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Abstract: Remote sensing is widely used to analyze marine environments. While many 

effective and advanced methods have been developed, they are generally used independently 

of each other, despite the potential advantages of combining different modules into an integrated 

system. We develop here an image-driven remote-sensing mining system, RSMapMining 

(Remote Sensing driven Marine spatiotemporal Association Pattern Mining system), which 

consists of three modules. The image preprocessing module integrates image processing 

techniques and marine extraction methods to build a mining database. The pattern mining 

module integrates popular algorithms to implement the mining process according to the mining 

strategies. The third module, knowledge visualization, designs a series of interactive interfaces 

to visualize the marine data at a variety of scales, from global to grid pixel. The effectiveness 

of the integrated system is tested in a case study of the northwestern Pacific Ocean. The main 

contribution of this study is the development of a mining system to deal with marine remote 

sensing images by integrating popular techniques and methods ranging from information 

extraction, through visualization, to knowledge discovery. 
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1. Introduction 

Series of images taken by remote sensing over long periods of time constitute the main source  

of continuous and consistent information about the marine environment, and offer opportunities for 

monitoring its variations and for understanding the associated relationships among parameters at large 

scale [1,2]. Spatiotemporal variations in marine environmental properties and their relationship with  

El Niño–Southern Oscillation (ENSO) make up a complex and interrelated system [3–5]. The complexities 

of such a system require analysis techniques that go beyond the conventional methods of spatiotemporal 

analysis, such as empirical orthogonal functions [6], canonical analysis [7], and singular value 

decomposition [8]. Such analyses require an inductive mining technique that accounts for the complex set 

of interdependencies [9–11]. 

In recent decades, data mining has become widely used in analyses of large data sets generated by 

remote sensing. It has been used to develop techniques such as spatiotemporal mining frameworks [12–16], 

mining algorithms [17–19], and knowledge visualization techniques [13,14,20]. 

In the field of spatiotemporal mining frameworks, Lee and Lee’s [12] proposal includes a two-tier 

knowledge discovery model that integrates a foundation model for spatiotemporal representation and an 

executing model for knowledge discovery. Bertolotto et al. [13] and Compieta et al. [14] designed a mining 

architecture that includes a data layer for data processing, an application layer for association acquisition, 

and a visualization layer for knowledge visualization. Xue et al. [16] discussed pixel- and object-based 

spatiotemporal mining frameworks, and addressed some key issues ranging from image preprocessing, 

through information mining, to knowledge visualization. 

In terms of mining algorithms, the Apriori algorithm was first proposed by Agrawall and Srikant [21] 

to determine which items co-occur in a transaction. To deepen the analysis of such relationships, the 

quantitative Apriori algorithm has been revised and improved by Srikant and Agrawal [22]. Reductions in 

the computational cost of remote sensing image processing have been sought through the development of 

various mining algorithms based on the core idea of Apriori and quantitative Apriori, e.g., by embedding 

spatial constricts [17], spatial clusters [23], object-oriented techniques [18,24], and mutual information [19]. 

The complicated patterns arising from remote sensing data require sophisticated presentation. For this 

purpose, Bertolotto et al. [13] and Compieta et al. [14] integrated components from Google Earth and 

Java3D to visualize data, geograhical parameters, and associaion rules. Li et al. [20] designed an interactive 

framework to visualize association patterns over a range of scales from global to local, i.e., grid pixel. The 

framework consists of three complementary components: three-dimensional pie charts, two-dimensional 

variation maps, and triple-layer mosaics. 

The effective use of the considerable achievements of mining frameworks, algorithms, and 

visualizations relies on several systems and operational tools that have been developed to transform remote 

sensing images into useful information. For example, Datcu et al. [25] demonstrated a prototype of a 

knowledge-driven content-based information mining system to manage large volumes of remote sensing 

images, and Zhang et al. [26] designed a visual data mining system with two classes of components for 

classifying remotely sensed images and exploring image classification processes. Julea et al. [27] proposed 

a frequent sequence pattern mining algorithm for agricultural monitoring, which aimed to extract the 

evolution of each grid pixel from a time series of images. Korting et al. [28] proposed and implemented a 

new toolbox, Geographic Data Mining Analyst (GeoDMA), which integrates a series of processes 
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including segmentation, feature extraction, feature selection, landscape and multi-temporal features, as 

well as data mining for pattern recognition and multi-temporal analysis of remote sensing imagery.  

