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Abstract: Multispectral, as well as multi-temporal, satellite images, coupled with 

measurements, in situ, have been widely applied to the water quality monitoring of 

reservoirs. However, the spatial resolutions of the current multispectral satellite imageries 

are inadequate for trophic state mapping of small reservoirs which merely cover several 

hectares. Moreover, the temporal gap between effective satellite imaging and 

measurements, in situ, is usually a few days or weeks; this time lag hampers the 

establishment of regression models between band ratios and water quality parameters. In 

this research, the RGB and NIR sensors carried on an unmanned aerial vehicle (UAV) 

were applied to the trophic state mapping of Tain-Pu reservoir, which is one of the small 

reservoirs in Kinmen, Taiwan. Due to the limited sampling points and the uncertainty of 

water fluidity, the average method and the matching pixel-by-pixel (MPP) method were 

employed to search for the optimal regression models. The experimental results indicate 

that the MPP method can lead to better regression models than the average method, and the 

trophic state maps show that the averages of Chl-a, TP, and SD are 179.7 μg·L−1,  

108.4 μg·L−1, and 1.4 m, respectively. 
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1. Introduction 

Reservoirs are important infrastructures of water resource conservation. Periodic water quality 

monitoring is necessary for water resource sustainability. Traditionally, water quality monitoring is 

implemented by point-wise measurements, in situ, but this approach merely offers water quality 

conditions for sampling points rather than in regard to the overall reservoir. In order to contribute to 

the development of an appropriate water quality examination, multispectral satellite sensors, coupled 

with in situ measurement data, have been widely applied to estimate the water quality parameters, such 

as chlorophyll-a, Secchi disk depth, total phosphorous, turbidity, color, and total nitrogen [1–5], as 

well as the Carlson trophic state index (TSI) derived from the first three parameters [1]. 

It has been demonstrated that the multispectral satellite imageries are useful for assisting in the 

water quality monitoring of the reservoirs [2,6–11]. Based on the Landsat Thematic Mapper (TM) data 

and in situ measurements, Giardino et al. [2] built the models with the high determination coefficients to 

map the chlorophyll concentration and Secchi disk depth throughout the lake. Wang et al. [6] presented a 

method involving radiometric calibration of Landsat-5 TM remote sensors, atmospheric corrections 

applied to image data, and statistical model construction to find the optimal correlation between 

reflectance of TM bands and organic pollution measurements. TM3 (red band) and TM4 (near infrared) 

of Landsat ETM/TM were taken into consideration in calculating the Normalized Ratio Vegetation 

Index (NRVI), and the regression models between NRVI and chlorophyll-a were built to map the 

trophic state throughout the reservoir [8]. Bonansea et al. [10] considered linear mixed models to 

determine log-transformed chlorophyll-a concentration and Secchi disk transparency in the Río 

Tercero reservoir by using time series Landsat imagery. 

Other multispectral data, such as SPOT satellite imageries, were also applied to the water quality 

monitoring of inland waters [12,13]. Yang et al. [12] estimated algal growth and respiration rates by using 

a one-dimensional water quality model (QUAL2E) and two-dimensional, spatially-distributed water quality 

data derived from SPOT satellite imagery for the Te-Chi Reservoir in Taiwan. Dekker et al. [13] indicated 

that synoptic information on suspended matter cannot be obtained from an in situ monitoring network 

since suspended matter is a spatially-heterogeneous parameter. Thus, the integrated use of SPOT and 

Landsat TM sensing data, in situ data, and water quality models was proposed to estimate suspended 

matter concentration in lakes. Recently, medium- to low-resolution satellite imageries, such as 

Moderate-Resolution Imaging Spectroradiometer (MODIS) and Medium-Resolution Imaging 

Spectrometer (MERIS), due to their large swath widths and high temporal coverage were well applied 

to regional-scale measurements of lake water clarity or total suspended matter [14,15]. However, the low 

spatial resolution of MODIS or MERIS imageries limits the number of lakes that can be assessed [15]. 

Multispectral satellite imageries have been widely applied to the water quality monitoring of 

reservoirs, but we think that multispectral satellite imageries could not be applied to map trophic states 

for the small reservoirs on an appropriate scale. Moreover, the cloud effect and temporal gap between 
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satellite imaging and measurement, in situ, would deteriorate trophic state mappings [16]. Recently, 

the applications of unmanned aerial vehicles (UAV) for remote sensing are also progressively 

developing [17–25]. Several applications demonstrated that UAVs carrying multispectral sensors are 

efficient in environmental monitoring by chlorophyll detection of vegetation. Zarco-Tejada et al. [19] 

used a miniaturized thermal camera and a micro-hyperspectral imager on board a UAV to detect water 

stress in a citrus orchard. Zarco-Tejada et al. [20] also made progress on developing methods for leaf 

carotenoid content estimation, using high-resolution hyperspectral imagery acquired from a UAV. 

