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Abstract: Plant biomass is an important parameter for crop management and yield 

estimation. However, since biomass cannot be determined non-destructively, other plant 

parameters are used for estimations. In this study, plant height and hyperspectral data were 

used for barley biomass estimations with bivariate and multivariate models. During three 

consecutive growing seasons a terrestrial laser scanner was used to establish crop surface 

models for a pixel-wise calculation of plant height and manual measurements of plant height 

confirmed the results (R2 up to 0.98). Hyperspectral reflectance measurements were 

conducted with a field spectrometer and used for calculating six vegetation indices (VIs), 

which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, 

and RGBVI. Furthermore, biomass samples were destructively taken on almost the same 

dates. Linear and exponential biomass regression models (BRMs) were established for 

evaluating plant height and VIs as estimators of fresh and dry biomass. Each BRM was 

established for the whole observed period and pre-anthesis, which is important for 

management decisions. Bivariate BRMs supported plant height as a strong estimator (R2 up to 

0.85), whereas BRMs based on individual VIs showed varying performances (R2: 0.07–0.87). 

Fused approaches, where plant height and one VI were used for establishing multivariate 

BRMs, yielded improvements in some cases (R2 up to 0.89). Overall, this study reveals the 

potential of remotely-sensed plant parameters for estimations of barley biomass. Moreover, 

it is a first step towards the fusion of 3D spatial and spectral measurements for improving 

non-destructive biomass estimations. 
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1. Introduction 

Over the past several decades remote sensing has increased in importance for precision agriculture [1–3]. 

Since the world population is expected to increase by more than one third until 2050 a main goal is 

shrinking the gap between potential and current yield [4,5]. Field management strategies in precision 

agriculture that aim to maximize yield must involve a reasonable use of natural resources and have to 

take spatial and temporal variabilities into account [6], as agricultural production is influenced by the 

physical landscape, climatic variables, and agricultural management practices [2]. Studies reveal that 

grain yield is correlated with total biomass [7,8]. A quantitative measure is the harvest index, which 

expresses yield vs. total biomass [9]. Moreover, adequate crop condition in early growing stages could 

buffer the yield against environmental stresses, such as droughts, during later stages [10]. In-season, the 

nitrogen nutrition index, the ratio between actual and critical nitrogen (N) content, is widely used as a 

measure of the plant status [11]. The critical value is defined by a crop-specific N dilution curve, showing 

the relation between N concentration and biomass. Hence, an exact in-season acquisition of biomass is 

important in precision agriculture.  

Since plant biomass cannot be determined non-destructively, other plant parameters are used as 

estimators. Therefore, remote sensing measurements enable an objective and accurate acquisition in a 

high temporal frequency [2]. A review of remote sensing methods for assessing biomass is given by 

Ahamed et al. [12]. At the field level, ground-based methods are commonly used to achieve sufficiently 

high resolutions and over the last several decades, several studies investigated the relationship between 

spectral reflectance measurements and crop characteristics. For extracting information, various 

vegetation indices (VIs) were developed from the reflectance in determined wavelengths. Two band VIs 

like the normalized difference vegetation index (NDVI) were traditionally used with multispectral broad 

band systems to estimate biomass or biomass related parameters, like LAI. Such VIs have been adapted 

to narrow band hyperspectral data and other band combinations [13–16]. Additionally, other VIs with 

more than two bands, such as the GnyLi, have been developed for the same purpose [17].  

Moreover, active sensors based on light detection and ranging (LiDAR) have been increasingly used 

in vegetation studies since the 1980s [18]. Indeed, a main benefit of LiDAR is the very high resolution, 

which enables the acquisition of complex canopies [19]. In agricultural applications, for example, 

ground-based LiDAR methods, also known as terrestrial laser scanning (TLS), reveal potential for 

assessing plant height [20], leaf area index [21], crop density [22–24], or post-harvest growth [25]. 

