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Abstract: Change detection based on satellite images acquired from an area at different 

dates is of widespread interest, according to the increasing number of flood-related disasters. 

The images help to generate products that support emergency response and flood 

management at a global scale. In this paper, a novel unsupervised change detection approach 

based on image fusion is introduced. The approach aims to extract the reliable flood extent 

from very high-resolution (VHR) bi-temporal images. The method takes an advantage of the 

spectral distortion that occurs during image fusion process to detect the change areas by 

flood. To this end, a change candidate image is extracted from the fused image generated 

with bi-temporal images by considering a local spectral distortion. This can be done by 

employing a universal image quality index (UIQI), which is a measure for local evaluation 

of spectral distortion. The decision threshold for the determination of changed pixels is set 

by applying a probability mixture model to the change candidate image based on expectation 

maximization (EM) algorithm. We used bi-temporal KOMPSAT-2 satellite images to detect 

the flooded area in the city of N′djamena in Chad. The performance of the proposed method 

was visually and quantitatively compared with existing change detection methods. The 

results showed that the proposed method achieved an overall accuracy (OA = 75.04) close 
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to that of the support vector machine (SVM)-based supervised change detection method. 

Moreover, the proposed method showed a better performance in differentiating the flooded 

area and the permanent water body compared to the existing change detection methods. 

Keywords: flood extent; change detection; spectral distortion; KOMPSAT-2 satellite imagery 

 

1. Introduction 

Catastrophic events such as floods, landslides, and tsunamis have a significant impact on our lives as 

these events cause major losses to life and properties. Flooding events are the most frequently occurring 

worldwide natural disasters and may become a major area of concern in the future as a result of climate 

change [1,2]. The circumstances have forced the policy makers to include flood monitoring as issues of 

national importance. Flood monitoring requires rapid access to essential information about flood extents 

and changes in land cover. Change detection techniques using remotely sensed data, which are the 

information about an object or phenomenon acquired without direct physical contact, can be used to 

estimate the information in a quick time frame for the flood monitoring [3]. Change detection is a process 

of identifying differences in the state of an object or phenomenon by observing it at different times. 

Timely and accurate change detection of flood-related disasters provides the foundation for better 

understanding of disaster situation, after which it helps to make the disaster recovery plan. 

With increased availability and improved quality of multi-temporal remote sensing data, there has 

been a growing interest in the development of change detection techniques for the flood monitoring 

using multi-temporal satellite imagery over the past few years. As an advantage of rapid revisit time and 

of widely available spectral wavelengths, multi-temporal images acquired from sensors having low 

spatial resolution but high spectral resolution, such as Landsat and MODIS sensors, have been generally 

used for flood monitoring [4–7]. SAR images have also been employed due to their strength that can 

acquire the data regardless of the weather condition [8–10]. In spite of the advantages of those sensors, 

exploiting very high-resolution (VHR) multi-temporal images is still attractive to detect flood extent for 

more detail analysis with precise performance [11]. 

Several contributions can be found in the recent literature for automatic change detection. Several 

methods, including principle component analysis (PCA), change vector analysis (CVA), support vector 

machine (SVM), multivariate alteration detection (MAD), have proven to be effective in various 

applications [12–18]. The CVA is a binary change detection method that identifies the changes using 

the magnitude between two spectral vectors. A threshold for indicating changed areas needs to be 

determined on the magnitude of the change vector. This method performed better in a comparative 

evaluation of some change detection techniques for detecting flood extent using Landsat TM data [19]. 

The MAD method works based on canonical correlation analysis (CCA) between two groups of 

variables, in order to find their linear combinations that give a set of mutually orthogonal difference 

images. The method can concentrate all spectral variations associated with land cover changes between 

two acquisition times into a few resulting MAD components. They provide an optimal change indicator 

for multi-temporal remotely sensed images in theory [20]. The SVM-based change detection method, 

which is a supervised method known for showing a good performance, is applied to the multispectral 
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difference image generated by the difference of spectral feature vectors associated with pairs of 

corresponding pixels in bi-temporal images [13]. 