Torres-Sanchez et al. [24] indicated that traditional aerial platforms, such as planes and satellites, are 

not suitable for these applications due to their low spatial and temporal resolutions. A UAV equipped 

with a commercial camera (visible spectrum) was used for ultra-high resolution image acquisition  

over a wheat field in the early-season period. Bendig et al. [25] calculated vegetation indices from 

ground-based hyperspectral data and UAV-based RGB imaging to estimate biomass in a summer 

barley experiment. Flynn and Chapra [26] used an RGB, wide-angle, digital camera sensor and an  

off-the-shelf UAV to implement automated classification and mapping of the nuisance green algae 

Cladophoraglomerata in rivers. 

For trophic state estimation of reservoirs, this research was proceeded based on the hypothesis that 

total phosphorous (TP) stimulates growth of algae, i.e., there should be a positive correlation between 

concentrations of chlorophyll-a (Chl-a) and TP. On the contrary, the higher the concentration of Chl-a, 

the lower the water transparency. There should be a negative correlation between Chl-a concentration 

and Secchi disk (SD) depth. We considered that the increasing developments and improvements in 

unmanned platforms, together with the development of sensing technologies installed onboard such 

platforms, can offer high versatility and flexibility, as compared to airborne systems or satellites, and can 

operate rapidly without planned scheduling [27].This research adopted the RGB and near infrared (NIR) 

sensors carried on the UAV for the trophic state mapping of one small reservoir in Kinmen. 

2. Study Site 

Kinmen is located at latitude 24°23′–24°31′N and longitude 118°13′–118°28′E, and covers an area 

of 150.5 km2. Kinmen is administered by Taiwan, but its geographical location is near Xiamen, a city 

in southeast China. Currently, the small reservoirs covering the areas of 2.5 to 39.3 hectares satisfy the 

water resource demand in Kinmen, about 13,000 tons per day. Since May 2002, the Environmental 

Protection Bureau, Kinmen, began to seasonally monitor the water quality parameters for the small 

reservoirs. Tain-Pu reservoir, one of the small reservoirs, was designed to receive potable water from 

China in a few years, so it was selected to be the study site (see Figure 1). The reservoir covers an area 

of 17.8 hectares and has a water capacity of 595,000 m3.  

The greater the amount of nutrients (i.e., TP), the more plentiful the phytoplankton, such as algae; 

as a result, there is less transparency of the water [28]. Algal biomass and water transparency can be 

roughly estimated by measuring Chl-a concentration and SD depth, respectively. Table 1 summarizes 

the basic statistics of the measured water quality parameters collected during the measurement, in situ, 

from May 2002 to May 2013. A correlation analysis for the measured water quality parameters is shown 

in Table 2 and demonstrates that the concentrations of Chl-a or TP would deteriorate Secchi 

transparency due to the negative Pearson coefficients. 
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Figure 1. Study site and water sampling points. 

Table 1. Range, mean, and standard deviation (Std.) of measured parameters at different 

climatic seasons of Tain-Pu reservoir during the measurement, in situ, from May 2002 to 

May 2013. 

Parameter 
Climatic Season 

Spring Summer Fall Winter 

SD (m) 

Range 0.1–0.6 0.2–0.8 0.2–0.5 0.1–1.2 

Mean 0.4 0.4 0.4 0.5 

Std. 0.2 0.2 0.1 0.3 

Chl-a (μg·L−1) 

Range 24.5–143.0 23.2–124.0 2.4–191.0 12.2–158.0 

Mean 59.0 69.9 75.9 58.0 

Std. 35.8 26.4 61.6 40.4 

TP (μg·L−1) 

Range 25.0–126.0 17.9–139.0 18.0–177.0 42.0–121.0 

Mean 57.6 79.9 79.9 76.6 

Std. 25.9 37.4 45.2 29.0 
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Table 2. Correlation analysis matrix of measured parameters of Tain-Pu reservoir during 

the measurement, in situ, from May 2002 to May 2013. 

 SD Chl-a TP 

SD r 1 −0.434 ** −0.259 

Chl-a r −0.434 ** 1 0.254 

TP r −0.259 0.254 1 

Notes: 45 samples were involved in the correlation analysis; r expresses Pearson coefficient; The p values 

were obtained by two-tail test; ** denotes the significance at the level of 0.01. 

3. Methodology 

Figure 2 shows the flowchart of applying UAV multispectral imagery, coupled with measurement, 

in situ, to trophic state mapping of small reservoirs. Based on the acquisition of the water quality 

parameters and the UAV imagery, this research aims to establish the regression models with powerful 

explanation, where multispectral bands are the independent variables and water quality parameters are 

the dependent variables. The technical elements of trophic state mapping for small reservoirs are  

presented as following. 

Sampling in situ

UAV imaging

Image pre-processing in 

laboratory

Arrangement of GCPs

Exam of water quality 

parameters in laboratory

Establishment of 

regression models 

Is R2 accepted?