Furthermore, the potential for estimating biomass with TLS is supported through studies on small grain 

cereals [26–28], sagebrush [29], and paddy rice [30,31]. The 3D architecture of single plants was 

modeled under laboratory conditions [32,33], however the transferability of those laboratory results to 

field conditions has not yet been shown.  

Generally, the accuracy of estimations is a major issue, with the accuracy being limited when 

calculations are based on one estimator. Whilst biomass estimations based on VIs are affected by 
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saturation effects [13,34,35], plant height may reach limitations when differences in plant height are low. 

Consequently, the fusion of multiple parameters should be examined to enhance estimations. So far, 

studies on the fusion of spectral and non-spectral information have been applied for characterization of 

forest ecosystems [36] and modeling of corn yield [37]. As both studies applied airborne methods, the 

spatial resolution was low. A ground-based multi-sensor approach for predicting biomass of grassland 

based on measurements of plant height, leaf area index (LAI), and spectral reflectance showed that 

combining multiple sensors can improve the estimation [34]. However, in that study, spectral data were 

not well-suited. Recently, the potential of the combined use of spectral and non-spectral ground-based 

measurements for estimating biomass was demonstrated for rice, maize, cotton, and alfalfa [15]. 

The overall aim of this study was to compare the potential of plant height (PH), VIs, and a fusion of 

PH and VIs for estimations of above ground fresh and dry barley biomass. More specifically, this study 

compares the potential of 3D spatial and spectral information for different time frames during the 

growing season and investigates if a fusion of both can improve the estimation. Therefore, a spring barley 

experiment was monitored during three growing seasons in various campaigns with a TLS system and a 

field spectrometer. PH was derived from the TLS data and VIs from the hyperspectral data. Four major 

working tasks were carried out: (i) conduct extensive multi-annual field measurements during the 

growing seasons, (ii) derive bivariate biomass regression models (BRMs) from 3D spatial and spectral 

measurements for biomass estimations, (iii) fuse the 3D spatial and spectral data in multivariate BRMs 

to estimate biomass based on this extensive data set, and (iv) evaluate the robustness of the BRMs with 

a cross-validation.  

2. Methods 

2.1. Field Measurements 

In three growing seasons (2012, 2013 and 2014), field experiments were carried out at the Campus 

Klein-Altendorf (50°37′51″N, E 6°59′32″) belonging to the Faculty of Agriculture at the University of 

Bonn, Germany. Due to crop rotation, the locations of the fields were slightly different between the 

years. However, soil and climatic conditions were similar with the surface of the soil being flat with a 

clayey silt luvisol and well-suited for crop cultivation [38]. According to the campus’ own weather 

records, the long-term average yearly precipitation was about 600 mm with a daily average temperature 

of 9.3 °C [39].  

Each year, the field consisted of 36 small scale plots (3 × 7 m) where different cultivars of barley 

were cultivated with two levels of N fertilization. For half of the plots, a farmer’s common rate of 

80 kg/ha∙N fertilizer was applied, for the other half a reduced rate of 40 kg/ha. In 2012 and 2013 each 

fertilization scheme was carried out once for 18 cultivars of spring barley (Barke, Wiebke, Beatrix, 

Eunova, Djamila, Streif, Ursa, Victoriana, Sissy, Perun, Apex, Isaria, Trumpf, Pflugs Intensiv, Heils 

Franken, Ackermanns Bavaria, Mauritia and Sebastian). In 2014, the set-up for the experiment was 

changed in that each fertilization scheme was repeated three times for six selected cultivars (Barke, 

Beatrix, Eunova, Trumpf, Mauritia and Sebastian). The experiments were carried out within the 

interdisciplinary research network CROP.SENSe.net (www.cropsense.uni-bonn.de). The research focus 
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of this project was non-destructive sensor-based methods for detecting crop status such as nutrients, 

stress, and quality. 

