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Abstract: For identification of forested landslides, most studies focus on knowledge-based 

and pixel-based analysis (PBA) of LiDar data, while few studies have examined (semi-) 

automated methods and object-based image analysis (OBIA). Moreover, most of them are 

focused on soil-covered areas with gentle hillslopes. In bedrock-covered mountains with 

steep and rugged terrain, it is so difficult to identify landslides that there is currently no 

research on whether combining semi-automated methods and OBIA with only LiDar 

derivatives could be more effective. In this study, a semi-automatic object-based landslide 

identification approach was developed and implemented in a forested area, the Three Gorges 

of China. Comparisons of OBIA and PBA, two different machine learning algorithms and 

their respective sensitivity to feature selection (FS), were first investigated. Based on the 

classification result, the landslide inventory was finally obtained according to (1) inclusion 

of holes encircled by the landslide body; (2) removal of isolated segments, and (3) 

delineation of closed envelope curves for landslide objects by manual digitizing operation. 

The proposed method achieved the following: (1) the filter features of surface roughness 

were first applied for calculating object features, and proved useful; (2) FS improved 
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classification accuracy and reduced features; (3) the random forest algorithm achieved 

higher accuracy and was less sensitive to FS than a support vector machine; (4) compared to 

PBA, OBIA was more sensitive to FS, remarkably reduced computing time, and depicted 

more contiguous terrain segments; (5) based on the classification result with an overall 

accuracy of 89.11% ± 0.03%, the obtained inventory map was consistent with the referenced 

landslide inventory map, with a position mismatch value of 9%. The outlined approach would 

be helpful for forested landslide identification in steep and rugged terrain. 

Keywords: landslide inventory; LiDar; object-based image analysis; machine learning; the 

Three Gorges 

 

1. Introduction 

The Yangtze Three Gorges area of China has more than 2500 unstable slope localities, and often 

suffers from landslide events [1–3]. The construction of the Three Gorges dam has increased the 

probability of geological disasters [2,4] that pose a serious threat to people’s lives and property around 

the Three Gorges Reservoir. Preparation of landslide inventories is absolutely necessary to help quantify 

landslide hazard and to assess risk [2,5–11]. The Three Gorges area is characterized by steep and rugged 

terrain with heavy vegetation cover, often obscuring or subduing morphologic features indicative of 

landslides [12,13]. The landscape makes it particularly challenging to identify landslides using optical 

and aerial photographs, synthetic aperture radar (SAR) images, high spatial resolution multispectral 

images, moderate resolution digital terrain models (DTMs), and very high resolution (VHR) satellite 

images [6,14–30]. 

Light detection and ranging (LiDar) technology can obtain high resolution topographic data and 

penetrate vegetation, measuring features subdued by the rugged and forested terrain [11]. LiDar has 

proven to be a powerful and promising tool to detect landslides and map features under dense vegetation 

in many studies [31–40]. A range of LiDar derivatives, including DTMs, shaded relief, slope, aspect, 

and surface roughness, have been widely used for qualitative visual interpretation and quantitative 

statistical analysis of landslides [12,32,41–47]. 

Pixel-based and object-based methods are the two general image analysis approaches for terrain 

evaluation. With increasing availability and wide utilization of sub-meter imagery, object-based image 

analysis (OBIA) has become the most basic means to process VHR imagery [48]. Unlike pixel-based 

analysis (PBA), OBIA can be applied at different scales. Depending on the selected application, the 

underlying input imagery, and the environment under analysis, objects of different sizes that depict 

different land surface features can be produced. OBIA can derive additional geometry and contextual 

semantic features that are potentially useful for classification studies [49]. Optical images evaluated with 

OBIA have been increasingly used for landslide inventory mapping, effectively detecting unvegetated 

landslides [9,22,28,50–52]. Furthermore, Stumpf and Kerle [28] have successfully combined VHR remote 

sensing imagery, OBIA, a feature selection method, and a random forest (RF) algorithm for unvegetated 

landslide mapping. OBIA using LiDar data has also become a useful alternative in heavily forested areas 

because of the difficulty of using optical image-based analysis in rugged and vegetated terrain. 
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Until now, landslide investigations using LiDar derivatives have primarily focused on  

knowledge-based and pixel analysis methods [39,42]. However, the use of OBIA for topographic data 

has received growing attention because of increasing availability of high-resolution DTM data.  