Trophic state mapping

Acquisition of water quality parameters Acquisition of UAV imagery

Yes

No

 

Figure 2.Flowchart of applying UAV multispectral imagery coupled with measurement,  

in situ, to trophic state mapping of small reservoirs. 
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3.1. Measurement In Situ and Water Quality Exam 

On the 24 November 2014, a measurement, in situ, coupled with UAV imaging, was implemented 

for Tain-Pu reservoir. In this research, five sampling points, one measuring data for each sampling 

point (Figure 1), were prepared for offering the water quality parameters for the establishment of the 

regression model. Referring to the densities of the sampling points arranged in the range between 0.01 

and 2.34 sites/km2 [7,8,10,29], the density (five sites in the area of 17.8 hectares = 28.09 sites/km2) of 

the sampling points in this research is quite sufficient for monitoring such a small reservoir.  

The execution of measurement, in situ, as well as the water quality examination, was entrusted to SGS, a 

professional company in testing and certification; the examination results are listed in Table 3. Acetone 

extraction/spectrophotometer (national standard: NIEA E507.03B), ascorbic acid/spectrophotometer 

(national standard: NIEA W427.53B), and Secchi disk (national standard: NIEA E220.51C) were used 

to measure the Chl-a concentration, the TP concentration, and the water transparency, respectively. In 

NIEA E507.03B, water sampling is filtered by fiberglass, and then 90% acetone is used to extract  

Chl-a from the fiberglass. Finally, Chl-a concentration is measured by spectrophotometer. In NIEA 

W427.53B, water sampling is digested by sulfuric acid and peroxydisulfate processes to transform 

phosphorous into orthophosphate. Phosphomolybdic acid is a product of ammonium molybdate, 

potassium antimony tartrate, and orthophosphate. Molybdenum blue is a reduction of phosphomolybdic 

acid by ascorbic acid. Finally, TP concentration is measured by spectrophotometer at 880 nm. In NIEA 

E220.51C, a white disk of diameter of 20~30 cm, i.e., Secchi disk, is sunk into water to measure 

visibility from water surface. The details of the above measurement methods can be available from the 

website of environmental analysis laboratory, EPA, Taiwan [30]. According to the Carlson TSI [31], 

the trophic class of Tain-Pu reservoir would be eutrophic or hypereutrophic. 

Table 3. Examination results of measurement, in situ, on 24 November 2014 for Tain-Pu reservoir. 

No. of  

Sampling Point 

Water Quality Parameter 
Sampling Coordinate 

(System Name: GCS_TWD_1997) 

SD (m) Chl-a (μg·L−1) TP (μg·L−1) E (m) N (m) 

1 1.8 173.0 105.0 194,750.14 2,707,614.72 

2 1.6 185.0 113.0 194,800.16 2,707,690.52 

3 2.0 172.0 108.0 194,897.61 2,707,880.43 

4 1.5 156.0 99.0 195,075.60 2,707,996.12 

5 1.7 177.0 108.0 194,921.69 2,708,132.85 

3.2. UAV Multispectral Image Data 

A fixed-wing UAV carried the Canon Powershot S110 RGB and NIR sensors to acquire the image 

data on Tain-Pu reservoir in the visible bands, i.e., blue (B: 0.45μm), green (G: 0.52 μm), and red  

(R: 0.66 μm), as well as the NIR band (0.85 μm), respectively (see Figure 3). The technical features of 

the S110 RGB or the S110 NIR involve resolution of 12 million pixels, a weight of 0.7 kg, ground 

resolution at 100 m of 3.5 cm/pixel, sensor size of 7.44 × 5.58 mm2, pixel pitch of 1.33 μm, and image 

format in JPEG. In fact, the image data consisting of the above four bands were acquired by UAV 

imaging twice. S110 RGB acquired the true-color image data in single UAV imaging; another UAV 
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imaging with the S110 NIR acquired the false-color image data that consists of green (0.55 μm), red 

(0.625 μm), and NIR (0.85 μm) bands. In this research, the green (0.55 μm) and red (0.625 μm) bands 

were abandoned because their responses overlap the green (0.52 μm) and red (0.66 μm) bands. 

  

(a) (b) 

Figure 3. UAV imagery system: (a) Fixed-wing UAV; (b) RGB (right) and NIR (left) sensors. 

3.3. UAV Imaging 

The technical features of the fixed-wing UAV, which was produced by senseFly Ltd. in Switzerland 

and named the eBee, include a wingspan of 96 cm, maximum flight time of 50 min, nominal cruise 

speed of 40–90 km/h, radio link range of up to 3 km, maximum coverage (single flight) of 12 km2, 

wind resistance of up to 45 km/h, ground sampling distance (GSD) down to 1.5 cm per pixel, relative 

orthomosaic/3D model accuracy of 1~3 times GSD, and absolute horizontal and vertical accuracies 

with ground control points (GCPs) down to 3 and 5 cm, respectively. Autopilot continuously analyzes 

data provided by the inertial measurement unit (IMU) and onboard GPS to control every aspect of the 

eBee’s flight. The integration of the sensors and the UAV with IMU and GPS also enables obtaining 

direct imaging georeferencing after image processing [27]. 