In this study, 3D spatial measurements from a TLS system, spectral measurements from a field 

spectrometer, and manual reference measurements were used. Due to the weather conditions the time of 

seeding changed and therefore so did the start of the growing season. The seeding dates were 21 March 

2012, 9 April 2013, and 13 March 2014. In Table 1, all dates of TLS and spectrometer campaigns are 

listed as day after seeding (DAS) and a universal scale, known as the BBCH scale, was used to describe 

phenological stages and steps in the plant development, encoded in a decimal code [40,41]. The acronym 

BBCH is derived from the funding organizations: Biologische Bundesanstalt (German Federal 

Biological Research Centre for Agriculture and Forestry), Bundessortenamt (German Federal Office of 

Plant Varieties), and Chemical industry. The first number of the two-digit code represents the principal 

growth stage (Table 2) and the second subdivides further in short developmental steps. Through 

determining the BBCH codes during the growing seasons, the annual comparability was ensured. For 

each plot, the BBCH developmental step was determined as a mean of three plants. In Table 1, BBCH 

codes are given for the dates where plant parameters were manually measured. The codes are averaged 

per campaign, as the values were almost similar for all cultivars. Although the plant development varied 

among the years it can be seen that the BBCH codes indicate a comparable development. 

As reference measurements, the heights of ten plants were measured for each plot and averaged in 

the post-processing. Moreover, in a defined sampling area of each plot, the above ground biomass of a 

0.2 × 0.2 m area was destructively taken each time. The sampling area was neglected for the remote 

sensing measurements. In the laboratory, plants were cleaned and fresh weights were measured. After 

drying the samples for 120 h at 70 °C, dry biomass was weighted and extrapolated across the plot (g/m²). 

2.1.1. Terrestrial Laser Scanning 

The TLS configuration and setup was almost equal in all years. Thus for each campaign, the  

time-of-flight scanner Riegl LMS-Z420i was used (Figure 1A) [42]. The sensor operates with a  

near-infrared laser beam, has a beam divergence of 0.25 mrad, and a measurement rate of up to  

11,000 points/sec. In addition its field of view is up to 80° in the vertical and 360° in the horizontal 

direction and this study used resolutions between 0.034° and 0.046°. The digital camera Nikon D200 

was mounted on the laser scanner and the TLS point clouds were colorized from the images captured. 

Furthermore the sensor should be as high as possible above ground, resulting in a steep angle between 

scanner and investigated area enabling the best possible coverage of the crop surface and a homogenous 

penetration of the vegetation. Accordingly the scanner was mounted on the hydraulic platform of a 

tractor, raising the sensor to approximately 4 m above ground (Figure 1B). In order to lower shadowing 

effects and to attain an almost uniform spatial coverage, the field was scanned from its four corners. The 

coordinates of all scan positions and an additional target were required for the georeferencing and co-

registration of the positions in the post-processing. Highly reflective cylinders arranged on ranging poles 

were used as targets (Figure 1C). These reflective cylinders can be easily detected by the scanner 

meaning their exact position in relation to the scan position can be measured [43]. The coordinates of 

the scan positions and ranging poles were measured with the highly accurate RTK-DGPS system Topcon 
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HiPer Pro [44]. By establishing an own reference station each year, the precise merging of all data sets 

per year was ensured with the relative accuracy of this system being approximately 1 cm. 

Table 1. Dates of the terrestrial laser scanning (TLS) and spectrometer (S) campaigns listed 

as day after seeding (DAS). Averaged codes for the developmental steps are given for the 

dates of manual plant parameter measurements (BBCH). For some dates BBCH codes were 

not determined (N/A).  
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15       TLS   45            75 TLS         