Romani et al. [29] developed the RemoteAgri system to discover the Plateau–Valley–Mountain (P–V–M) 

association patterns for monitoring sugar cane fields via time series of remote sensing images. They found 

that the P–V–M pattern mainly analyzed the association patterns between two geographical parameters. 

Finally, Saulquini et al. [11] designed an event-based mining algorithm for dealing with sea surface 

temperature (SST) anomalies relative to ENSO events, which considers each one-dimensional time series 

as a sequence of significant time-scale events for each grid pixel. 

In spite of the considerable achievements made in remote sensing image analysis, such mining  

systems and tools are suited to specific problems related to the process of extracting useful geographical 

knowledge from remote sensing images. Examples include image database management [25], image 

classification [26,28], applications and domains (e.g., evolution in a given location [27]), and one-to-one 

relationships [11,29]. Given the complexity of marine environments, the above systems and tools must 

overcome great challenges to achieve the following: (i) to extract marine objects, events, and processes 

from remote sensing images, and then to represent and store them; (ii) to design mining strategies to 

explore association patterns among events, processes, and among multiple parameters; and  

(iii) to visualize such association patterns. End users still lack effective and useful tools to obtain marine 

association patterns from remote sensing images. Therefore, the main aim of this study is to develop a 

mining system for multiple remote sensing images by integrating existing popular techniques and methods. 

The result is a platform for the end user to explore marine association patterns from remote sensing images, 

i.e., a system that performs marine information extraction and visualization, and so provides knowledge 

discovery. 

The remainder of this paper is organized as follows. Section 2 outlines the design of the system 

architecture, and gives its operational workflow and technical workflow. Section 3 describes remote 

sensing image preprocessing and the construction of a mining database. Section 4 presents the design of a 

spatiotemporal mining module. Section 5 describes an association pattern visualization module, and 

Section 6 considers the northwestern Pacific Ocean as a case of study for analyzing association patterns 

among marine bio-optical parameters and dynamic parameters, ranging from image pretreatment, through 

mining algorithms, to visualization. Finally, a discussion and conclusions are presented in Section 7. 

2. System Architecture 

A marine association pattern is the association of relationships among mutually codependent marine 

environmental parameters. The parameters can be bio-optical or dynamic. This paper considers sea surface 

chlorophyll-a (Chl-a), SST, sea surface precipitation (SSP), sea level anomaly (SLA), and sea surface wind 

(SSW), all of which can be derived by remote sensing. To provide an effective and useful tool for exploring 

marine association patterns from multiple remote sensing images, we develop a mining system called 

RSMapMining (Remote Sensing driven Marine spatiotemporal Association Pattern Mining system). This 

system aids the analysis of remote sensing images through integrating image analysis tools, data 

organization and management techniques, data mining models, and a visualization framework. 

Figure 1 shows a general diagram of the RSMapMining system and its three constituent modules for 

image preprocessing, pattern mining, and knowledge visualization. The image preprocessing module 
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builds a mining database from multiple remote sensing images, and supports the other two modules with 

input data. The pattern mining module designs the mining strategies, develops the mining algorithms, and 

implements the mining process. The mining strategies determine the structure of the mining transaction 

table, and the mined results are the inputs of the visualization module. Visualization of the marine 

association patterns is implemented through the design of a series of interactive visualization components, 

which then help to improve the preprocessing and mining modules. In Figure 1, knowledge means an 

interesting and meaningful association pattern through a series of validations, and the mining table 

database consists of series of mining transaction tables.  

 

Figure 1. Architecture of Remote Sensing driven Marine spatiotemporal Association Pattern 
Mining system(RSMapMining). 

From remote sensing images to knowledge discovery, the principal capabilities of the RSMapMining 

system are as follows: 

1. To offer a set of tools for dealing with different data types (e.g., geographical objects, geographical 

events, and geographical processes). 