The imaging principle of the fixed-wing UAV is similar to that of traditional manned aircraft.  

In order to orient and relate UAV imagery to the ground, arranging the GCPs is necessary before UAV 

imaging. Establishing a good control network is extremely important for almost any type of 

photogrammetric project [32]. In this research, five GCPs and four checking points were arranged 

around Tain-Pu reservoir in order to obtain photogrammetric imagery with uniform horizontal and 

vertical accuracy. The proposed locations, style of the GCPs, and checking points are illustrated in 

Figure 4. 

The imaged area of Tain-Pu reservoir, including the surroundings, is about 20 hectares, so that  

73 camera stations (single flight) are needed, as shown in Figure 5. The specifications of the UAV 

imaging comprises ground resolution at 286 m flying altitude of 10 cm/pixel, air base of 60 m, distance 

between two flight strips of 120 m, swath widths of 400 × 300 m2, 80% end, as well as 70% side laps, 

pixel size of 1.86 μm, and focal length of 5 mm. The weather condition in Kinmen was a visibility of  

7000 m and a cloud level of 3000 m on 24 November 2014, but the visibility suddenly dropped to  

250 m due to heavy fog on 25 November 2014. The UAV demonstrated that its excellent temporal 

resolution and mobility are helpful for acquiring high-quality remote sensing data. The time needed for 

a single flight of the UAV imaging for Tain-Pu reservoir is 12 min. Although the locations of the 

camera stations of the true-color and false-color images are not consistent, image orientation for 

 

a 

 

b 

 

 

a 

 

b 
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navigation and camera calibration can cope with the problem of irregularity of frames acquired from 

UAV [27]. In the laboratory, we used the Menci Software to retrieve the interior orientation parameters 

of the S110 sensors. Based on the retrieved interior orientation parameters, coupled with the GCPs, the 

aerial triangulation provided a geometric correction result with residual error of 0.772 pixels, i.e., 

ground resolution distance (GRD) of 7.5 cm. 

  

(a) (b) 

Figure 4. (a) Proposed locations of GCPs and checking points; (b) Style of GCPs or 

checking points. 

  

(a) (b) 

Figure 5. (a) Planned flight path where UAV imaging was started at position 1 and ended 

at position 7; (b) Locations of 73 schemed camera stations (single flight). 

3.4. Image Pre-Processing 

The application of UAV imagery to pattern recognition involves the technologies of aerial 

photogrammetry and remote sensing. The science of optics can be distinguished into geometric and 

physical optics in the fief aerial photogrammetry and remote sensing, respectively. In geometric optics, 

a 
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light is considered to travel from a point source through a transmitting medium in straight lines called 

light rays [32]. Due to the extremely small region of the UAV imaging, atmospheric refraction and the 

effect of the earth’s curvature are ignored. Thus, the UAV image pre-processing in the field of aerial 

photogrammetry includes correction for lens distortion, aerial triangulation, and ortho-image creation. 

Photogrammetry software, called Menci Software, was employed in the UAV image pre-processing. 

Radial, as well as eccentric, lens distortions of the Canon S110 sensors were simultaneously corrected 

by the Menci Software during aerial triangulation. Finally, the pre-processing result is a mosaic  

ortho-image and shown in RGB, as in Figure 1. 

In physical optics, light is considered as a series of electromagnetic waves traveling through a 

transmitting medium, such as air [32]. Reflected electromagnetic energies from earth surface features 

are transformed into spectral response patterns by charge-coupled devices (CCD) in remote sensing 

sensors. Atmospheric and geometric influences on spectral response patterns are important 

considerations [33]. Atmospheric influence means that the electromagnetic energy recorded by a 

sensor is always modified to some extent by the atmosphere between the sensor and the earth’s 

surface. Many applications of satellite remote sensing data entail corrections for the atmospheric path 

radiance in the spectral bands [6,8–10,34]. Michaelsen & Meidow [17] indicated that their UAV 

images at 600 m altitude have lower contrast than the virtual globe pictures, probably due to 

atmospheric effects. However, the altitudes (usually between 100 and 600 m) of the UAVs are not to 

be compared with those (usually between 800,000 and 900,000 m) of the satellites, so that the 

atmospheric influence on UAV imagery was limited [35], and therefore ignored, in this research.  

Geometric influence, in which reflected electromagnetic energy is primarily a function of the 

surface roughness of the object, includes the characteristics of specular, near-specular, near-diffuse and 

diffuse reflectors [33]. In this research, specular reflection was a concern because the body of water in 

Tain-Pu reservoir would manifest mirror-like reflections, where the angle of reflection equals the angle 

of incidence. Avoiding the effect of mirror-like reflections is also important for the acquisition of the 

UAV imagery. We suggest that UAV imaging time should possibly avoid midday operation from  

11 a.m. to 1 p.m. 