16         46            76         

17         47            77         

18         48            78   TLS/ S 57   

19         49     TLS/S 30    79         

20     TLS/ S N/A     50 TLS/ S           80             

21         51          81         

22         52          82       S   

23         53          83   N/A         

24         54   30     S   84 S       TLS 56 

25         55             85           

26         56         TLS 31 86 TLS         

27         57            87         

28         58 TLS          88         

29         59          89         

30             60             90             

31         61          91   S 68   

32         62          92   TLS     

33         63          93         

34   TLS     64   TLS/S 41    94         

35   S 18   65          95         

36         66          96         74 

37         67          97       TLS/S   

38         68          98         

39         69          99         

40             70 S 49     TLS/S 49 100             

41       TLS/ S 29 71            101         

42         72            102         

43   N/A       73            103         

44             74             104     TLS/ S 81     

Furthermore, a digital terrain model (DTM) is required as a common reference surface for calculating 

plant height from the TLS data. In 2014, the bare ground of the field was scanned after seeding but 

before any vegetation was visible (Table 1: DAS 15). For technical reasons, it was not possible to acquire 



Remote Sens. 2015, 7 11454 

 

 

such data in 2012 and 2013, however, the ground was identifiable in the point cloud of the first 

campaigns due to the low and less dense vegetation. 

Table 2. Principal growth stages of the BBCH scale. 

Principal Growth Stage a Stage Description 
Time Frames Regarded 

for Biomass Estimation 

0 Germination     

1 Leaf development     

2 Tillering  

Pre-

anthesis 

 

Whole 

observed 

period 

3 Stem elongation   

4 Booting   

5 Inflorescence emergence, heading   

6 Flowering, anthesis    

7 Development of fruit    

8 Ripening     

9 Senescence     

a first number of the two-digit code. 

 

Figure 1. Instrumental set-up: (A) terrestrial laser scanner Riegl LMS-Z420i; (B) tractor 

with hydraulic platform; (C) ranging pole with reflective cylinder. 

2.1.2. Field Spectrometer Measurements 

The ASD FieldSpec3 was used for measuring the reflectance several times during the growing seasons 

(all dates are listed in Table 1 above). This spectrometer measures the incoming light from 350 to 2500 nm 

with a sampling interval of 1.4 nm in the VNIR (350–1000 nm) and 2 nm in the SWIR (1001–2500 nm). 

These measurements are resampled to spectra with 1 nm resolution by the manufacturer’s software. At 

each position, ten measurements were taken and instantly averaged by the software, from 1 m above the 

canopy with a pistol grip, which was mounted on a cantilever to avoid shadows obscuring the sampling 

area. Additionally, a water level was used to ensure nadir view and no fore optic was used, resulting in 

a field of view of 25° and thus, a footprint area on the canopy with a radius of approximately 22 cm was 
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achieved. Before the measurements, the spectrometer warmed up for at least 30 min and every 10 min 

or after illumination change, the spectrometer was optimized and calibrated with a spectralon calibration 

panel (polytetrafluoroethylene reference panel). Six positions were measured within each plot and for 

each position, the detector offset was corrected [16]. Then the six spectra were averaged, resulting in 

one spectrum per field plot, which was used in the further analysis.  

2.2. Post-Processing 

2.2.1. TLS Data 

In the scanner software RiSCAN Pro, the DGPS data and the scans of all campaigns were imported 

into one project file per year. Based on the coordinates of the scan positions and reflectors, a direct 

georeferencing method was applied for the registration of all scan positions. However, a further 

adjustment was required due to small alignment errors between the point clouds. Based on the iterative 

closest point (ICP) algorithm [45], the Multi Station Adjustment in RiSCAN Pro allows the position and 

orientation of each scan position to be modified in multiple iterations and thus the best fitting result for 

all of them to be acquired. After optimizing the alignment with the ICP algorithm, the error, measured 

as standard deviation between used point-pairs, was 0.04 m on average for each campaign. 

The point clouds were then merged to one dataset per campaign, and the area of interest was extracted. 

As reflections on insects or small particles in the air produced noise those points were manually removed. 

