTAN + 12.29 0.6520 1.9 0.0086 1926 

Fall TAAN = 0.918LSTAN + 6.228 0.8770 1.9 0.0019 1908 
Winter  TAAN = 0.865LSTAN + 5.610 0.8760 2.3 −0.0049 810 

3.1.4. Validation of the Estimation Models for Daily Mean Air Temperature 

We validated the estimation models for TA using data from 2012 and 2013 at all available meteorological 
stations for models I and II, and data only from rural meteorological stations for model III. Figure 3 
shows the relationship between the TA estimated using Model I, Model II, and Model III with the MODIS 
daytime and nighttime LSTs as independent variables and the TA measured at the meteorological 
stations. Most of the points were distributed around the line TA = LST. This indicates a good agreement 
between the estimated and measured TA. Model III tended to be more accurate than models I and II 
(Table 4).  

Table 4 shows that Model III performed best. Model III generally had the highest coefficient of 
determination and lowest RMSE and MAE, or values comparable to those in the other models. Pairwise 
tests showed that the TA values estimated by Model III differed significantly (p < 0.01) from those 
estimated using Model I when LSTTD, LSTAD, or LSTAN was used as the estimator, but not for the model 
with LSTTN as the estimator (Table 5). The TA estimated by Model III differed significantly from that of 
Model II when LSTAD and LSTAN were used as the estimator (p < 0.05); for the TERRA datasets, the 
difference was not significant. In addition, Model II differed significantly from Model I (p < 0.01) only 
when the daytime LST data were used.  
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Figure 3. Relationships between the estimated and measured daily mean air temperature 
(TA) based on daytime (D) and nighttime (N) data for the three models (I = all data,  
II = seasonal data, III = seasonal data from rural stations). Table 4 provides statistical data 
on the results of each linear regression. 
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Table 4. Validation of the estimated daily mean air temperature (TA) predicted using land 
surface temperature (LST) data from meteorological stations for the three models in 2012 
and 2013. 

Independent MODEL I MODEL II MODEL III 

Variable R2 RMSE MAE Bias R2 RMSE MAE Bias R2 RMSE MAE Bias 

LSTTD 0.7791 4.3 3.38 0.2345 0.8622 3.4 2.66 −0.3462 0.867 3.4 2.7 0.4096 

LSTTN 0.8941 2.9 2.20 0.7119 0.9176 2.6 1.87 −0.7445 0.9516 2.0 1.56 −0.6007 

LSTAD 0.795 4.1 3.27 −0.1203 0.8649 3.3 2.62 0.2830 0.887 3.2 2.52 0.3737 

LSTAN 0.8633 3.2 2.32 0.2886 0.8919 2.8 2.01 0.2572 0.94 2.0 1.54 0.3467 

Table 5. Significant test between the different estimation values of daily mean air 
temperature using the three model types with the MODIS LSTs as the predictor. 

 
Pairwise Test Result (p level) 

Model III/Model I Model III/Model II Model II/Model I 
LSTTD 0.0000 0.0933 0.0022 
LSTTN 0.1795 0.0513 0.2021 
LSTAD 0.0000 0.0106 0.0001 
LSTAN 0.0093 0.0109 0.4708 

3.2. Optimal Strategies for Merging Images of Daily Mean Air Temperature Estimated from LSTs 

We created maps of TA values for each day from 2003 to 2013. We obtained a maximum of four TA 
images on each clear day (i.e., the daytime and nighttime LSTs from the TERRA and AQUA MODIS 
products). However, because of cloud cover, one or more of these datasets was often unavailable for 
certain parts of the study area, and the resulting map of estimated TA suffered from gaps. Figures 4 and 5 
present the proportion of the data available for each pixel in the study area based on the daytime and 
nighttime TERRA and AQUA MODIS LSTs in 2012 and 2013, respectively. Most of the pixels in the 
study area had availability values of less than 50%. For example, Figure 6 shows that on 21 June 2012, 
the available data amounted to only 18.40, 40.81, 51.04, and 24.29% of the pixels for TATN, TAAN, TATD, 
and TAAD, respectively. Fortunately, the available data from the different MODIS products both overlap and 
complement each other, which makes it possible to merge the data to increase data availability for the 
study area. Figure 7 provides examples of merged TA data for 21 June 2012. The available data coverage in 
the merged image totaled 75.58%, which represents an increase of 57.18, 34.77, 24.54, and 51.29 percentage 
points compared with the coverage based only on TATN, TAAN, TATD, and TAAD, respectively. 