3.5. Establishment of Regression Models 

Regression models are established to find the optimal correlations between the water quality 

parameters and the best band or band ratio. When monitoring water quality, the general methods to 

find the best band combination include using the ratio between NIR and red bands, or red and blue  

bands [8,36–40]. Tebbs et al. [41] found that Landsat ETM+ band ratio 4/3 gave the best correlation 

with in-situ Chl-a measurements higher than 800 μg·L−1. Matthews [42] reviewed a large number of 

studies using Landsat to retrieve SD and found that band ratio 3/1 is particularly common to estimate 

lake water clarity. Sriwongsitanon et al. [43] investigated the relationships between ln(SD) versus the 

band ratios of Landsat TM1, TM2, TM3, and TM4 and found that the band ratio 3/1 shows a uniformly 

high correlation to ln(SD). Bonansea et al. [10] suggested that Landsat band 1 (0.45–0.52 nm), band 4  

(0.76–0.90 nm) and band ratio 4/1 show strong negative association with SDT. Zhao et al. [29] 

indicated that the differences in band selection to estimate Chl-a or SD may depend on the 

limnological properties of the water body. 
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In Table 2, it is seen that the growth of the algae in Tain-Pu reservoir might be stimulated by TP to 

increase the concentration of Chl-a and deteriorate the SD. Chlorophyll absorbs energy in the 

wavelength bands at about 0.45 (blue energy) and 0.67 (red energy) μm, but strongly reflects energy in 

the wavelength bands of NIR [33]. This paper hypothesizes that the great reflectance difference 

between the red and NIR bands is useful to detect the concentrations of Chl-a and TP. As for the SD 

estimation, the ratios between NIR and red bands, blue and red bands, and blue and NIR bands were 

tested to find the best band combination. According to Sriwongsitanon et al. [43], a linear regression 

model between the log-transformed water quality parameters and band ratios is adopted and described as 

ln(Y) = a × ln(X) + b (1) 

where X is the band ratio, Y denotes water quality parameter, and a and b express coefficient and  

bias, respectively. 

When establishing regression models, it is noticed that single pixel values could not be compared 

with a ground sample because of water fluidity [6]. Some experts took the 3 × 3 [2] or 5 × 5 [6] pixel 

windows to calibrate image data by averaging the values within the pixel windows. In addition to the 

average method, we propose a novel method referred to as matching pixel by pixel (MPP), where a  

5 × 5 pixel window is also employed not only to offer an extremely high correlation between band 

ratio and water quality parameter, but also to precisely determine the corresponding pixel(s) of water 

quality parameters within the pixel window. Each sampling point is given an individual pixel window 

corresponding to the on-site area of 50 × 50 cm2. Hence, a solution space of 5 × 5 × 5 cube (5 × 5 pixel 

window × 5 sampling points) is built for a regression model search; 9,765,625 ((5 × 5)5) candidate 

correlations within the solution space can be listed by an enumeration algorithm. Finally, the 9,765,625 

candidate correlations are sorted according to their Pearson coefficients to find the optimal correlation. 

3.6. Trophic State Mapping 

In order to show the trophic state of Tain-Pu reservoir, the predicted concentrations of the water 

quality parameters of all pixels in the UAV imagery were projected onto the maps with a color bar. 

Based on the trophic state maps, a brief proposal for management planning of Tain-Pu reservoir is 

discussed in this paper. 

4. Results of Regression Model Establishment and Trophic State Mapping 

After producing the ortho-multispectral image, the average and MPP methods were applied to the 

establishment of regression models. The results of the regression model establishment and trophic state 

mapping are presented as follows. 

4.1. Establishment of Regression Models by the Average Method 

A n × n pixel window is taken into consideration in the average method. The n values, including 5, 

9, 19, 49, and 99, were tested to average the reflectance values within the on-site areas of 0.5 × 0.5,  

1 × 1, 2 × 2, 5 × 5, and 10 × 10 m2, respectively. The correlation analysis results between ln(NIR/R) 

and either ln(Chl-a) or ln(TP) are shown in Table 4. The positive Pearson coefficients r are consistent 
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with our expectations, and the average method using the 99 × 99 pixel windows led to the optimal 

regression models, where the 59.0% ln(Chl-a) and 48.7% ln(TP) can be explained by the ln(NIR/R). 

Table 5 lists the correlation analysis results between ln(SD) and either ln(NIR/R), ln(R/B) or 

ln(NIR/B); it is seen that the obtained correlations are positive between ln(SD) and ln(NIR/R), but 

negative between ln(SD) and ln(NIR/B). If we ignore the influences of the unconsidered water quality 

parameters, such as total suspended sediments, etc. on SD, a negative correlation is expected, while 

algae is considered as the unique factor influencing SD. Unfortunately, 0.759 is the highest Pearson 

coefficient in Table 5, but the positive correlation is inconsistent with our hypothesis. Among the 

negative correlations, while the Pearson coefficient of −0.445 (between ln(SD) and ln(R/B)) is optimal, 

it only explains 19.8% of SD. 