In addition a filtering scheme for selecting maximum points was used for determining the crop surface 

and in the same way, a filtering scheme for selecting minimum points was applied to extract ground 

points from the data sets of each first campaign. Finally, the data sets with XYZ coordinates of each 

point were exported. 

The spatial analyses and visualization of the data were carried out in Esri ArcGIS Desktop 10.2.1. All 

point clouds were interpolated using the inverse distance weighting (IDW) algorithm, resulting in a raster 

with a consistent spatial resolution of 1 cm. IDW is an exact, deterministic algorithm that retains measured 

values at their sample location. The accuracy of measurements with a high density is maintained as all 

values are kept at their discrete location and not moved to fit the interpolation better [46]. As introduced 

by Hoffmeister et al. [43], the created raster data sets are referred to as crop surface models (CSMs). 

Similarly, a digital terrain model (DTM) was generated from the ground points and by subtracting the 

DTM from a CSM, plant heights were calculated pixel-wise. Moreover, by calculating the difference 

between two CSMs, plant growth was spatially measured. Hereinafter, growth is defined as temporal 

difference in height (for a detailed description of the CSMs creation and the calculation of plant heights 

see Tilly et al. [30]). The raster data sets with pixel-wise stored plant heights and growth were visualized 

as maps of plant height and growth, respectively. Then the plant heights were averaged plot-wise, 

allowing a common spatial base with the other measurements to be attained. It should be noted that 

previously, each plot was clipped with an inner buffer of 0.5 m to prevent border effects. 

2.2.2. Spectral Data 

For this study, established VIs were used to extract information from the hyperspectral data, measured 

with the field spectrometer. From the widespread of known hyper- and multispectral VIs for deriving 
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different vegetation properties, six VIs were selected from the literature which have been found to be 

related to biomass and LAI. The selection was based on two criteria: Firstly, to make this study 

comparable to other studies VIs were selected which have been widely used in literature. Secondly, VIs 

with different spectral domains were used to examine if this would influence the prediction power of the 

fused models.  

The NDVI was originally created for broad band satellite remote sensing [47] and has been widely used 

in the literature. It has been adapted to hyperspectral narrow bands and was specified for sensors such as 

GreenSeekerTM and Crop CircleTM [17]. Several articles reported relationships between the NDVI  

and biomass or LAI. However, NDVI has been shown to saturate in cases of dense and multi-layered 

canopy [13] and to have a non-linear relationship with biophysical parameters such as green LAI [48].  

On this basis, Roujean and Breonin [49] developed the renormalized difference vegetation index 

(RDVI) for estimating the fraction of photosynthetically active radiation absorbed by vegetation, 

independent of a priori knowledge of the vegetation cover [49]. The RDVI showed strong relationships 

to LAI for different crops below an LAI of 5 [48,50]. In dense crop canopies with an LAI above five, 

RDVI tended to overestimate the LAI [48]. Simulations with the radiative transfer models PROSPECT 

and SAIL indicated that the RDVI is less affected by canopy structure, biochemistry, and soil 

background when estimating the LAI [50].  

The red edge inflection point (REIP) was introduced by Guyot and Baret [51]. The REIP characterizes 

the inflection in the spectral red edge by calculating the wavelength with maximum slope. A variation 

of the inflection is mainly related to leaf chlorophyll content, leaf area index, and leaf inclination angle. 

Furthermore, soil reflectance and sun position have a limited effect [52].  

GnyLi is a four-band VI for estimating biomass in the NIR and SWIR domain [17]. This VI was 

developed for winter wheat and showed good performance on different scales from plot to regional level 

and across several growth stages [17]. The GnyLi considers the two reflectance maxima and minima 

between 800 and 1300 nm. While the high reflectance is caused by the plants intercellular structure, the 

absorption at the minima is caused by cellulose, starch lignin, and water. These components contribute 

substantially to dry and fresh biomass and combining the two products helps to avoid saturation 

problems—this is a major advantage of this VI.  