2. To explore the association patterns in one or more marine environmental parameters. 

3. To explore the co-location association patterns among different marine environmental parameters, 

and the regional association patterns among different sea areas. 

4. To offer a series of flexible visualization components for displaying marine association patterns 

from global and regional scales to a detailed view.  

ArcGIS 10.0 is a widely used commercial GIS program that includes several components such as 

ArcGeoDatabase, an object relational model for storing remote sensing images and other graphical data, 

and ArcEngine, an embeddable GIS component library for building custom applications using multiple 

application programming interfaces. Oracle is a commercial software package for database systems 

supporting image storage. To realize its four major capabilities, RSMapMining selects ArcGeoDatabase 
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10.0 and Oracle 11 g for the bottom database to store image product datasets; this includes all kinds of 

tables, geographical objects, events, and processes. Visual Studio 2008 and ArcEngine 10.0 are used as a 

programming environment to develop the necessary interfaces and components. 

 

Figure 2. Workflow of RSMapMining. 

Figure 2 gives the workflow of the modules, interfaces, and components. From the operational 

workflow, we design four interfaces, one each for database management, marine information extraction, 

spatiotemporal association pattern mining, and knowledge visualization. Through these interfaces, 

RSMapMining calls three modules, each consisting of one or more components that contain the specified 

algorithms. In the technical workflow, after the initial marine information extraction and image 

pretreatment, the image datasets (raster grid pixel), marine objects, events, and processes are stored in a 

database according to the data presentation and storage model. Similarly, the data presentation and storage 

model supports an association pattern mining module with different mining strategies (i.e., strategies based 

on grid pixels, objects, events, and processes) and a visualization module for displaying marine association 

patterns at various view levels. 
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3. Marine Remote Sensing Image Preprocessing and Mining Database 

The image processing module starts by defining the input images, and then implements image 

preprocessing and feature extraction to form a mining database. This module deals with two key issues 

when handling multiple marine remote sensing images. One is image preprocessing, which aims to produce 

long-term marine remote sensing datasets within a uniform spatial and temporal resolution; the other is 

feature extraction, which finds the marine objects, events, and processes. The mining database is 

responsible for storing the marine product datasets in image format, the marine objects, events, and 

processes in vector format, and the mining transaction table in tabular form. The workflow of the image 

processing module is shown in Figure 3. 

 

Figure 3. Workflow of the image processing module. 

3.1. Image Preprocessing 

RSMapMining deals with a variety of marine images gathered by remote sensing. These include optical 

and dynamic remote sensing images and ocean color images, which are used to retrieve marine bio-optical 

parameters (e.g., Chl-a and marine primary production) and marine dynamic parameters (e.g., SST, SSP, 

SSW, SLA, and sea surface salinity). The surveys producing the initial data may be conducted at greatly 

different intervals ranging from daily to annual; their spatial resolutions may also vary, from meters to 

kilometers, and even to global scale. To produce uniform product datasets, RSMapMining develops a 

spatiotemporal slicing component and a resampling component based on a spatiotemporal statistical 

model, and also a spatiotemporal interpolation component. To remove the seasonal variations that are 
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dominated by solar radiance, RSMapMining also integrates the standard monthly averaged anomaly 

algorithm [9]. Thus, the image database comprises three categories of image datasets: the original remote 

sensing images, image products, and monthly averaged anomalies of the image product. 

3.2. Extraction of Marine Information 

Some marine environmental parameters have been proposed as global-change-sensitive factors [30] or 

essential climate variables [31]; these include SST, ocean color, sea level, and sea ice [5], which are each 

sensitive neither everywhere nor at all times. Regions that show sensitive changes in specified time 

intervals are more suitable for analyzing association patterns, especially those connected with global 

climate change. Therefore, the marine information extraction module aims to extract these sensitive sea 

areas and their evolutions over specified time intervals. 

The following four geographical data types are used in RSMapMining to represent marine information. 

 Grid pixel: A grid pixel is the basic unit of a raster image; it represents the original image 

information at a specified row and column. RSMapMining develops a spatial cutting tool to 

obtain the grid pixels of any sea area, and stores them in raster format. 