Martha et al. [22,51] used optical images for segmentation and auxiliary elevation data for OBIA-based 

landslide detection. Anders et al. [53] used LiDar DTM-derived features for OBIA-based 

geomorphological change detection. Eisank et al. [54] used DTM data for OBIA-based drumlin 

delineation. Only Van den Eeckhaut et al. [39] have used the support vector machine (SVM) algorithm 

and LiDar derivatives alone for object-based mapping of landslides in forested terrain, and only on soil-

covered areas with gentle hillslopes. In a word, this study was mainly inspired by Stumpf and Kerle [28] 

and Van den Eeckhaut et al. [39]. For bedrock-covered mountains with steep and rugged terrain, it is 

more difficult to identify landslides because: (1) the main scarp is either indistinct or difficult to 

distinguish from surrounding objects; (2) landslide-affected areas have similar surface roughness to the 

surrounding non-landslide areas because of bedrock outcrop; and (3) anthropogenic disturbances alter 

and weaken the landslide signatures. It has not been examined whether combining semi-automated 

methods and OBIA with only LiDar derivatives could be effective. Moreover, comparisons of PBA and 

OBIA, machine learning algorithms (MLAs), and their sensitivity to the feature selection method for 

landslide recognition in rugged forested terrain have not been investigated. 

In this study, a semi-automatic landslide identification procedure, which combines LiDar data, OBIA, 

a feature selection method, and two MLAs (RF and SVM), was developed and implemented in a forested 

area with steep and rugged terrain, the Three Gorges area of China. First, the following pixel features 

were generated; (1) topographic features: DTM, slope, aspect, and surface roughness; (2) texture 

features: DTM, slope, aspect, and surface roughness textures based on four texture directions and aspect 

direction; (3) filter features: the moving average and standard deviation (stdev) filter features of DTM, 

slope, aspect, and surface roughness. LiDar DTM data were then used alone for image segmentation, 

and all the above LiDar derivative maps were applied to calculate the object features. A wrapper feature 

selection method based on RF was applied to assess and select the features, resulting in an optimal object 

features subset. The classification accuracies of all features-based and the features subset-based models 

using RF and SVM algorithms were calculated. Also, comparisons between OBIA and the previous PBA 

[42], and the sensitivity of these two methods and the MLAs to the feature selection method were 

investigated. Van den Eeckhaut et al. [39] proposed a multi-stage procedure to identify landslides: (1) 

extraction of main scarps and landslide-affected areas using SVM, (2) artificial drawing of landslide 

flanks, (3) linking of landslide parts in to one landslide, and (4) cleaning of protrusions and isolated 

segments. This study referred to some ideas of this procedure and developed a simple approach. Based 

on the classification result, the landslide inventory map was finally obtained by the following steps: (1) 

inclusion of holes encircled by the spatially connective terrain segments that are classified as landslide 

objects; (2) removal of isolated and small segments that are located away from rivers and landslide 

bodies; and (3) delineation of closed envelope curves for landslide objects by manual digitizing 

operation.  
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2. Study Area and Data Sources 

The study covered a 21.6 km2 landslide-prone area around the town of Shazhenxi in Zigui County, 

and a section of the Qinggan River, which is a major branch of the Yangtze River (Figure 1). Landslides 

greatly affect the study area, and the referenced landslide inventory map resulted from collected landslide 

inventory data, extensive fieldwork, and visual interpretation of aerial images [55] and LiDar-derived 

topographic data [42]. 

The area is characterized by dense vegetation cover, steep adjoining mountains, and rugged 

topography at elevations of 120–851 m (derived from LiDar DTM) with bedrock outcrops such as 

Triassic detrital rocks (Shazhenxi Group) and Jurassic silt, lutite, pelitic siltstone, and sandstone 

(Niejiashan Group) [42]. Located in the subtropical and monsoonal climate zone, the weather here is 

mild and moist with an annual average temperature of 17–19 °C. The annual average rainfall is about 

1000 mm, with concentrated and continuous rainstorms in the rainy season. 