Similar to the GnyLi, the normalized reflectance index (NRI) was also developed for estimating 

biomass in winter wheat. The NRI was empirically developed by combining the shape of the NDVI and 

the best two band combination for biomass estimation with EO-1 Hyperion satellite data [53].  

The red green blue vegetation index (RGBVI) was developed for estimating biomass based on bands 

available in a standard digital camera [54]. In this study, the RGB data was simulated from hyperspectral 

data where green, red, and blue values were calculated as the mean of the reflectance from 530 to 560 nm, 

645 to 765 nm, and 465 to 495 nm, respectively. Thus, in contrast to other studies [37,54,55], the RGBVI 

was derived from radiometrically and spectrally calibrated data.  

The six VIs used in this study can be categorized by the wavelength domains that are used in their 

formula. The NDVI, RDVI, and REIP use wavelengths in the visible and near-infrared domain 

(VISNIR VIs), the GnyLi and NRI use wavelengths in the near-infrared domain (NIR VIs), while the 

RGBVI uses wavelengths in the visible domain (VIS VI). The formulas of the VIs used in this study are 

given in Table 3, [47,49,51,53,54,56]. 
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Table 3. Vegetation indices used in this study. 

Wave-Length 

Domains 

Vegetation 

Index 
Formula References 

NIR 
GnyLi (𝑅900 × 𝑅1050 − 𝑅955 × 𝑅1220) (𝑅900 × 𝑅1050 + 𝑅955 × 𝑅1220⁄ ) [56] 

NRI (𝑅874 − 𝑅1225)/(𝑅874 + 𝑅1225) [53] 

VISNIR 

NDVI (𝑅798 − 𝑅670) (𝑅798 + 𝑅670)⁄  [47] 

RDVI (𝑅798 − 𝑅670) (√𝑅798 + 𝑅670)⁄  [49] 

REIP 700 + 40 ∗
(
𝑅670 + 𝑅780

2
) − 𝑅700

𝑅740 − 𝑅700
 [51] 

VIS RGBVI (𝑅𝑔𝑟𝑒𝑒𝑛
2 − 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑) (𝑅𝑔𝑟𝑒𝑒𝑛

2 + 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑)⁄  [54] 

2.3. Biomass Regression Models 

The main aim of this study was to establish biomass regression models (BRMs) and compare the 

potential of PH, VIs, and a fusion of PH and VIs for estimating barley biomass. The workflow for the 

BRM calibration and validation and the distinction of considered cases are shown in Figure 2. All 

calculations were performed in the R software environment [57]. The measurements from 2012 were 

excluded because the spectral data set was inconsistent, since due to unsuitable weather, no spectral data 

or only data for less than half of the plots could be acquired corresponding to the second and fourth TLS 

campaign, respectively (Table 1). Furthermore, as mentioned above, the number of cultivars was reduced 

in 2014 so as a result only these six cultivars were used from the 2013 data set to ensure comparability.  

The reduced data set was split into four subsets to obtain independent values for calibration and 

validation. The first subset contained the plot-wise averaged measurements of plant height, calculated 

VIs and destructively taken biomass from 2013 (n = 48). Each other subset contained the same 

measurements of one repetition from 2014 (each n = 60). Thus, each subset contained the measurements 

of each cultivar from one plot with low and one with high N fertilizer level for the given campaign dates. 

A cross-validation was performed using these data sets: For each run, one subset was excluded from the 

BRM calibration and used for validating the resulting BRM. 