In 2009–2010, there was a Data Fusion Contest organized by the IEEE Geoscience and Remote 

Sensing Society. It was focused on the evaluation of existing algorithms for flood mapping through 

change detection [21]. A new change detection technique based on image differencing has been 

introduced to enable the automated and reliable flood extent extraction from VHR TerraSAR-X images [22]. 

Moreover, the change detection and thresholding (CDAT) method has been developed to delineate the 

extent of flooding for the Chobe floodplain in the Caprivi region of Namibia [23]. 

Among all above-mentioned approaches, the simple difference image, which is made by subtracting 

the pixel values of one image from those in another, is one of the main sources of potential change 

information as it contains clues about spectral changes. The pixels of the difference image having 

significantly large values are associated with the regions that show high probability of being changed. 

Changes are then identified by thresholding the difference image according to empirical strategies or 

statistical methods. Obtaining the difference information and selecting the appropriate threshold to 

extract the change information are the key steps in change detection from multi-temporal remote sensing 

images. However, the critical limitation of the change detection method based on the difference image 

is that the result from the method is heavily reliant on the spectral features [24]. It only considers the 

spectral values of pixels to obtain the difference information so that large noises occur due to radiometric 

and geometric differences between images [25]. Since the pixels are not spatially independent and the 

noise pixels have a great impact on change detection, differences based on spectral feature may fail to 

reveal the changes in VHR bi-temporal satellite images. 

The main objective of this study is to develop a new change detection approach for the detection of 

flooded areas and the generation of flood hazard map using VHR bi-temporal satellite images. To do 

this, we take advantages of spectral distortion that occurs during the image fusion process to detect 

changed areas caused by flood. This concept is based on the fact that changed areas show a spectral 

distortion after image fusion due to the spectral and spatial differences between bi-temporal images.  

A candidate change image is extracted from the fused image generated with bi-temporal images using 

the universal image quality index (UIQI) index, which can be used locally in order to evaluate the 

spectral distortion. Finally, the flood extent region is detected by an automated thresholding method. 

The remainder of the paper is as follows. The experiment data in this study is presented in Section 2. 

The major methodology of our study is described in Section 3. In Section 4, we apply our algorithm on 

the Kompsat-2 bi-temporal images and compare our result with those generated using the existing CVA-, 

MAD-, and SVM-based analysis. A conclusion is presented in Section 5. 

2. Image Preparation 

In this study, a bi-temporal dataset acquired by KOMPSAT-2 satellite over the city of N′djamena in 

Chad is used to evaluate the performance and feasibility of our methodology. The N′djamena is the 

largest city of Chad and the topography of this region is relatively flat. In this region, flooding along the 

river is a frequent consequence of heavy rainfall caused by tropical cyclones. The images were acquired 

on 22 June 2010 and 14 October 2012, respectively. The specifications of the data are described in Table 1. 

Even though two images in the scene were acquired with a two-year gap, the scene mutually exhibits a 
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high proportion of changes due to the significant flooding event as shown in Figure 1. Since the images 

were taken with different off-nadir angles, they show geometric dissimilarity. In order to solve this 

problem, it is necessary to geo-reference the dataset to common coordinate system using image 

registration technique. We manually co-registered the images implemented by ENVI image processing 

software, with a result of root mean square error (RMSE) around 0.5 pixels. 

 

(a) (b)  

Figure 1. The fused images using GSA image fusion method: (a) the F1 GSA-fused image 

generated from the KOMPSAT-2 satellite images collected before the flood event and (b) 

the F2 GSA-fused image generated from the KOMPSAT-2 satellite images collected after 

the flood event. 

Table 1. KOMPSAT-2 satellite data characteristics. 