The source data for the study were 3 m resolution LiDar coverage, acquired from April to June 2009 

by a Leica ALS50-II airborne laser radar system. The data encompassed the region between  

110°34′4.61″E–110°37′0.17″E and 30°56′52.44″N–30°59′18.04″N (WGS_1984). The LiDar data were 

very reliable and fully met the requirements of this research; the data had a root mean square error of 

0.20 m, and were obtained using 23 ground-truthing locations and an average laser spot density of  

3.15 pts/m2 [55]. 

 

Figure 1. Shaded relief image and location of study area. Red dotted lines represent landslide 

boundaries. Blue area represents the Qinggan River (Revised from [42]). 

3. Methods 

The landslide inventory map of the study area was completed using the collected landslide inventory 

data, extensive fieldwork, and visual interpretation of aerial images and LiDar-derived topographic data. 

A series of pixel features, primarily pixel-based landslide influential factors [56], were calculated from 
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LiDar-derived DTM data. Image objects were structured from DTM images using multiresolution 

segmentation (MRS), and object features were extracted. The objects were then labeled as landslide (OLS) 

and non-landslide objects (ONLS) [28]. Objects that contained more than 50% landslide pixels were classified 

as OLS, and others as ONLS [28]. A wrapper feature selection method based on the RF algorithm, which utilizes 

the classifier as a black box to score the subsets of features based on their predictive power [57], was chosen 

and applied in order to reduce the dataset size. RF and SVM models were then applied to classify 

landslide and non-landslide objects, and the classification accuracies were assessed. Based on the 

classification result, the landslide inventory was finally obtained according to the following: (1) 

inclusion of holes surrounded by the landslide body, (2) removal of isolated and small segments that are 

located away from rivers and landslide bodies, and (3) delineation of closed envelope curves for OLS by 

manual digitizing operation. The flowchart for this process is presented in Figure 2. 

 

Figure 2. Flowchart of the method used in this research. 
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3.1. Pixel Feature Calculation 

According to Chen et al. [42],the following sets of pixel features were proposed (Table 1):  

(1) LiDar-derived topographic features: DTM, slope, aspect, and surface roughness; (2) texture features 

based on the gray level co-occurrence matrix (GLCM): the mean textures of the topographic features 

based on four texture directions, and individual textures based on the aspect direction, mainly containing 

five textures—contrast, correlation, angular second moment, entropy, and homogeneity; (3) the moving 

average and stdev filter of the above topographic features: in the moving average and stdev filters, the 

value of the central pixel is replaced by the mean and stdev values, respectively, of all the pixels for a  

3 × 3 pixel kernel size. The texture and filter features of surface roughness were newly added. Surface 

roughness (Figure 3) was calculated as the reciprocal of the cosine of the slope angle [58]. The surface 

roughness values at the edges of landslide-affected surfaces exhibited some changes. Landslide-affected 

areas had lower surface roughness compared to some non-landslide areas because of bedrock outcrop, 

resulting in more difficult landslide identification. A total of 52 pixel features were calculated using 

ArcGIS 9.3 and Matlab R2009a. Van den Eeckhaut et al. [39] used many LiDar derivatives for object 

feature calculation and classification, such as slope gradient, plan curvature, roughness, openness, and 

sky-view factor. However, to make a comparison of OBIA and the previous PBA [42], this study just 

focused on some basic and important LiDar derivatives, and their texture and filter features. 

 

Figure 3. Surface roughness image and landslide locations. Black dots with green 

boundaries represent the landslide boundaries. 
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Table 1. List of pixel features for object features calculation. 

Pixel Feature Type Description No. 

topographic features DTM, slope, aspect, and surface roughness 4 

texture features 

The contrast, correlation, angular second moment, entropy,  

and homogeneity texture of the topographic features based on  

four texture directions and aspect direction 

40 

filter features 
The moving average and standard deviation (stdev) filter of DTM,  

slope, aspect, and surface roughness 
8 

3.2. Image Segmentation 

Image segmentation is the first step and a necessary prerequisite for OBIA because it determines the 

size and shape of image objects [49]. The selection of appropriate image segmentation parameters 

ultimately depends on the selected application, the underlying input imagery, and the environment under 

analysis [48,59,60].  