A ground area covered by the largest pixel window, i.e., the 99 × 99, is approximately equal to that 

covered by one pixel of satellite imagery, so the UAV imagery has a much smaller minimum mapping 

unit than the satellite imagery. However, transforming the values within a pixel window into a single 

averaged value may involve a mixed pixel problem that would hamper the establishing regression 

model. In Table 5, for example, the larger pixel windows might suffer from the greater influence  

of mixed pixels than the smaller pixel windows, leading to the lower correlations between the  

log-transformed band ratios and the SD. 

Table 4. Correlation analysis results between ln(NIR/R) and either ln(Chl-a) or ln(TP) 

using the average method. 

n 
Y = Chl-a, X = NIR/R Y = TP, X = NIR/R 

r r2 P value r r2 P value 

5 0.405 0.164 0.499 0.573 0.328 0.313 

9 0.253 0.064 0.681 0.481 0.231 0.412 

19 0.513 0.263 0.377 0.610 0.372 0.275 

49 0.487 0.237 0.405 0.573 0.328 0.312 

99 0.768 0.590 0.129 0.698 0.487 0.190 

Notes: r expresses Pearson coefficient; The P values were obtained by a two-tail test. 

Table 5. Correlation analysis result between ln(SD) and either ln(NIR/R), ln(R/B) or 

ln(NIR/B), using the average method. 

n 
Y = SD, X = NIR/R Y = SD, X = R/B Y = SD, X = NIR/B 

r r2 P value r r2 P value r r2 P value 

5 0.759 0.576 0.137 −0.445 0.198 0.452 −0.218 0.048 0.725 

9 0.423 0.179 0.478 −0.419 0.176 0.482 −0.405 0.164 0.498 

19 0.245 0.060 0.692 −0.334 0.112 0.582 −0.275 0.076 0.655 

49 0.222 0.049 0.720 −0.338 0.114 0.579 −0.318 0.101 0.602 

99 −0.015 0.000 0.980 −0.243 0.059 0.694 −0.222 0.049 0.719 

Notes: r expresses Pearson coefficient; The P values were obtained by a two-tail test. 
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4.2. Establishment of Regression Models by the MPP Method 

The 5 × 5 pixel window was also taken into consideration in the MPP method to find the optimal 

correlations between the log-transformed band ratios and water quality parameters. Simultaneously, 

the MPP method was used to determine the corresponding pixel Pij(m) of the water quality parameter, 

where i and j mean the number of the pixels in the row and column directions of the mth pixel window, 

respectively; m means the number of the sampling points. In this research, i, j, and m all range from 1 to  

5 in integer discreteness. 

Table 6 lists the optimal correlations as well as regression coefficients among the 9,765,625 

candidate regression models obtained by the MPP method. Except the regression model between 

ln(SD) and ln(R/B), the others have the extremely-high correlation explanations. Compared with 

NIR/R and NIR/B, NIR/B (r2=0.998) has a little higher explanation than NIR/R (r2=0.963) to SD.  

As a result, the determined regression models for the optimal predictions of Chl-a, TP, and SD are 

shown as: 

ln(Chl-a) = 1.0814ln(NIR/R) + 5.0176 for Chl-a prediction (2) 

ln(TP) = 0.7118ln(NIR/R) + 4.5720 for TP prediction (3) 

ln(SD) = −2.0054ln(NIR/B) + 0.6414 for SD prediction (4) 

Based on Table 6, the proposed MPP method demonstrated that it is useful for establishing the 

regression models between the spectral information and the water quality parameters in spite of the 

limited sampling points. Table 7 shows the most appropriate spectral reflectance values, as well as the 

corresponded pixels Pij(m) of the five sampling points for each of the above regression models. In the 

mth 5 × 5 pixel window, the multiple pixels of Pij signify that the pixels have the same band ratio.  

The 5 × 5 pixel window has demonstrated that it can assist the MPP method in searching for the most 

appropriate pixel(s) Pij(m) within a neighborhood area of 50 × 50 cm2 of a sampling point. In addition, 

we found that the concentration variation of the water quality parameters can be precisely detected by 

the least graduations of 0.01 of the log-transformed band ratios. 

Table 6. Optimal correlation and regression coefficients obtained by the MPP method, 

coupled with a 5 × 5 pixel window. 

X Y 
Correlation Coefficient Regression Parameters 

r r2 P value a b 

NIR/R 

Chl-a 1.000 ** 1.000 0.000 1.0814 5.0176 

TP 0.999 ** 0.997 0.000 0.7118 4.5720 

SD −0.982 ** 0.963 0.003 −4.0138 1.1759 

NIR/B SD −0.999 ** 0.998 0.000 −2.0054 0.6414 

R/B SD −0.823 0.677 0.087 −1.7424 0.3562 

Notes: r expresses Pearson coefficient; The P values were obtained by a two-tail test; ** denotes the 

significance at the level of 0.01. 
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Table 7. Elements Pij(m) corresponding to optimal regression models obtained by the MPP method. 