 Before Flood Event After Flood Event 

Acquisition date 22/06/2010 14/10/2012 

Image size (pixels) 
PAN: 4000 × 4000  

MS: 1000 × 1000 

PAN: 4000 × 4000  

MS: 1000 × 1000 

Spatial resolution 
PAN: 1 m  

MS: 4 m 

PAN: 1 m  

MS: 4 m 

Radiometric resolution 10 bit 10 bit 

off-nadir angle 2° 24° 

Processing level Level 1R Level 1R 

3. Change Detection Approach Based on Cross-Fused Image 

Unlike classical unsupervised change detection methods, which are generally fulfilled based on the 

difference images, our approach is based on analysis of spectral distortion that occurs during image 

fusion process. Image fusion is defined as the process of combining relevant information from two or 

more images into a single image [26]. When the fused image is generated from the images acquired at 

different times, it is inevitable to occur the spatial and spectral distortions within the image due to the 

dissimilarity between the multi-temporal images. In this case, the spectral-distorted area of the fused 

image can be considered as a candidate of the changed area. Within this framework, we focus on the 
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discrimination between two opposite classes associated with changed and unchanged pixels caused by 

flooding from the fused image. Let us consider that two VHR satellite datasets 𝐹1 and 𝐹2 are consist of 

a panchromatic (PAN) and four-band multispectral (MS) images. The 𝐹1 and 𝐹2 datasets are acquired in 

the same geographical area at different times 𝑡1 and 𝑡2, before and after flooding. To better understand 

the concept and procedure of the proposed change detection technique, a schematic diagram is given in 

Figure 2. Each step of the procedure is explained in detail as follows. 

 

Figure 2. Conceptual workflow of the proposed methodology for flood extent extraction 

using bi-temporal VHR satellite images. 

3.1. Gram-Schmidt Adaptive (GSA) Image Fusion 

Spatial resolution of MS images is usually slightly lower than that of PAN image captured by the 

same satellite. Generally, image fusion methods aim to improve the spatial information of the original 

MS images by using the spatial details of the VHR PAN image in situations where we cannot obtain 

ideal VHR MS images due to the technical limitations of certain satellite sensor [26]. Most of image 

fusion methods are based on a general protocol, which can be broadly summarized in two steps: (1) 

extraction of high-frequency spatial information from the PAN image; and (2) injection of such spatial 

details into the resized MS images by exploiting different models [27]. A general fusion framework 

protocol can be defined as [28] 

𝑀𝑆𝑛
ℎ = 𝑀𝑆𝑛

𝑙 + 𝜔𝑛 ∙ (𝑃
ℎ − 𝑃𝑙) (1) 

where 𝑀𝑆𝑛
ℎ is the fused image of the nth band, 𝑀𝑆𝑛

𝑙  is the resized MS image of the nth band that is 

resampled to the same spatial resolution of PAN. 𝑃ℎ is the PAN image, 𝑃𝑙 is the synthetic image having 

an equivalent spatial resolution with 𝑃ℎ, and 𝜔𝑛 determines the amount of spatial detail that is added to 

the resized MS bands. 
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A GSA is a representative component substitution (CS)-based fusion algorithm. It denotes a case in 

which 𝑃𝑙 is determined by performing multivariate linear regression procedure between the resized MS 

data set and the PAN image, while 𝜔𝑛 is determined as proportional to the covariance value between the 

𝑃𝑙 and the resized MS bands [29]. According to the concept of GSA image fusion method, we generate 

the fused image for 𝐹2 satellite (𝐹2-GSA) dataset taken after the flood event. 

3.2. Empirical Scene Normalization 

The near infrared (NIR) image band is a useful information source for detecting flooded areas.  

The flooded area generally appears very dark in this NIR band in which water has strong absorption 

characteristic. The idea of this paper is based on the assumption that if the 𝐹1 MS image is fused with 

the NIR band of 𝐹2, it may produce serious spectral distortion in the flooded areas in the fused image. 

The 𝐹2  NIR band is directly extracted from the GSA-fused image of 𝐹2  for the generation of a  

cross-fused image. 