There are many segmentation procedures, but MRS [61] is used by most landslide studies, and is 

probably the most popular and important segmentation algorithm [39,62]. MRS is a region-growing 

image segmentation algorithm that merges individual pixels with their most similar neighbors, until the 

threshold of the within-object heterogeneity is reached [63]. 

MRS mainly relies on three user-defined parameters: shape–color, compactness–smoothness, and 

scale [49]. In this study, the paired values of shape/color and compactness/smoothness represent 

weightings between shape and topographic information, and compactness and smoothness of the  

object borders. Generally, color information has higher weight; compactness and smoothness are 

weighted equally. The scale parameter (SP) is a key control factor for the segmentation and classification 

of Earth observation (EO) imagery because it controls the internal heterogeneity of image objects. 

Consequently, SP controls the average size of the objects, directly affecting classification  

accuracy [60,61,63–66]. The selection of the SP value is critical [62,67] and has become a research focus 

in OBIA [48]. Although some quantitative and automated approaches have been developed [51,62,68–72], 

they have not been integrated within mainstream software for OBIA [73], and SP selection is often based 

on an iterative trial-and-error optimization method in which the segmentation quality is visually  

assessed [60,74–79]. 

The first step of image segmentation is to select the input layers and specify their weights. In this 

study, an MRS algorithm was run using eCognition Developer 8 [80]. The input layers for segmentation 

were extremely vital because they determine the quality of the segmentation results. Other relevant 

OBIA researchers have successfully used VHR remote sensing imagery for unvegetated landslide 

mapping [28] and LiDar derivatives such as slope, roughness, and openness for forested landslide 

identification on soil-covered areas with gentle hillslopes [39]. However, in bedrock-covered mountains 

with steep and rugged terrain, the differences of topographic variables between landslide and  

non-landslide areas are weakened: (1) the main scarp is either indistinct or difficult to distinguish from 

surrounding objects; (2) landslide-affected areas have similar surface roughness to the surrounding  

non-landslide areas because of bedrock outcrop; and (3) anthropogenic disturbances alter and weaken 

the landslide signatures. Therefore, topographic variables such as slope, roughness, and so on would not 

be effective. Moreover, considering that the selection of input layers was often based on experience or a 
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trial-and-error approach, which may effectively prevent the transferability of the approach developed in 

this study, the DTM image was first selected and investigated as the single input layer. The weights of 

shape/color and compactness/smoothness were first determined based on experience and a trial-and-error 

process by using a fixed SP. The weights of compactness and smoothness were both fixed as 0.5. 

Additionally, the weights of shape were selected from 0.1 to 0.4 with a step of 0.1, namely 0.9 to 0.6 for 

color. It was found that the weights of 0.1/0.9 for shape/color were more suitable. Stumpf and Kerle [28] 

used 15 different scale parameters for MRS, which may be adaptable to the scales of the objects of 

interest in that study, and evaluated the object features and classification accuracy at those scales. Van 

den Eeckhaut et al. [39] used two scales for MRS to eliminate large cropland fields and extract landslide 

body candidates. However, in this study, landslide parts such as main scarp are either indistinct or 

difficult to distinguish from surrounding objects. Therefore, this study just used a trial-and-error method 

to select one suitable scale parameter to depict the terrain segments. Some OBIA researchers have used 

object-merging algorithms, such as spectral difference segmentation, after initial segmentation to merge 

similar and neighboring objects [81,82]. However, in this study, similar objects with an elevation mean 

difference below the given threshold were not always the same type of land use and land cover. The 

determination of input layers and the thresholds for object-merging algorithms are often based on a  

trial-and-error process which may introduce more errors. Moreover, based on the initial segmentation 

result and an intelligent classification process, the objects classified as the same class were naturally 

merged into big objects. It was more reliable, automated, and objective compared to the object-merging 

algorithms. Table 2 details the parameters for MRS and the statistics for image objects after the application 

of segmentation. 

Table 2. Image segmentation parameters and statistical values of the objects. 

Scale Shape/Color Compactness/Smoothness Number of Objects Mean Area of Objects (m2） 

10 0.1/0.9 0.5/0.5 20869 1035  

20 0.1/0.9 0.5/0.5 6743 3203  

30 0.1/0.9 0.5/0.5 3490 6189  

40 0.1/0.9 0.5/0.5 2148 10056  

3.3. Object Features Calculation 

The MRS process produced the basic elements (i.e., image objects) for object-based classification. 