Regression Model 

Pij(m) 

m = 1 m = 2 m = 3 m = 4 m = 5 

i j i j i j i j i j 

ln(Chl-a) = 1.0814ln(NIR/R) + 5.0176 

(NIR = 34, R = 30, if m = 1) 

(NIR = 35, R = 29, if m = 2) 

(NIR = 35, R = 31, if m = 3) 

(NIR = 34, R = 33, if m = 4) 

(NIR = 37, R =32, if m = 5) 

1 

2 

3 

3 

2 

3 

2 4 5 5 
4 

5 

2 

2 

4 

5 

5 

3 

ln(TP) = 0.7118ln(NIR/R) + 4.5720 

(NIR = 35, R = 31, if m = 1) 

(NIR = 36, R = 29, if m = 2) 

(NIR = 35, R = 30, if m = 3) 

(NIR = 34, R = 33, if m = 4) 

(NIR = 35, R = 30, if m = 5) 

1 

4 

4 

4 

4 

1 

1 

2 

3 

4 

3 3 

1 1 

4 

5 

2 

2 
2 2 

2 1 

2 5 

3 1 

3 2 

3 4 

4 1 

4 2 

4 3 

4 4 

5 1 

5 2 

5 4 

ln(SD) = −2.0054ln(NIR/B) + 0.6414 

(NIR = 35, B = 34, if m = 1) 

(NIR = 36, B = 33, if m = 2) 

(NIR = 35, B = 36, if m = 3) 

(NIR = 37, B = 33, if m = 4) 

(NIR = 36, B = 34, if m = 5) 

4 4 3 3 
2 

5 

5 

5 
1 2 5 2 

4.3. Trophic State of Tain-Pu Reservoir 

Comparing the regression models obtained by the average with MPP methods (see Tables 4–6), the 

MPP method can realize the better regression models than the average method. Based on Equations (2) 

through (4), the log-transformed band ratios of all pixels in the UAV imagery were transformed into 

the log-transformed water quality parameters, which were recomputed into the exponential values to 

predict the water quality parameters. 

Figure 6 shows the concentration maps of the water quality parameters of Tain-Pu reservoir on 

24 November 2014. Figure 6a–c were produced according to the exponential values that resulted from 

Equations (2)–(4), respectively. The maps in Figure 6 indicate that the low concentrations of Chl-a 

(less than 140 μg·L−1) or TP (less than 100 μg·L−1) were mostly distributed over the central part of 

Tain-Pu reservoir, near sampling point 3 (see Figure 1). However, the high concentrations of Chl-a 

(between 140 and 260 μg·L−1) or TP (between 100 and 140 μg·L−1) were mostly distributed over the 

region involving sampling point 2, which is also the traditional sampling point of the Environmental 

Protection Bureau, Kinmen. 

Among the predicted water quality parameters, some values are either extremely higher or lower 

than the others, e.g., the Chl-a concentrations over 103 μg·L−1, or the SD depths under 10−2 m.  
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Figure 7 marks the extreme values of the water quality parameters using the yellow elements. We can 

see that the extreme values exist approximately on the edge between the water body and land, or are 

distributed over the southwest side of Tain-Pu reservoir. Most of the predicted SD depths on the edge 

between water body and land are under 10−2 m, which is reasonable due to the shore-line. On the 

contrary, the extremely low SD depths would correspond to the extremely high Chl-a or TP 

concentrations so that the predicted Chl-a or TP values are extraordinary. The sawtooth region of the 

extreme values over the southwest side of Tain-Pu reservoir resulted from the shadow of the 

neighboring forest. We see that the SD depths in the sawtooth region are above 3 m, even up to 25 m. 

However, the above SD depths are clearly unreasonable because the average depth of Tain-Pu 

reservoir is about 3.4 m. Additionally, the predicted Chl-a or TP concentrations in the sawtooth region 

are extraordinary and should be ignored. Conclusively, the regular values of Chl-a, TP, and SD might 

be between 100 and 300 μg·L−1, 80 and 160 μg·L−1, and 0.5 and 3.0 m, respectively. Except for the 

extreme values, the average water quality parameters were calculated, as shown in Figure 6. According 

to the Carlson TSI [31], this paper demonstrates that the trophic state of Tain-Pu reservoir is 

hypereutrophic. 

  

(a) (b) 

 

(c) 

Figure 6. Concentration maps of water quality parameters of Tain-Pu reservoir on 24 

November 2014: (a) Chl-a concentration map; (b) TP concentration map; (c) SD depth map. 
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Figure 7. Mapping for extreme values of water quality parameters: (a) Chl-a, (b) TP, (c) SD. 