Before the generation of the cross-fused image, the 𝐹2 NIR image band is required to minimize the 

radiometric difference with 𝐹1 dataset (i.e., images acquired before the flood event) caused due to the 

different atmospheric conditions, solar illumination, and view angles. In this paper, we used the 

empirical line calibration (ELC) method [30] for the radiometric normalization between the 𝐹2 NIR 

image band and 𝐹1 PAN image. This method involves the selection of pseudo-invariant features (PIFs) 

whose reflectance values are nearly invariant over time. The 10 PIFs were manually selected throughout 

the study area. The 𝐹2 NIR image band was radiometrically normalized to 𝐹1 PAN image using the 

derived regression from the selected PIFs, and the normalized 𝐹2 NIR′ image band was finally used to 

generate the cross-fused image. 

3.3. Cross-Fused Image Generation 

The GSA is a well-known CS-based fusion method that can effectively inject the spatial details into 

the fused image. The major drawback of CS-based fusion method is spectral distortion, also called the 

color (or radiometric) distortion. It is characterized by a trend to present a predominance of a color on 

the others. This spectral distortion is caused by the mismatch between the spectral responses of the MS 

and PAN bands according to the different bandwidth [31]. In this paper, we aim to enhance the flood 

change detection performance by intentionally increasing this spectral distortion in the flooded regions. 

To this end, as aforementioned in Section 3.2, we use the 𝐹2 NIR′ image band instead of 𝐹1 PAN image 

in order to generate the cross-fused image. The fused image brings the effect of significant spectral 

distortion in the flooded areas while maintaining the radiometric characteristic of the permanent water 

body. This is because the level of mismatch of spectral response is very severe outside of the NIR spectral 

range; the bandwidth of NIR band is much narrower compared to that of the PAN image. This 

characteristic helps to distinguish permanent water bodies from flooded areas in the process of the flood 

change detection. 
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3.4. Generation of Change Candidate Image Using UIQI Index 

We consider spectral distortion in the cross-fused image as an indication of changed area. A certain 

amount of undesirable spectral distortion additionally occurs when the cross-fused image is generated 

from the two images acquired at different times. The distortion occurs mainly due to some spatial 

inconsistency and shape disagreement between two images taken from different geometric viewpoints. 

This may result in substantial false alarms of change in the regions having a high degree of spatial 

inconsistency, such as densely populated urban area. 

To alleviate this problem and quantify the change candidate area, we use the UIQI index, which is 

the representative window-based spectral distortion measure. It considers context characteristics of local 

regions, instead of using simple pixel difference-based measures such as mean square error (MSE) and 

signal-to-noise ratio (SNR). The UIQI index is easy to calculate and has robust characteristic against 

several types of image noise such as white Gaussian, salt and pepper, mean shift, and multiplicative 

noises [32]. Generally, the pixel-based and statistic-oriented change detection measures are sensitive to 

image noise, because they focus mainly on the spectral value and mostly ignore the spatial context [33]. 

We employed the UIQI index to measure the distortion between original and distorted images with a 

combination of three factors: loss of correlation C𝑤, luminance distortion 𝑙𝑤, and contrast distortion 𝑆𝑤 [32]. 

The first component C𝑤 is the correlation coefficient between the original and distorted images in the 

window mask, which is the measure of linear correlation. Its range extends from −1 to 1, and the best 

value is obtained when the distorted image is equal to the original image. The second component 𝑙𝑤 

measures the mean luminance between the two images, and its range is [0 1]. This component has the 

maximum value when the means of the images are the same. The variance of the signal can be viewed 

as an estimation of contrast. Thus the third component 𝑆𝑤 measures how similar the contrasts of the two 

images are. Its range of values is also [0 1], and the best value is achieved when the variances are equal. 

The UIQI index is applied using local moving window of size N × N. It moves over the entire image, 

pixel by pixel along the horizontal and vertical directions. The UIQI value at a generic position (x, y) of 

individual bands is calculated as: 

UIQI(x, y) = 𝐶𝑤(𝑥, 𝑦)𝑙𝑤(𝑥, 𝑦)𝑆𝑤(𝑥, 𝑦) =
σ𝑥𝑦
σ𝑥σ𝑦

∙
2σ𝑥σ𝑦
σ𝑥
2 + σ𝑦

2
∙

2μ𝑥μ𝑦

(μ𝑥)
2 + (μ𝑦)

2 (2) 

where μ𝑥 and μ𝑦 denote the mean values of original and distorted images within the window mask, and 

σ𝑥
2 and σ𝑦

2  are the variance values of original and distorted images within the window mask, respectively. 