 Marine object: An object represents a common attribute or behavior with a precise and “crisp” 

spatial location and extent [32]. Object-based approaches use homogeneous regions from image 

segmentation. RSMapMining integrates an ENSO-oriented cluster-based method to extract the 

sensitive marine regions [33] and store them in vector format. 

 Marine event: An “event” is defined as a significant occurrence that results in both the creation 

and destruction of an object [34]. Multi-temporal images can be represented as a sequence of 

raster snapshots that are used to extract a sequence of values for each region at different intervals 

that define an event or process. RSMapMining develops a statistical algorithm to extract a marine 

event, and stores its spatial coverage as a vector format and the logical relationship as a table. 

 Marine process: A “process” is defined as a significant event with an evolution from production 

via development to death [35]. Generally, such processes occur in sensitive marine regions. 

RSMapMining adopts the concept of the marine spatiotemporal process to obtain a marine 

sensitive region, and store it according to the spatiotemporal process organization model [36]. 

Grid pixels and marine objects represent static information. Events represent the production or death of 

marine objects or phenomena, while processes represent the dynamic changes from production through 

development to death. Events and processes take the grid pixels and objects as their basis; e.g., the 

evolution of an eddy may be taken as a grid-pixel-based or object-based process. 

4. Spatiotemporal Association Pattern Mining Module 

Using the mining database, the mining module identifies marine spatiotemporal association patterns. It 

starts from scientific problems, works via through the mining strategies, and then implements the mining 

algorithms, as shown in Figure 4. 
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Figure 4. Workflow of the pattern mining module. 

RSMapMining deals with three categories of scientific problem: the co-location association patterns 

among marine environmental parameters, the association patterns among different sea regions, and the 

evolution of marine association patterns within specified areas and for specified durations. The first of the 

categories focuses on the spatiotemporal association characteristics at large scales, the second explores the 

spatial relationships of the association patterns within different regions, and the third addresses the 

spatiotemporal variations of the association patterns. 

Given the various problems faced by RSMapMining, it can design corresponding mining strategies as 

grid pixel-based, object-based, event-based, and process-based. To deal with the co-location association 

patterns among parameters and the association patterns among regions, RSMapMining integrates 

complementary pixel- and object-based mining frameworks with multiple remote sensing images to find 

mining association patterns by grid pixels or by objects [16]. Regarding the evolution of marine association 

patterns, RSMapMining considers the evolution of an object from its start to its end as an event or process; 

it develops an event- or process-based mining model to explore the evolution of the association patterns. 

RSMapMining adopts object-based techniques to develop the mining algorithms. These  

include quantitative Apriori [21], FP-Tree [23], cluster-based association rule (CBAR) [37], and  

mutual-information-based quantitative association algorithm (MIQarma) [19]. Each of these algorithms is 

encapsulated into components with series of variants to implement the different mining strategies. Except 

for specific implementations, these function variants have the same input and output parameter interfaces, 

and this simplifies some of the complexities of the RSMapMining program. 

For example, MIQarma has four variants, one each corresponding to grid-pixel mining, object mining, 

event mining, and process mining. The function structure is of the following form. 

BOOL MIQarma (INPUT ITable MiningTransactionTable, INPUT INT GeographicalDataType, 

OUTPUT ITable AssociationPatternTable) 

 If MIQarma succeeds, it returns true; if not, it returns false. 

 The first input parameter, MiningTransactionTable, has different table structures that are defined 

by different mining strategies (i.e., grid pixel-based, object-based, event-based, or process-based). 

 The second input parameter, GeographicalDataType, is an enumeration to represent the geographical 

data type corresponding to the different mining strategies: 0 denotes grid pixel data; 1, object 

data; 2, event data; and 3, process data. 
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 The output parameter, AssociationPatternTable, stores the mined results in a similar table 

structure consisting of spatial information, temporal information, an antecedent and consequent 

of association attributes, and evaluation indicators. 