First, bivariate BRMs for fresh and dry biomass were developed based on the CSM-derived PH or 

one of the six VIs. Linear and exponential BRMs were established since no trend regarding their usability 

for biomass estimations based on PH was clearly identifiable in earlier studies [31]. However, the 

biomass accumulation during the vegetative phase is exponential and other studies have shown that it is 

best estimated with exponential models [13,16]. For the exponential BRMs, the fresh and dry biomass 

values were natural log-transformed. Each BRM was calculated for two time frames, the whole observed 

period from tillering (BBCH stage 2) till the end of fruit development (BBCH stage 7) and the pre-

anthesis period (till BBCH stage 6) (Table 2). The latter period is important as, for example, adequate 

crop conditions could buffer the grain yield against later environmental stress [10]. Thus, campaign 

numbers 3 to 6 and 2 to 6 were considered for 2013 and 2014, respectively, whereas each final campaign 

was excluded for the pre-anthesis BRMs. Considering the four possible subset combinations, overall 224 

bivariate BRMs were established. Second, multivariate BRMs were established based on PH fused with 

each VI. Since they were also established as linear and exponential BRMs for fresh and dry biomass for 

both time frames, the four possible subset combinations led to 192 multivariate BRMs in total. 
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Figure 2. Workflow for the calibration and validation of the biomass regression models and 

distinction of cases for each model. 

The calibration was evaluated by calculating the coefficient of determination (R²) for PH or VI vs. 

measured biomass and the standard error of the estimate (SEE) [58]. For the validation, besides the R² 

(estimated vs. measured biomass), the root mean square error (RMSE), and Willmott’s index of 

agreement (d) [59,60] were determined. For each case, the results from the four runs were averaged. 

Finally, the robustness of the BRMs was evaluated by calculating the ratio between the R² values of 

BRM calibration and validation. 

3. Results 

3.1. Acquired Plant Parameters 

The TLS-derived point clouds were used to establish CSMs and spatially calculate plant height. 

Results of the pixel-wise calculation were visualized in maps of plant height for each plot. As an example 

for this, maps of four plots and corresponding mean heights are shown in Figure 3 for the barley cultivar 

Trumpf. In the first campaign of 2013, plants were too small to obtain reasonable results. Thus, maps 

are presented for the last six and five campaigns of 2013 and 2014, respectively. One plot of each N 

fertilizer level is shown for both years. For the temporal development, an increase in plant height is 
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observable until anthesis (BBCH stage 6) and afterwards, the development of ears begins and plant 

heights decrease due to the associated sinking of heads. Within all plots, the detailed representation of 

plant height is visible, which enables spatial differences in plant height to be detected. As a result, the 

exact calculation of mean heights can be assumed. A comparison of the plot-wise averaged values does 

not show that the fertilization rate directly influenced plant height. 

 

Figure 3. Maps of four plots from the last six and five campaigns of 2013 and 2014, 

respectively. One plot of each N fertilizer level of the barley cultivar Trumpf is shown for 

each year (: Plot mean height). 

The plot-wise averaged plant heights were used for statistical analysis and a comparison with the 

manual measurements. The linear regressions between all mean CSM-derived and manual measured 
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plant heights for each of the three years is illustrated below in Figure 4. High coefficients of 

determination (R2) confirm the TLS-derived results. The R2 across all years is 0.92, yearly separated 

values are also given in Figure 4. Moreover, a varying scattering between the years is indicated. The 

scattering is the lowest in the 2014 data set, which is presumably caused by the reduced number of 

cultivars in 2014 and associated with more similar plant heights. Table A1 in the Appendix gives the 

mean, minimum, and maximum values of all plot-wise averaged values as well as the standard deviation 

per campaign of the CSM-derived and manual measured plant heights. Clearly observable lodging 

occurred in some plots between the second and third or fourth and fifth campaign in 2012 and 2013, 

respectively (for more details see Tilly et al. [61]). Those plots were neglected for the analysis and thus 

reduced the number of samples for the affected campaigns. As already stated for the visualized plots 

(Figure 3), an increase in plant height is detectable during pre-anthesis and a slight decrease is detectable 

afterwards. In addition, the difference between the mean values of both measurement methods is lower 

than 10% for almost all campaigns. 