σ𝑥𝑦 is the covariance between two images within the mask. 

According to the property of three factors, the UIQI value takes high values in undistorted areas and 

low values in distorted ones within the range [−1, 1]. This index has an advantage by taking into account 

local spatial properties, i.e., luminance, contrast, and correlation information, whereas traditional  

pixel-based similarity measures focus solely on the spectral signature of each pixel. Therefore, this index 

is worth to be considered for detecting the flood change in VHR bi-temporal images. The UIQI index is 

computed between the 𝐹1 GSA-fused image (i.e., fused image by the dataset acquired before the flood 

event) and the cross-fused image. The illustration of the UIQI measurement is shown in Figure 3. 
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Figure 3. Illustration of the universal image quality index (UIQI) measurement system. 

3.5. Determination of the Final Flooded Area 

We applied a thresholding method into the UIQI image in order to assign each image pixel to one of 

the two opposite classes, namely flooded and un-flooded area. These two classes can be separated as a 

binary classification problem, where the probability density function 𝑝(𝑥) of the image is a mixture of 

two parametric density functions associated with the flooded and un-flooded classes, i.e., 

𝑝(𝑥) = 𝑃1𝑝1(𝑥|θ1) + 𝑃2𝑝2(𝑥|θ2) (3) 

where 𝑃1 and 𝑃2 are the prior probabilities of the flooded and un-flooded classes, and 𝑝1(𝑥|θ1) and 

𝑝2(𝑥|θ2)  are the class-conditional densities associated with the flooded and un-flooded classes, 

respectively. θ1  and θ2  are the vectors of parameters on which two parametric class-conditional 

densities depend. The expectation maximization (EM) algorithm, assuming that the class-conditional 

densities follow a Gaussian distribution, is an iterative method for finding maximum likelihood or 

maximum a posteriori (MAP) estimates of parameters in statistical models [34]. The EM iteration 

alternates between performing an expectation step and a maximization step; the expectation step creates 

a function for the expectation of the log-likelihood evaluated using the current estimate for the parameter 

𝑃𝑖  and θi  (𝑖 = 1, 2) ; the maximization step computes parameters maximizing the expected log-

likelihood found on the expectation step. These estimated parameters are then used to determine the 

given Gaussian variable distribution in the next expectation step. The EM algorithm is sensitive to select 

initial value of the parameters to be estimated because of the possibility of finding the local maxima for 

the total likelihood in the parameter space. If these initial values are inappropriately selected, the EM 

algorithm may lead to an unsatisfactory estimation of the class distribution. To address this issue, several 

methods are reported in the literature [35]. In this paper, the EM algorithm is initialized by the result of 

Otsu’s method [36]. The final change detection image is generated by exploiting the estimated 

parameters. The Bayes rule that minimizes the overall error of probability is applied in order to select 

the decision threshold in the change-detection process. 
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4. Experimental Result and Accuracy Assessment 

In this paper, two experiments were conducted to evaluate the performance and feasibility of our 

algorithm. In order to check whether the cross-fused image is effective for the extraction of the flood 

inundation area, we first compared our method with one based on the GSA-fused images of each dataset 

(Figure 1), which is now called the MFI method. The MFI method is developed based on the following 

steps: (1) generate the GSA-fused images in 𝐹1  and 𝐹2  dataset, respectively; (2) calculate the UIQI 

between the 𝐹1  GSA- and the 𝐹2  GSA-fused images; (3) determine the changed area using the EM 

algorithm. The window size for measuring UIQI of both the proposed and the MFI methods was set to 

64, and the threshold was automatically selected by applying the EM algorithm to a mean image obtained 

by averaging UIQI images of individual bands (Figure 4). The results of the flood extent extraction 

obtained by both methods are shown in Figure 5e,f. 