Image objects are spatially discrete terrain segments [54] and contiguous regions in an image [63]; four 

main types of object features were available within the eCognition software: layer values, geometry, 

texture, and corresponding contextual semantic features [80]. Both subjective and objective methods can 

be used to select useful object features for object-based classification. Subjective methods are often 

based on past experience and user knowledge [75], while the utilization of feature selection algorithms 

is relatively objective [83–86]. 

In this study, some object features were initially selected based on experience (Table 3), then a 

wrapper feature selection method based on the RF algorithm was applied to pick useful features 

objectively (Section 3.4). The layer features—Max, Min, Mean, and Standard deviation (StDev)—were 

selected (Table 3); they are, respectively, the values of the pixel with the maximum and minimum layer 

intensity values in the image object, and the mean and standard deviation of intensity values of all pixels 
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forming an image object. Compared to Van den Eeckhaut et al. [39], two object layer features (Max and 

Min) that may be useful for the classification of OLS and ONLS were added in this study, considering that 

the abrupt changes of topographic variables in OLS may be weakened by using the object layer feature 

of Mean. It has been demonstrated that the geometric features of the objects generated by segmentation 

of multispectral images can differentiate scarp areas and different landslide types [87]. In this study, 

however, the objects were produced by a DTM image, so it is worth exploring whether the geometric 

features are useful for landslide identification. Geometry features were not used in this study, and will 

be considered in the future. Contextual semantic features could not be described with only a single object 

layer. For the listed pixel-based texture features, their layer features were directly obtained to use as the 

object texture features, which are different from the Haralick method [80]. Ultimately, 208 object 

features in total were generated for all the input layers. 

Table 3. List of object features selected in this study. 

Object Layer Features  Description 

Max The value of the pixel with the maximum layer intensity value in the image object 

Min The value of the pixel with the minimum layer intensity value of the image object 

Mean The mean intensity of all pixels forming an image object 

StDev The standard deviation of intensity values of all pixels forming an image object 

3.4. Object Feature Selection and Classification  

In this study, several input layers produced a large number of object features. When analyzing  

high-dimensional datasets, feature selection is often required before classification. According to Stumpf 

and Kerle [28] and Chen et al. [42], feature selection was implemented using the variable selection using 

Random Forests (varSelRF) package [88] within the R statistical computing software [89] and based on 

the Diaz-Uriarte and de Andres [90] method to set the first and second RF numbers to 2000 and 500, 

respectively. All OLS and an equal number of randomly selected ONLS were applied and run 20 times in 

consideration of the randomness of the dataset for feature selection and the computation time. Each time, 

only some of the object features were selected, and their variable importance ranks were obtained. 

Finally, the selected times, mean ranks, and stdev values of ranks were drawn for all selected features.  

For object classification, two machine learning algorithms were adopted: RF and SVM. The  

RF algorithm [91] incorporates an ensemble of randomly generated trees, and is a nonparametric learning 

algorithm. It has been applied in classification, regression, and feature selection for land cover  

and landslide studies, among others [28,49,92–94]. It was implemented using the RandomForest  

package [95] within the R statistical computing software [89]. SVM is a non-parametric kernel-based 

technique based on statistical learning theory, optimization algorithms, and structural risk minimization 

theory [96], and it has been used in many landslide studies [39,97,98]. It was implemented using the 

e1071 package [99] within the R statistical computing software [89]. SVM parameter optimization was 

implemented using a 10-fold cross-validation grid search function within the e1071 package [99]. In this 

study, a radial basis function kernel was used, and the cost and gamma parameters had to be optimized. 

According to Stumpf and Kerle [28] and Chen et al. [42], 20% of the OLS and ONLS, along with all the 

features and the features subsets, were selected as training sets to train the RF and SVM models, and the 
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rest were used as test sets to assess the classification accuracies. The mean and stdev values of the 

classification accuracies were then drawn from 50 random runs. 