5. Knowledge Visualization 

From the collected association pattern tables in a bottom database, RSMapMining designs a series  

of interactive interfaces to display the relevant information about the associations in its generated 

visualizations. The data for each association pattern (whether pixel-, object-, event- or process-based) 

contains spatial information, temporal information, association attributes (i.e., an antecedent and a 

consequent), and evaluation indicators (e.g., support, confidence, lift). Therefore, such association 

knowledge can be decomposed into four-dimensional information representing space, time, attributes, and 

evaluation indicators, which are used to design the interactive interfaces. Through the series of interactive 

interfaces, RSMapMining develops four visualization components: cascading tree,  

two-dimensional thematic map, table, and mosaic. Finally, the specified association knowledge, which can 

be chosen by the user, is displayed in a visualization view. The user transfers the chosen association 

knowledge to the visualization component through an interactive interface. Figure 5 outlines the workflow 

of the visualization module from left to right. 

 

Figure 5. Diagram of the visualization module. 

The visualization components (right side in Figure 5) are listed as follows. 

 Cascading representation tree: This component represents an overview at large scale, showing 

the locations where marine environmental parameters are more interrelated, the parameters 

involved, and which parameters are causes or induced. 

 Two-dimensional thematic map: This component is designed to identify where, how, and  

when one marine environmental parameter affects or responds to other parameters. The relevant 

parameters (i.e., the antecedent and consequent) are determined by the user through an interface. 
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 Table: The ordering of association patterns row-by-row has each row representing one piece of 

association knowledge. 

 Mosaic: This component represents detailed association knowledge. 

For grid-pixel-based association knowledge, each grid lattice in raster format has zero or more 

spatiotemporal association patterns among the marine environmental parameters, and each pattern may 

consist of several related parameters, with corresponding temporal information and evaluation indicators. 

To visualize such complicated association knowledge at any scale from global to detailed, RSMapMining 

combines the above visualization components. 

Object-based association knowledge relies on spatial relationships; e.g., spatial location, distance, and 

direction are very important. Although a table can easily display attributes (i.e., antecedent and consequent, 

temporal information, and evaluation indicators), it does not easily represent spatial relationships between 

marine regions or objects. RSMapMining can integrate a table and a thematic map to show the association 

knowledge among marine regions or objects. The table lists detailed data, and the map depicts their spatial 

relationships. For example, consider the association knowledge among marine regions over the northwestern 

Pacific Ocean of the form “NWPObj2.SSTA[–2,0]->NWPObj1.SLAA[2,(0,4)], 16.78%, 78.12%,  

2.77” [24]. A two-dimensional thematic map displays its location and spatial relationship, i.e., the spatial 

regions of NWPObj1 and NWPObj1. From the location data, the other spatial relationships (e.g., spatial 

distance, direction, and topology) can be obtained by calculation. 

Event- or process-based association knowledge concerns the association relationship among marine 

parameters covering specified ranges and lasting for specified durations. The spatial coverage may vary 

with time. To visualize such association knowledge, RSMapMining lists marine environmental parameters 

and evaluation indicators in tables, and uses a series of thematic map components to display the spatial 

coverage at different times. 

6. Case Study of Marine Spatiotemporal Association Patterns in the Northwestern Pacific Ocean 

6.1. Remote Sensing Images and Databases 

Monthly marine parameters are considered here: the bio-optical parameter Chl-a and the dynamic 

parameters SST, SSP, SLA, and SSW as derived from remote sensing imagery. The multivariate ENSO 

index (MEI) during the period January 1998 to December 2013 is also considered. Detailed information on 

the products is summarized in Table 1. The northwestern Pacific Ocean, covering 100°–180°E and  

0°–50°N, plays a significant role in the global climate system and regional air–sea interactions. This is a 

highly interactive ocean region, which makes it suitable for a case study. After image pretreatment, 

RSMapMining produces monthly averaged anomalies with a spatial resolution of 1.0°, and stores them in a 

database denoted as PacificAbnormalDB. Monthly anomalies of these marine parameters are denoted as 

SSTA (monthly anomaly of SST), CHLA (monthly anomaly of CHL), SLAA (monthly anomaly of SLA), 

SSPA (monthly anomaly of SSP), and SSWA (monthly anomaly of SSW), respectively. 
  



Remote Sens. 2015, 7 9159 

 

 

Table 1. Sources and resolution of remote sensing imagery used in the case study. 