In an effort to evaluate the results with a numerical manner, a ground-truth map was produced from 

the original image by manually digitizing the flooded area as shown in Figure 5a. In the construction of the 

ground-truth map, we only considered the visually flood-affected areas along the river, as not only it is 

hard to track down all the changes in urban residential district, but also we focus on changes caused by 

flood. By comparing the ground-truth image with the results of the flood extraction, we can obtain 

change detection accuracies. In order to evaluate the proposed algorithm, the error matrix method was 

applied for the accuracy assessment of the tested methodologies. From the error matrices of each tested 

methodology, the commission error (CE), the omission error (OE), and the overall accuracy (OA) were 

calculated [37]. 

Per the results of the quantitative analysis shown in Table 2, the MFI method showed the highest OA 

value, but it is difficult to confirm that this method is better than the proposed method. This is because 

the result of the MFI method has given too much false detection in the region of the permanent water 

body compared with the ground-truth image. In other words, the MFI method cannot separate between 

the permanent water body and the flooded area. From the Figure 5f, we can see that the use of  

the cross-fused image allowed a more precise identification of the flooded area and gave a good 

performance in differentiating the flooded area and the permanent water body. 

  
(a) (b) 

Figure 4. Cont. 
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(c) (d) 

Figure 4. The component images generated from the experiment: (a) MAD components 

(RGB color composite: 4 3 2); (b) the cross-fused image (RGB color composite: 3 2 1); (c) 

the mean UIQI generated from the MFI method; (d) the mean UIQI generated from the 

proposed method. 

As another way to examine the performance of our algorithm, we compared our result to the ones 

generated from the CVA- , MAD- and SVM-based change detection methods. The original bi-temporal 

GSA-fused images (Figure 1) were used as input dataset for the methods. The EM algorithm was applied 

to the magnitude image for the automatic determination of an optimal decision threshold in the CVA-based 

change detection method. In the MAD-based change detection method, a multi-level thresholding based 

on the EM algorithm was applied to the mean of the MAD components for the optimal selection of two 

thresholds; the pixel value greater than the upper threshold or less than the lower threshold was 

determined as the final flooded pixel [38]. To apply the SVM-based method, training pixels for the 

classes of both flooded and un-flooded pixels should be selected on the multispectral difference image. 

This has been done through a visual inspection. When using the SVM-based method, the user faces many 

possible choices of kernel functions commonly yielding different results. In this paper, we used Radial 

Basis Function (RBF), which handles the case in which the relationships between class labels and 

attributes were nonlinear. A gamma value to determine the RBF kernel width and a penalty parameter 

to control the margin error were set at 0.333 and 100, respectively. 

Figures 5 and 6 show the results of change detection with different methods, and the detailed 

quantitative results are given in Table 2. Figure 5 includes the whole study area, allowing an initial visual 

assessment of the results of flood extent extraction. Figure 6 shows the sub-images extracted from 

different regions of Figure 5: The red color represents the correctly extracted flood pixels, whereas the 

blue and yellow colors represent the commission and omission errors, respectively. The results are 

overlaid over the original PAN image collected before the flood event. At first glance, one can observe 

that the masks obtained with the SVM and the proposed methods showed consistent results to actual 

changes in comparison with the CVA- and the MAD-based methods. Upon close inspection of the 

change detection results using the ground-truth image (Figure 5a), it seems that the flood extent extracted 

by the SVM method was over-estimated compared to the results of the proposed method. The permanent 
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water body was even incorrectly classified as the flooded area by the SVM method (Figure 5d). As shown 

in Table 2, the OA of the proposed method was 75.04%. The SVM-based change detection method 

produced a slightly better result, showing 1.13% higher OA than the proposed method. However, 

obvious CE exits throughout the permanent water body area compared with the original image taken 

before the flood event as shown in Figure 1a. Moreover, the SVM method needs training pixels for a 

given two classes, meaning that it needs additional manual intervention. Although the proposed method 

appears to be satisfactory in the flood extent extraction, it produces false positives in some regions far 

from the central flooded region, such as in the upper right part of Figure 5f. This is because the spectral 

distortion occurred by the remnant atmospheric effects after radiometric correction and the spatial 

inconsistency occurred by different look angles of bi-temporal VHR imagery. To remove these false 

positives, it would seem preferable to consider the pixels that are only close to the largest central water 

regions. To increase the accuracy of the proposed change detection method, therefore, we will further 

study about the rule that can maintain the flooded areas and disregard the false positive far from the river. 