4. Results and Discussion 

4.1. Image Segmentation 

The segmentation results of the four selected scales are presented in Figure 4. They were visually 

assessed using the referenced landslide inventory map. The objects are clearly larger at coarser 

segmentation scales. However, objects at landslide borders contained both landslide pixels (PLS) and 

non-landslide pixels (PNLS). The numbers of PLS and PNLS in these mixed objects were roughly equal, 

making object assignment problematic and possibly affecting the subsequent classification accuracy. 

Consequently, the segmentation result with an SP value of 10 was selected and applied to the study. 

 

Figure 4. Overlay display of image segmentation results on landslide boundaries and shaded 

relief images at the scales of: (1) 10, (2) 20, (3) 30, and (4) 40. Blue solid lines represent the 

segmentation results, and red dotted lines represent landslide boundaries. 
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It was the first attempt at using only LiDar DTM as the input layer for segmentation, and the resulting 

segmentation results were not very good. According to Stumpf and Kerle [28], this study mainly focused 

on the automated selection of object features for classification rather than the automated selection of 

scale parameters for segmentation. Van den Eeckhaut et al. [39] have successfully used an automated 

approach for the selection of scale parameters. However, in the trial-and-error process of this study, the 

segmentation results based on the scale parameters larger than 40 were poor, and it was found that with 

coarser segmentation scales the resulting objects at landslide borders often contained a roughly equal 

number of landslide pixels and non-landslide pixels, which was partly attributed to the input layer for 

segmentation. With scale parameters smaller than 10, the resulting objects were too many to process and 

the segmentation quality could not be improved obviously. It was anticipated that even with more 

automated and objective approaches, these situations would not be improved. Therefore, combining 

more suitable input layers and automated scale parameter selection approaches will be investigated in 

the future.  

4.2. Feature Selection 

The results in Table 4 show the features that have been sorted by the selected times, mean ranks, and 

stdev values of ranks. Features with selected times greater than 16 were retained after 20 feature selection 

iterations were performed. The selected feature subset had only 20 features, indicating that the 

dimensionality of the object feature set was significantly decreased. The selected feature subset 

confirmed that: (1) all of the object layer features (Max, Min, Mean, and StDev) were selected; (2) the 

selected times of the four types of object features were 4, 4, 10, and 2, indicating that the selected feature 

subset was dominated by the Mean object features; (3) the involved input layers were mainly the 

topographic and filter features, and there were no texture features; (4) all the topographic features were 

involved, and two of the eight filter features (the moving stdev filter of DTM and slope) were not 

involved, thus DTM, aspect, and their moving average filter dominated. Many object layer features of Max 

and Min were selected with relatively high mean ranks and proved useful. Chen et al. [42] suggested that 

texture and filter features improved the classification accuracy. In this study, after feature selection, many 

object features based on the layers of filter features were selected for subsequent classification and proved 

useful. However, after feature selection, no object features based on the pixel layer of textures were 

selected in this study, which suggested that they might be of little use, and it will be further investigated in 

the future whether other texture extraction methods would be effective. 

4.3. Classification Accuracy Assessment 

Fifty randomly selected training sets were applied to train the RF and SVM models. The training sets 

contained 20% of the OLS and ONLS, along with features subsets and all features. The test sets were 

classified using these four models, and the classification results were evaluated using the average user’s 

accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA) (Table 5). The features  

subset-based models achieved an OA of 77.36% ± 0.13% for the RF algorithm, and an OA of  

76.87% ± 0.07% for the SVM algorithm. The features subset-based models clearly resulted in higher 

classification accuracy compared to the all features-based models. The feature selection method not only 

significantly reduced the dimensionality of the object features set by about 90% (speeding up training of 
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the RF and SVM models), but also enhanced the classification accuracy by about 0.86% for the RF 

algorithm, and 2.34% for the SVM algorithm. From this, it can be concluded that the SVM algorithm 

was more sensitive to the feature selection procedure than the RF algorithm, and the RF algorithm had 

greater classification accuracies than the SVM algorithm for the features subset-based and all  

features-based models. The classification results of the previous PBA [42] and OBIA based on the 

features subset-based RF model are presented in Figure 5. The feature selection method enhanced the 

classification accuracy by about 0.86% for object-based RF classification, and 0.44% for pixel-based RF 

classification [42]. There were significantly different appearances between the classification results of 

PBA and OBIA. Although the classification accuracy was slightly decreased (about 0.88%) [100], OBIA 

was more sensitive to feature selection, had remarkably reduced computing time, and depicted more 

contiguous terrain segments which better conformed to the characteristics of real-work objects [101] 

compared to the previous PBA [42]. Hybrid objects derived from segmentation of the DTM image 

apparently introduced some errors. However, OBIA actually improved the applicability and 

interpretability of the classification results. 