Table 4 shows that the RMSEs using Model III were 3.4, 2.0, 3.2, and 2.0 when using LSTTD, LSTTN, 
LSTAD, and LSTAN as the estimator, respectively, and the corresponding MAEs were 2.70, 1.56, 2.52, 
and 1.54. This means that combining the different TA images calculated using the different LST products 
will result in a different accuracy. Table 6 shows the possible strategies for combining TA images. In 
strategy 1, for instance, the TATN image was the initial basis for the merged data. When the TATN value 
was missing, it was replaced by the TAAN value. If both TATN and TAAN were missing, they were replaced 
by the TAAD value. When all three were missing, they were replaced by the TATD value. The values in 
Table 6 were calculated independently for each grid cell throughout the study area.  
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Figure 4. Percentages of available data for daily mean air temperature (TA) in 2012 based 
on daytime and nighttime TERRA and AQUA MODIS land surface temperatures (LSTs). 
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Figure 5. Percentages of available data for daily mean air temperature (TA) in 2013 based 
on daytime and nighttime TERRA and AQUA MODIS land surface temperatures (LSTs). 
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Figure 6. Daily mean air temperature (TA) estimated using the daytime and nighttime land 
surface temperatures (LSTs) from the TERRA and AQUA MODIS products for 21 June 2012. 
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Figure 7. Merged image using the daily mean air temperatures (TAs) estimated using the 
daytime and nighttime land surface temperatures (LSTs) from the TERRA and AQUA 
MODIS products for 21 June 2012. 

Based on results in Table 6, we found that R2 varies between 0.9073 and 0.9383, the RMSEs range 
from 2.41 to 2.91, MAE change from 1.84 to 2.24, and bias varies between −0.5049 and −0.3421. The 
merged results had a higher R2 and a lower RMSE and MAE if TATN and TAAN were used as the first two 
merged images (strategies 1, 2, 7, and 8). The prediction ability was high in each case, with R2 > 0.93, RMSE 
≤ 2.43, and MAE ≤ 1.87 in all cases. In contrast, if we used TATD and TAAD as the first two merged 
images (strategies 17, 18, 23, and 24), R2 decreased (to values <0.92) and RMSE and MAE increased 
(to values ≥ 2.76 and 2.11, respectively). This is because the R2 between TA and nighttime LSTs was 
stronger than those between TA and daytime LSTs (Section 3.1). The estimation models based on nighttime 
LSTs had lower RMSEs and MAEs. The optimal combination of TA images was provided by Strategy 2; 
although Strategy 18 produced similar results, the R2 value was higher for Strategy 2. Therefore, we 
chose Strategy 2 as the optimal combination of the four TA images. 
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Table 6. Possible image merging strategies to create maps of daily mean air temperature 
(TA) using the TERRA and AQUA MODIS land surface temperatures (LSTs) and their 
accuracy using the validation datasets from 2012 to 2013. 

Strategy Base Image Second Image Third Image Fourth Image R2 RMSE MAE bias 
1 TATN TAAN TAAD TATD 0.9381 2.42 1.84 −0.4549 
2 TATN TAAN TATD TAAD 0.9383 2.41 1.84 −0.4190 
3 TATN TAAD TAAN TATD 0.9352 2.48 1.90 −0.5033 
4 TATN TAAD TATD TAAN 0.9338 2.51 1.92 −0.5049 
5 TATN TATD TAAN TAAD 0.9361 2.45 1.87 −0.4215 
6 TATN TATD TAAD TAAN 0.9341 2.49 1.91 −0.4541 
7 TAAN TATN TAAD TATD 0.9367 2.43 1.87 −0.4501 
8 TAAN TATN TATD TAAD 0.9369 2.42 1.87 −0.4141 
9 TAAN TAAD TATN TATD 0.9299 2.54 1.94 −0.3851 