 Product Source Timespan 
Temporal 

Resolution 

Spatial 

Coverage 

Spatial 

Resolution 

1 SST NOAA/PSD December 1981–December 2014 Monthly Global 1°  

2 Chl-a 
SeaWifs September1997–November 2010 Monthly Global 9 km  

MODIS July 2002–December 2014 Monthly Global 4 km 

3 SSP TRMM January 1998–December 2014 Monthly Global 0.25° 

4 SSW CCMP July 1987–June 2014 Monthly Global 0.25°  

5 SLA AVISO December 1992–June 2014 Monthly Global 0.25° 

6 ENSO MEI January 1950–December 2014 Monthly - - 

6.2. Methods and Results 

Given that object- and pixel-based mining strategies are complementary components and that  

object-based strategies are discussed in our previous work [24], the current case study adopts pixel-based 

mining strategies to explore marine spatiotemporal association patterns. The results of this and the previous 

work may mutually test and support each other. The MIQarma (mutual-information-based quantitative 

association rule-mining algorithm) function for dealing with grid pixels was used here. Its core principle 

is the use of asymmetrical mutual information to reduce the required scans of the database and so improve 

mining efficiency [19]. 

The information threshold is set to the mean value to obtain pair-wise related items, the time interval is 

set to zero, and the support, confidence, and lift thresholds are set to 10%, 60%, and 2.0%, respectively. 

The mined marine association patterns are stored in a mining database in tabular form, denoted as 

AssociatedPatternTable. The spatiotemporal association patterns are represented in the following form, 

and the table structure is as shown in Table 2. 

Table 2. Storage structure of association patterns about grid pixels. 

PatternNo SpaceIndex Association Pattern 
Support 

(%) 
Confidence (%) Lift 

3530 (0°, 178°E) ENSO [–2,0] -> SSTA [–2,0] 15.00 77.14 3.31 

3536 (0°, 178°E) ENSO [–2,0] -> SSPA [–1,0] 16.11 82.86 2.07 

3543 (0°, 178°E) SLAA [2,0] -> CHLA [–2,0] 11.67 65.62 2.81 

3548 (0°, 178°E) ENSO [–2,0] -> SSTA [–2,0] SSPA [–1,0] 14.44 76.47 3.93 

Part of AssociatedPatternTable stored in a tabular database. 

Attra1[qa1, t] Attra2[qa2, t]…Attram[qam, t]→Attrc1[qc1, t1] Attrc2[qc2, t2]… 

Attrcn[qcn, tn](s%, c%, l) 

where the attributes Attra1, Attra2, Attram and Attrc1, Attrc2, Attrcn represent the marine environmental 

parameters of pixels in lattices; the subscript a denotes an antecedent of the association pattern, and 

subscript c a consequent; qa1, qa2, qam and qc1, qc2, qcn are the quantitative levels of the attributes from −2 

to +2; t is the occurrence time of the antecedent; t1, t2, and tn are the time differences from t when the 

antecedent occurred; and positive values indicate a lag and negative values a lead. The evaluation 
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indicators s%, c%, and l correspond to the support, confidence, and lift, respectively, which are used to 

identify the meaningful association patterns. 

In this case study, marine environmental parameters are sorted into five levels according to the  

mean-standard deviation method [19]. The levels −2 to +2 represent abnormally negative changes to 

abnormally positive changes. For the ENSO index the five levels represent strong La Niña, weak La Niña, 

a neutral condition, weak El Niño, and strong El Niño, using similar results to the general definition of El 

Niño and La Niña [16]. 

6.3. Process of Visualization 

All visualizations here are based on the AssociatedPatternTable. Generally, each grid pixel may have 

zero or more association patterns, and each pattern evolves several parameters. The effective analysis and 

visualization of the complicated association patterns requires RSMapMining to design a series of 

interactive interfaces and to call corresponding visualization components. 

Figure 6 shows a visualization process from an integrated view to a detailed view through a series  

of interactive interfaces. Thousands to millions of association patterns are stored in a tabular database, 

through an interface (1), and the table is linked for visualizing association patterns in a variety of forms. 