  

(a) (b) 

  

(c) (d) 

Figure 5. Cont. 
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(e) (f) 

Figure 5. Result images of flooded area extraction using the tested methods: (a) Ground-truth 

image (b) MAD result; (c) CVA result; (d) SVM result; (e) MFI result; (f) result of the 

proposed method. The extracted flood pixels according to each method are represented in 

red color. 

 

(a) 

Figure 6. Cont. 
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(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 6. Cont. 
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(f) 

Figure 6. Sub-images extracted from different regions of Figure 5: (a) a location map of 

each sub-image; (b) MAD result; (c) CVA result; (d) SVM result; (e) MFI result; (f) result 

of the proposed method. The red color represents the correctly extracted flood pixels, the 

blue color shows the commission error, and the yellow color shows the omission error. 

Table 2. Accuracy assessment of the tested change detection methods: (F) Flood, (NF) No 

Flood, (OE) Omission error, (CE) Commission error, (OA) Overall accuracy. 

Reference Change 

Classified Change 

F  

(Pixels) 

NF 

(Pixels) 
OE (%) CE (%) OA (%) 

MAD 
F (pixels) 2496 144,629 

99.96 98.30 60.03 
NF (pixels) 6,249,234 9,603,641 

CVA 
F (pixels) 230,216 140,919 

96.32 37.97 61.48 
NF (pixels) 6,021,514 9,607,351 

SVM 
F (pixels) 5,091,425 2,653,158 

18.56 34.26 76.17 
NF (pixels) 1,160,305 7,095,112 

MFI 
F (pixels) 5,742,451 3,180,925 

8.14 35.65 76.94 
NF (pixels) 509,279 6,567,345 

Proposed  

Method 

F (pixels) 4,567,422 2,307,765 
26.94 33.56 75.04 

NF (pixels) 1,684,308 7,440,505 

5. Conclusions 

In this paper, we proposed a novel unsupervised change detection methodology based on a 

combination of image fusion and spectral distortion measure for the flood extent extraction. The 

experimental results from bi-temporal KOMPSAT-2 VHR images showed that the proposed approach 

could visually produce a good result for the flooded areas compared with the traditional CVA-, MAD-, 

SVM-based change detection methods. The OA obtained by the proposed method was 75.04%, which 

is close to that of SVM-based supervised change detection method. The proposed method is insensitive 

to image noise due to the use of context information based on the UIQI index. In contrast, the traditional 

pixel-based change detection techniques focus on the spectral value only. Therefore, the proposed 

method can achieve a lower rate of false alarms compared with the conventional methods. The  

cross-fused image was also found to be able to extract a more precise identification of the flooded area 
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and gave a good performance in differentiating the flooded area and the permanent water body.  

The separation allows us to predict the damaged scale by flooding and make the decision to  

recover accordingly. 

It is worth noting that the proposed method is designed based only on the NIR band of the post-flood 

image for the flood change detection. It means that we are focusing on flooding-related areas, which are 

sensitive to the NIR band. This is the reason why the proposed method produced some false positives in 

regions that are not related to water. Nevertheless, the proposed method has a strong advantage for flood 

extent extraction due to the possibility on separation between the flooded area and the permanent water 

body. It will be obvious that the proposed method improves CE over the other methods when the site is 

constructed mainly on the flood-related area. 

In order to increase the accuracy of flood extent extraction, our future research will focus on making 

more precise framework to suppress false positives in the urban areas. We will apply the proposed 

approach to different sites affected by floods to confirm the robustness of the method. The effects 

according to different data fusion algorithms will also be investigated. 
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