10 TAAN TAAD TATD TATN 0.9253 2.63 2.00 −0.4348 
11 TAAN TATD TATN TAAD 0.9281 2.57 1.96 −0.4073 
12 TAAN TATD TAAD TATN 0.9250 2.62 2.00 −0.3756 
13 TAAD TAAN TATN TATD 0.9170 2.76 2.13 −0.4245 
14 TAAD TAAN TATD TATN 0.9124 2.84 2.19 −0.4743 
15 TAAD TATN TAAN TATD 0.9190 2.74 2.10 −0.4443 
16 TAAD TATN TATD TAAN 0.9124 2.84 2.19 −0.4743 
17 TAAD TATD TATN TAAN 0.9097 2.89 2.22 −0.4794 
18 TAAD TATD TAAN TATN 0.9079 2.91 2.24 −0.4647 
19 TATD TAAN TATN TAAD 0.9167 2.76 2.11 −0.3739 
20 TATD TAAN TAAD TATN 0.9136 2.81 2.15 −0.3421 
21 TATD TATN TAAN TAAD 0.9183 2.74 2.09 −0.3769 
22 TATD TATN TAAD TAAN 0.9162 2.78 2.13 −0.4095 
23 TATD TAAD TAAN TATN 0.9073 2.91 2.24 −0.3562 
24 TATD TAAD TATN TAAN 0.9091 2.89 2.22 −0.3709 

The LSTs from MODIS TERRA and AQUA are retrieved only under clear-sky conditions. LSTs 
under cloudy conditions would differ from those obtained under a clear sky. In contrast, TA is available 
irrespective of cloud conditions. It is therefore important to analyze the influence of clouds on the 
estimation of TA. Table 7 summarizes the difference between the measured and estimated TA under four 
different cases of cloud conditions. In Case 1, pixels from all four datasets are cloud-free. In Case 2, 
pixels from three of the four datasets are cloud-free. In Case 3, pixels from two of the four datasets are 
cloud-free. In Case 4, pixels from only one of the four datasets are cloud-free. Case 5 means that pixels 
are contaminated with clouds in all four LST products, so LST is instead estimated by means of 
interpolation between adjacent pixels (we will describe the interpolation method in Section 3.3). In Case 2, 
Case 3 and Case 4, missing pixels due to cloudiness in different datasets were filled with corresponding 
cloud-free pixels in another dataset which means that TA could have been overestimated (i.e., because 
LST would be lower as a result of the shade created by clouds). In Case 5, missing pixels were 
interpolated from surrounding cloud-free pixels, leading to a positive bias. The bias also varied 
seasonally. In winter, as the vegetation coverage is lower, bare soil and built structures receive more 
solar radiation, which causes a slightly higher bias when daytime LST is merged into the map. In summer, 
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vegetation and water reduce the temperature difference during the daytime and nighttime. The results 
show no obvious relationship among the four cases because the LSTs from the MODIS Terra and Aqua 
have already been filtered to eliminate cloud cover using the QC data. Under these circumstances, the 
data merging method proposed in this study has no consistent bias that must be adjusted to account  
for cloudiness. 

Table 7. Bias between measured and estimated daily mean air temperature (TA) under different 
cloud conditions for the merged data from four MODIS datasets using data from 2012 and 
2013. Cases: 1 = pixels from all four datasets are cloud-free; 2 = pixels from three of the 
four datasets are cloud-free; 3 = pixels from two of the four datasets are cloud-free; 4 = pixels 
from one of the four datasets are cloud-free; 5 = pixels are contaminated with clouds in all 
four datasets and must be estimated by means of interpolation of data from adjacent pixels. 

Case Whole Year Spring Summer Autumn Winter 
1 −0.4837 −0.8475 −0.3088 −0.3207 −0.2039 
2 −0.6341 −0.3766 −1.0319 −0.4779 −0.7821 
3 −0.3775 −0.2540 −0.6404 −0.0127 −1.0149 
4 −0.3979 −0.0953 −0.4046 −0.4798 −0.7197 
5 0.0646 −0.1483 −0.1535 0.4003 0.3944 

3.3. Temporal and Spatial Fusion of Daily Mean Air Temperature Using Time Series Images 

Figure 8 demonstrates the spatial distribution of data availability for each pixel using data for the 
whole year in 2012 and 2013. The merged image greatly improved the spatial coverage by the available 
data. Table 8 presents the annual data availability percentages for the TA images throughout the study 
area for the merged images and for images derived from daytime and nighttime TERRA and AQUA 
MODIS LSTs in 2012 and 2013. The results show that the merged image greatly improved the spatial 
coverage by the available data, reaching values of 55.46% in 2012 and 44.92% in 2013. But the percentages 
of available data were 22.08%, 17.94%, 22.48%, and 18.65% for TATN, TAAN, TATD, and TAAD images 
in 2012. They were 28.85%, 25.23%, 31.30%, and 27.84%, respectively, in 2013. The available data in 
the merged images therefore increased by 33.38, 37.52, 32.98, and 36.81 percentage points in 2012 and 
by 16.07, 19.69, 13.62, and 17.08 percentage points in 2013 compared with the corresponding TATN, TAAN, 
TATD, and TAAD images. However, given the fact that data for an average of half of the pixels were 
unavailable even after merging the images, it is clearly necessary to obtain fuller spatial coverage to 
improve the accuracy of estimation of TA. 
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Figure 8. Percentages of data availability for daily mean air temperature (TA) in 2012 and 
2013 for merged images based on the validation dataset. 