Through interfaces (2) and (3), the number of association patterns and involved parameters are obtained 

for each grid pixel. Interfaces (4) and (5) provide the spatial distribution of marine variations caused by or 

inducing other parameters. Interface (6) generates a detailed view between any specified marine parameters 

with a series of evaluation indicators, and in combination with Figure 6h, the detailed association patterns 

are obtained. 

6.4. Analysis of Association Knowledge 

Through a series of views, RSMapMining analyzes marine association knowledge at various levels. 

The large-scale depiction broadly indicates the interactive regions and identifies the associated parameters. 

Such an integrated view helps us understand which marine parameters are more related and where the 

relations occur. For example, marine variations caused by ENSO are located mainly in three regions of the 

Pacific Ocean: the western tropical, central tropical, and subtropical regions. Therefore, analysis of these 

regions could help us to better understand the origin and evolution of La Niña events. 

The antecedent–consequent visualization view (Figure 6g) depicts some well-known patterns between 

ENSO to SSTA. When a La Niña event occurs, SSTA shows an anomalous increase in the western tropical 

Pacific Ocean region (0° to 18°N and 130°E to 150°E), and an anomalous decrease in the central tropical 

Pacific Ocean (0°to 5°N and 160°E to180°) [38]. Besides the well-known patterns, RSMapMining can 

also discern some lesser-known patterns: an abnormal rise in SSTA in the subtropical Pacific Ocean region 

(25°N to 33°N and 170°E to180°) may indicate La Niña events. This might be because when La Niña 

occurs, the North Pacific Current flows eastward through the middle of the northern subtropical region, 

resulting in a mean SST increase. Such lesser-known patterns may not have been revealed previously. 
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Figure 6. The visualization process from database to final views at various scales: (a) Database 

storing image datasets, object datasets, and table datasets. (b) Series of interactive interfaces 

linking the database and visualization views. (c) Spatial distribution of a number of association 

patterns showing which areas are interactive and which are not. (d) Spatial distribution of a 

number of parameters showing which marine parameters are associated, or not, and where 

they are associated. (e) Variations caused by antecedents (i.e., ENSO) showing the spatial 

distribution of marine variations caused by other marine parameters. (f) Variations inducing 

consequents (i.e., ENSO) showing the spatial distribution of marine variations that induce 

other marine parameters. (g) Association patterns between two marine parameters (ENSO 

→ SSTA) showing the detailed association characteristics between them with a series of 

evaluation indicators (support, confidence, and lift). (h) Detailed association characteristics 

for a specified grid pixel (10°N, 160°E). 
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7. Conclusions 

Advanced satellite observation technology can provide marine environmental parameters at  

large scales over long time periods, thus facilitating studies of their interrelationships. To aid such 

relationship-finding in marine environmental analysis, we developed a mining system, RSMapMining. 

This system aims to allow automatic/semi-automatic marine environmental analysis from remote sensing 

images to provide new knowledge discovery. This is achieved through three modules: an image 

preprocessing module, a pattern mining module, and a knowledge visualization module. These modules 

are encapsulated in a series of components for processing images, implementing algorithms, and designing 

visualization interfaces, respectively. RSMapMining integrates our developed methods of marine object 

extraction [33], marine process definition [36], association pattern mining [19], mining strategies [16], and 

visualization [20]. It also incorporates several other popular components; e.g., object, event, and process 

definition [32,34,35], and an association pattern mining algorithm [21,23,37]. The preliminary results from 

a case of study of the northwestern Pacific Ocean are encouraging, and demonstrate that RSMapMining is 

useful and convenient for obtaining marine association patterns at various levels from the global scale to a 

detailed view. The program’s components can reasonably supplement existing commercial tools (e.g., 

ArcGIS). 

The proposed RSMapMining system is a promising analytical tool for spatiotemporal association 

analysis of long time series of remote sensing images, but further development is still needed. Future 

studies will aim to expand the interfaces to integrate the latest mining methods and techniques, ensuring 

that RSMapMining will keep pace with the developments of remote sensing. In addition, some components 

depend on commercial software, which limits the extension and portability of RSMapMining. Therefore, 

another key issue is to revise and improve the existing components to make RSMapMining independent 

of any external software or source. 
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