5. Discussion 

The acquired UAV imagery was geo-referenced to the coordinate system ofGCS_TWD_1997 so 

that the thematic maps of the trophic state can be overlaid with the other spatial data, such as landuse, 

population, groundwater, etc., in the GIS environment to carry out an overlay analysis. The other  

11 small reservoirs in Kinmen will also provide their thematic maps of trophic states in the future. By 

the overlay analysis, the critical factors affecting water resource fragility could be determined for the 

sustainable planning of Kinmen. Referring to the trophic state mapping in Figure 6, a brief proposal for 

management planning of Tain-Pu reservoir is described as follows: 

1 Figure 6 shows that the higher concentrations of Chl-a or TP are distributed over the southwest 

side of Tain-Pu reservoir. Compared to the historical data of Chl-a and TP in the fall (see Table 1), 

with their examination data at sampling point 2 (see Table 3), i.e., the traditional sampling point, 

the concentrations of Chl-a and TP were significantly higher in the past years. We conjecture that 

the problem results from the current stream regulation project on the southwest side of Tain-Pu 

reservoir blocking the upstream water from flowing into the reservoir. Once the stream regulation 

project is finished, reinforcing the circulation of the water body is extremely important. 
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2 Due to the hypereutrophic state of Tain-Pu reservoir, the current water body should be totally 

drained from the reservoir before receiving potable water from China. Simultaneously, the 

pollutant sources should be entirely surveyed and controlled to ensure that the reservoir has the 

capacity for self-oxidation. 

The multispectral UAV imagery with the extremely-high spatial resolution of 0.1 m is useful to 

assist the MPP method in searching the robust regression models. Moreover, the fine spatial resolution 

offers good concentration contrast for the small reservoir. In addition to Kinmen, we would like to 

greatly promote our UAV imaging technique and MPP method to be applied to water quality 

monitoring of small reservoirs in other small islands around the world, especially for Hong Kong or 

Macau ,as both city islands of mainland China have an extreme high population density but, similarly, 

need to rely on the potable water supply of mainland China. 

Among the band ratios of NIR/R, NIR/B, and R/B, the MPP method demonstrates that NIR/R and 

NIR/B have the best correlation with either Chl-a or TP and SD, respectively, so that the amount of 

algae would have a critical impact on the transparency of Tain-Pu reservoir. In spite of this, it is 

noticed that the obtained regression models may lead to an excessive optimization. Thus, a regression 

with observed data and predicted data should be calculated. However, the current observed data are 

obviously insufficient for the regression calculation. A multi-temporal water quality monitoring of 

Tain-Pu reservoir should be implemented for observed data accumulation. In each monitoring work, 

we will scheme more than five sampling points in order to assess the adjustments based on the 

redundant observed data. While assessing the adjustments, however, it is difficult to accurately identify 

pixels of spectral reflectance corresponding to the observed data because of the fine spatial resolution 

and water fluidity. This paper proposes that, prior to the adjustment assessment ,the different number 

of sampling points should be taken into consideration in the MPP method to determine the variation of 

obtained Pearson coefficients and r2 values. 

6. Conclusions 

The total cost of the processes, including measurement, in situ, water quality exam, UAV imaging, 

and image processing, is about $5000 USD. After measurement, in situ, and UAV imaging, the 

duration needed from water quality exam to trophic state mapping is about two weeks. In this case 

study, the fine temporal resolution and mobility of UAV demonstrated that they could effectively 

preclude the weather from harming the aerial imaging. Thus, compared with the traditional techniques 

of photogrammetry or satellite remote sensing, UAVs offer a better ratio between cost and profit in the 

trophic state mapping of small reservoirs. The proposed UAV imaging technique could be widely 

applied to water quality monitoring for the small reservoirs/lakes in other small islands around the world. 

Establishing the appropriate regression models is usually difficult for the application of remote 

sensing data to monitoring water quality. This research presented the MPP method, a novel method for 

establishing a regression model, and compared the performances of the MPP method with the 

traditional average method. The experimental result shows that the MPP method can lead to an 

extremely high Pearson coefficient (r2 approximating to 1.0). Based on the regression models obtained 

by the MPP method, Chl-a and TP have positive correlations with the band ratio of NIR/R, and SD has 

a negative correlation with the band ratio of NIR/B. Consequently, the concentrations of the water  
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quality parameters in Tain-Pu reservoir should be principally controlled by the algae amount in  

the water body. 

In Tain-Pu reservoir, the predicted regular values of Chl-a, TP, and SD might be between 100 and  

300 μg·L−1, 80 and 160 μg·L−1, and 0.5 and 3.0 m, respectively. The averages of Chl-a, TP, and SD are 

179.7 μg·L−1, 108.4 μg·L−1, and 1.4 m, respectively. According to the Carlson TSI [31], the trophic 

state of Tain-Pu reservoir is hypereutrophic. However, the characteristic of the small reservoirs in 

Kinmen is absolutely different from that in North America. An appropriate TSI for describing the 

trophic states of the small reservoirs in Kinmen should be studied. 

At present this research only produces the trophic state maps of Tain-Pu reservoir for the water 

quality monitoring of a single period, but a water quality monitoring of multiple periods is expected in 

the future. Additionally, the proposed technique should be applied to the water quality monitoring for 

the other small reservoirs in Kinmen so that the water resource fragility and sustainable planning in 

Kinmen can be discussed. If the 5 × 5 pixel window cannot assist the MPP method in establishing a 

regression model with an acceptable Pearson coefficient, the size of the pixel window is suggested to be 

appropriately enlarged. However, it was noticed that the larger the pixel window is, the longer the needed 

computation time. 
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