Table 8. Percentages of the daily mean air temperature (TA) images for the merged dataset 
(all four MODIS LST products combined using strategy 2 in Table 6) and for images derived 
from daytime and nighttime TERRA and AQUA MODIS LSTs in 2012 and 2013. 

  Data Availability (%for Coverage, Percentage Points for Increase) 

Year 
Merged 

Coverage 
TATN TAAN TATD TAAD 

Coverage Increase Coverage Increase Coverage Increase Coverage Increase 

2012 55.46 22.08 33.38 17.94 37.52 22.48 32.98 18.65 36.81 
2013 44.92 28.85 16.07 25.23 19.69 31.30 13.62 27.84 17.08 

Ideally, the TA for crop growth monitoring and model simulation should take advantage of complete 
datasets. In reality, noise and missing pixels create gaps in the data that must be filled somehow. Aiming 
to achieve improved accuracy of TA will require efforts to reduce the loss of data and fill gaps, thereby 
providing better coverage of the whole study region. The daily mean temperature images before the date 
of the estimation are obtained if their data are available. These images carry important information for 
the TA estimation for the present day. We therefore proposed a method to fill gaps in the data based on 
the assumption that atmospheric conditions would be uniform within a relatively small window surrounding 
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a pixel for which data is missing. This means that the TA difference of a target pixel between data t and 
data t-1 is equal to the mean TA difference of surrounding pixels between data t and data t-1. To minimize 
the uncertainty in the error introduced by cloudiness and gaps between swaths, we exploited a possible 
strategy based on finding the optimal window size by extending the process into a larger geographic 
area. The optimum window size was obtained from statistical analysis of the difference between TA 
estimated from the MODIS LST and TA measured by the meteorological stations. Figure 9 displays the 
change in the quality of the estimate as a function of the window size used for the spatial filling. Figure 10 
illustrates this estimation procedure (using a window size of 9 × 9 pixels as an example). The R2 
increased with increasing window size. In the contrast, RMSE, MAE, and bias decreased with increasing 
window size. The magnitude of the bias reached its minimum at a window size of 33 × 33 pixels. We 
therefore used a grid of 33 × 33 pixels centered on the pixel with missing data in our subsequent analysis. 
The mean difference in TA among these pixels is calculated as follows: 

∆!" =
1
N (!"J,K# − !"J,K#%&)

LM,

L6L%,

NM,

N6L%,

 (8) 

where ∆!" is the mean TA difference among the pixels with available data both at the date of estimation 
(i.e., at time t) and the date before the estimation (i.e., at time t–1). N is the number of pixels with 
available TA values both at the date of estimation and the date before estimation. !"J,K#  and !"J,K#%& are 
the TA values for the pixel in line i and column j of the image at times t and t–1.  
!"J,K#  can be estimated as follows: 

!"J,K# = !"J,K#%& + ∆!" (9) 

We used this approach to generate a time series of filled pixels using data for the whole year derived 
from the 14 rural meteorological stations in both 2012 and 2013. Figure 11 shows the resulting relationship 
between the estimated and measured TA. Overall, the approach produced good results: a strong and 
statistically significant relationship (R2 = 0.8971) with a low MAE (2.35) for data from all seasons. Using 
the filled dataset increased data coverage to 78.23% and 86.02% in 2012 and 2013, respectively. The 
model showed a seasonal pattern of error. In summer, the R2 was relatively poor and the distribution of 
the data was more concentrated than in other seasons which led to a lower RMSE. In turn, the higher 
LST increased turbulence in the atmospheric boundary layer, thereby affecting heat transfer from the 
land surface into the ambient air and subsequently to the upper atmosphere. In contrast, the land surface 
receives less solar radiation in winter, thereby weakening turbulence. The retrieval of TA is simpler at 
night because solar radiation does not affect the thermal infrared signal. Figure 12 demonstrates the  
day-to-day variation of the measured and estimated daily mean air temperature in 2012 and 2013 at the 
14 rural meteorological stations. Judging from the similarity of the measured and estimated air 
temperatures (i.e., the difference was small and centered on 0 °C), the estimation model generally showed 
good agreement with the measured TA and was able to reflect the annual pattern of TA fluctuation. We 
found no systematically positive or negative biases between the estimated and measured values  
(Figures 11 and 12). 
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Figure 9. Analysis the optimal size (pixels) of the window used for the spatial filling method 
illustrated in Figure 10. 