Table 4. Results of the feature selection. Max, Min, Mean, and StDev represent the 

corresponding object layer features; mean and stdev (lowercase) represent the moving 

average and stdev filter features; _d, _s, _a, and _r represent the DTM, slope, aspect, and 

roughness features. 

Features Selected Times Mean Ranks 
Standard Deviation 

Value of Ranks 

Mean_a 20 2 1.08 

Min_mean_d 20 2.35 1.14 

Mean_d 20 2.4 1.19 

Mean_mean_a 20 3.55 1.15 

Mean_mean_d 20 5.2 0.83 

Min_d 20 5.85 0.88 

Max_mean_d 20 6.65 0.59 

Max_d 20 8 0 

Min_mean_a 20 9 0 

Max_mean_a 20 10 0 

Min_a 20 11 0 

Max_a 20 12.95 1.05 

Mean_stdev_r 20 13.2 1.15 

Mean_mean_r 20 13.6 1.10 

Mean_mean_s 20 14.55 1.15 

Mean_r 20 16.95 1.32 

Mean_s 20 17 1.12 

Mean_stdev_d 20 17.35 1.04 

StDev_mean_a 20 18.95 1.61 

StDev_mean_r 18 21.72 2.65 
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Table 5. Classification accuracy assessments for features subset-based and all features-based 

models using RF and SVM algorithms. 

Model UA (%) PA (%) OA (%) 

feature-reduced RF 67.21 ± 0.10 71.78 ± 0.24 77.36 ± 0.13 

full-feature RF 63.70 ± 0.16 71.11 ± 0.10 76.50 ± 0.05 

feature-reduced SVM 65.99 ± 0.22 71.15 ± 0.15 76.87 ± 0.07 

full-feature SVM 59.75 ± 0.32 67.62 ± 0.12 74.53 ± 0.04 

 

Figure 5. Classification results for the study area: (1) pixel-based [42], (2) object-based. 

White and black patches represent the objects (pixels) classified as OLS (PLS) and ONLS 

(PNLS), respectively. Red solid lines represent the referenced landslide inventory map, and 

the blue area represents the Qinggan River. 

4.4. Landslide Inventory Map and Accuracy Assessment 

As training sets, 50% of the OLS and ONLS were selected and, along with the features subset, were 

used to train the RF models. Then, the classification results of the study area were obtained, and an OA 

of 89.11% ± 0.03% was achieved. Based on the classification results, the landslide inventory map was 

finally achieved via the following steps: (1) inclusion of patches encircled by the spatially connective 

terrain segments classified as OLS; (2) removal of isolated and small segments that are located away from 

rivers and landslide bodies, and where landslide occurrence is almost impossible; and (3) delineation of 

closed envelope curves for OLS by manual digitizing operation using the Editor toolbar in ArcGIS 

software. In the first two steps, the classification result was first converted to vector polygon data, then 

the Editor toolbar in ArcGIS software was used to include and remove the corresponding segments, and 

the processed polygon data were finally converted to raster data. In step two, if the inclusion of an 

isolated landslide segment resulted in the destruction of the overall shape of a landslide body or made 

the increased non-landslide area larger than the area of the isolated segment, the isolated segment would 

be removed. In step three, the following guidelines should be followed: (1) the boundaries should be 
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smooth; (2) landslide flanks must be drawn in the down-slope direction in which the displaced material 

moves; (3) the C-shaped half surrounding boundaries should be closed; and (4) the overall trend of the 

flanks should be followed, and protrusions on the flanks should be ignored. A schematic diagram for 

landslide identification in the upper-right corner of the study area is shown in Figure 6. The extracted 

inventory map is shown in Figure 7. All landslides were identified, and visual comparison indicated that 

the obtained inventory map agrees well with the reference landslide inventory map. Some polygons in 

the map consisted of multiple landslides, and therefore had strange shapes. The position mismatch  

(PM) [45,102] was selected to assess the obtained inventory map. PM is defined as: 

100%R O R O

R O

A A
PM

A
 

(1) 

where 𝐴𝑅∪𝑂 is the area designated as a landslide either by the reference inventory or the object-based 

inventory, and 𝐴𝑅∩𝑂 is the area designated as a landslide by both inventories, namely, the union (∪) and 

intersection (∩) of two maps. The PM value was 9%, demonstrating that the two inventories were 

essentially the same. For OBIA using topographic information, the landslide parts are represented by 

multiple segments, and it is difficult to aggregate these segments into one final landslide segment [39]. 

As a result, automated extraction of a landslide inventory map is very difficult for OBIA with only LiDar 

data. Compared to the delineation of landslide boundaries in the previous PBA [42], although the 

inventory map was artificially delineated, OBIA was able to yield a continuous result with specific 

physical meaning and interpretability. Because the main scarp in the study area is either indistinct  

or difficult to distinguish from surrounding objects, this study did not differentiate landslide parts.  

As a result, the delineation of the landslide inventory map in this study was simpler than that of  

Van den Eeckhaut et al. [39]. Van den Eeckhaut et al. [39] used a calibration area of 9.7 km2 (about 

19.4% of the study area) and the obtained PM ranged between 57% and 66%. However, to make a 

comparison of OBIA and the previous PBA [42], this study utilized lots of training data (50% of the OLS and 

ONLS) so as to produce a result that was very close to the reference polygons (with a PM value of 9%). 

 

Figure 6. Schematic diagram and main steps for extraction of a landslide inventory map in 

the upper-right corner of the study area. (1) Classification results. White and black patches 

represent objects classified as OLS and ONLS, respectively. Blue area represents the Qinggan 

River. (2) Inclusion of holes. (3) Removal of isolated segments. (4) Delineation of closed 

envelope curves for OLS by manual digitizing operation. Green solid lines represent the 

outlined landslide inventory map. (5) Overlay display of the extracted landslide  

inventory map on the referenced inventory map. Red solid lines represent the referenced  

inventory map. 
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Figure 7. Extracted inventory map (green solid lines) overlayed on the referenced landslide 

inventory map and classification result. White patches represent objects classified as OLS, 

and black patches represent ONLS. Red solid lines represent the referenced inventory map. 

5. Conclusions 

Using an OBIA method with only LiDar data, a semi-automatic forested landslide identification 

process was implemented in areas of dense vegetation, bedrock cover and rugged terrain, within the 

Three Gorges region. The object features were calculated using LiDar DTMs to derive topographic, 

filter, and texture features, and proved effective for landslide identification. The feature selection method 

can markedly reduce the numbers of object features and slightly improve the classification accuracy. 

The features subset-based models achieved an OA of 77.36% ± 0.13% for the RF algorithm, and an OA 

of 76.87% ± 0.07% for the SVM algorithm. The RF algorithm had greater classification accuracies and 

lower sensitivity to the feature selection process than the SVM algorithm. Compared to PBA, OBIA was 

more sensitive to feature selection, remarkably reduced computing time, and depicted more contiguous 

terrain segments that had better applicability and interpretability, with slight loss of classification 

accuracy. Based on the classification result with an OA of 89.11% ± 0.03%, the obtained inventory map 

was consistent with the referenced landslide inventory map, with a PM value of 9%. In summary, by 

combining object features derived from LiDar DTMs, a feature selection method, and machine learning 

algorithms, it was shown that the semi-automatic method is useful for forested landslide identification 
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in steep and rugged terrain with bedrock cover. Future work will focus on other feature selection and 

image segmentation algorithms, image segmentation using other topographic data or aerial images, 

automated and objective selection of scale parameters for segmentation, DTM data with different spatial 

resolutions, new dataset sampling designs for feature selection and classification, automatic delineation 

of landslide boundaries based on supervised classification results, recognition of landslide types and 

components, influence of climate conditions such as rainfall on landslides, and other heterogeneous 

landscape areas. Also, when using randomly selected samples as training data, it is worth considering 

the number of required random runs and how this number will be affected by landscape or landslide 

type. All of these factors can help improve the transferability of the approach developed in this study. 
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