!

Figure 10. Flowchart for calculation of missing pixel values caused by cloud cover and other 
problems using the merged images from the day before the estimation date The red square 
represents the pixel for which TA will be calculated based on data from the previous day. 
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Figure 11. Relationships between the estimated and measured daily mean air temperature 
(TA) for whole-year data and for data from the spring, summer, fall, and winter. 
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Figure 12. Annual variation in the measured and estimated daily mean air temperature (TA) 
in 2012 and 2013 based on the data from the 14 rural meteorological stations. 
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4. Conclusions 

If clouds are present at a given location, then LST data will not be available. In this paper, we describe 
a systematic method for filling such gaps in the data based on spatial and temporal data fusion techniques. 
The first step in this method was to find the optimal strategy for merging images of daily mean air 
temperature (TA) estimated from daytime and nighttime TERRA and AQUA LST data. The second step 
was to select the optimal spatial window size to use in interpolation and gap-filling based on estimated 
TA from the previous day. This process generates high spatial and temporal coverage for the study area. 
The calibration results showed that the annual average spatial coverage could be improved significantly. 
Using this approach, the proportion of the pixels with available data increases from 20.28% to 76.99% 
in 2012 and 28.31% to 89.67% in 2013. 

The relationship between TA from the meteorological stations and LSTs derived from the daytime 
and nighttime TERRA and AQUA MODIS LST data was strong and significant. The nighttime LSTs 
from TERRA and AQUA MODIS provided a better TA estimator than the daytime LSTs. By comparing 
different strategies for merging the four TA images calculated using the daytime and nighttime TERRA 
and AQUA MODIS LST data in different orders, we found an optimal merging strategy (Table 6, 
Strategy 2). That is, TATN was used as the initial image, followed by the TAAN value if the TATN value 
was missing; if both were missing, the TATD value was used, and if all three were missing, the TAAD 
value was used. This strategy greatly increased the spatial coverage, and achieved the highest R2 and 
lowest RMSE and MAE among the 24 possible merging strategies. Since this method depends on the 
availability of TERRA and AQUA daytime and nighttime data, it is of the greatest value under conditions 
of partial or short-lived cloud cover. 

The validation results demonstrate that the data availability was only 55.46% in 2012 and 44.92% in 
2013 after the first processing step. Therefore, more effort should be made to increase the spatial coverage 
of the available data. The relative proximity of air temperature difference between the estimated date 
and the previous days near the estimated pixels provides an opportunity to predict the missing data, most 
of which resulted from cloud contamination. The second step was to determine the difference in TA 
between the estimation date and previous days for every pixel within a selected window size. Adding 
the mean differences for these pixels to the value for the center pixel from the previous day replaces the 
missing data. Our analysis found an optimal window size of 33 × 33 pixels. The spatial coverage increased 
to 76.99% in 2012 and 89.67% in 2013. 

The TA values obtained using this method can be employed as input data in crop growth simulation 
models to monitor the crop growth, predict the timing of crop development stages and forecast the crop 
yield at the regional scale [45]. Combined with indicators of a potential agricultural disaster such as 
extreme temperature, these data can improve the ability to predict the development and spatial 
distribution of damage caused by cold [5,46], freezing [7] or high temperatures [6]. In addition, the 
growth degree days (GDD), an important indicator for the cropping system in a region, can be calculated 
with high spatial-temporal daily mean air temperature data. 

Additional research should be carried out to test other strategies for filling in data gaps, such as 
accounting for the effects of solar declination and vegetation indices on TA, and to validate the mapping 
method. In our future research, we hope to improve TA estimates based on LSTs by considering the 
influence of local variables such as land use or cover types, soil moisture, snow cover, frozen ground, 
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regional microclimatic conditions, terrain characteristics, and local landscape features on the relationship 
between TA and LST [8,16,47,48]. We believe that the estimation accuracy of TA will be improved by 
improving both the mapping strategy and the estimation model. 
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