The field spectrometer measurements were used for calculating the six VIs (GnyLi, NDVI, NRI, 

RDVI, REIP, and RGBVI). As the spectral measurements from 2012 were not usable for a linkage with 

the TLS data, only the data sets from 2013 to 2014 were used. Moreover, from the data set of 2013 only 

measurements of the cultivars selected in 2014 were considered and the data sets of plant height and 

biomass were accordingly adapted to ensure comparability. For each campaign, the values for both N 

fertilizer levels were averaged. Table 4 shows the statistics for the reduced data sets of the nine regarded 

campaigns. Additionally, the yearly mean biomass values were calculated for the pre-anthesis and whole 

observed period, as reference for the later evaluation of the biomass estimation.  

Table 4. Statistics for the plot-wise averaged CSM-derived plant heights and destructively 

taken biomass for the reduced data sets of 2013 and 2014 (n: number of samples; 𝑋̅: mean 

value; min: minimum; max: maximum; SD: standard deviation).  

    CSM-Derived Plant Height (m) Fresh Biomass (g/m2) Dry Biomass (g/m2) 

 n 𝑿̅ min max SD 𝑿̅ min max SD 𝑿̅ min max SD 

2013             

3 12 0.22 0.01 0.39 0.13 1282.92 491.00 2172.50 473.20 168.31 52.00 272.00 56.59 

4 12 0.47 0.24 0.71 0.17 2891.54 1560.25 4465.50 806.12 415.31 205.00 725.00 146.02 

5 12 0.78 0.58 0.99 0.13 5070.42 2668.75 7730.00 1561.62 883.38 434.50 1429.25 328.93 

6 12 0.78 0.65 0.93 0.07 4631.73 2986.25 7655.75 1193.95 1258.88 886.75 1687.50 219.92 

 Mean pre-anthesis period  123.27 62.93 191.57 3081.63 1573.33 4789.33 946.98 489.00 

 Mean whole observed period 138.77 77.06 220.24 42.14 3469.15 1926.56 5505.94 1008.72 

2014             

2 36 0.17 0.12 0.25 0.03 656.28 266.25 1116.50 202.07 89.01 33.00 155.25 27.66 

3 36 0.41 0.34 0.52 0.04 2227.08 1226.75 3236.50 531.72 289.83 165.75 417.75 66.03 

4 36 0.63 0.53 0.70 0.04 2825.48 1643.75 4162.00 603.19 465.49 276.62 706.65 97.89 

5 36 0.81 0.69 0.99 0.05 3185.13 2106.50 5433.25 687.74 777.23 486.35 1271.35 156.02 

6 36 0.78 0.66 0.99 0.05 3569.34 1994.75 6044.00 898.59 1166.38 652.60 1876.35 276.46 

 Mean pre-anthesis period  88.94 52.43 139.48 2223.49 1310.81 3487.06 506.18 405.39 

  Mean whole observed period 99.71 57.90 159.94 23.72 2492.66 1447.60 3998.45 584.66 
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Figure 4. Regression of the mean CSM-derived and manual measured plant heights (2012: 

n = 131; 2013: n = 196; 2014: n = 180.). 

3.2. Biomass Estimation 

The barley biomass was estimated by establishing 224 bivariate and 192 multivariate biomass 

regression models (BRMs) based on plant height (PH) and vegetation indices (VIs). Table 5 shows the 

statistical parameters for the BRM calibration. The table is vertically divided into bivariate or 

multivariate BRMs and the regarded time frames. Horizontally it distinguishes between dry or fresh 

biomass and linear or exponential BRMs. However, the results of the linear and exponential BRMs 

cannot be directly compared due to the log-transformation of biomass for the latter ones. Since the 

biomass accumulation during the vegetative phase is exponential and other studies have shown that it is 

best estimated with exponential BRMs [13,16] only the exponential BRMs are regarded in the following. 

For each model the coefficient of determination (R2) and the standard error of the estimate (SEE) are 

given as mean values of the four possible subset combinations. 

Each established BRM was validated with the remaining fourth subsets. Table 6 shows the R², root 

mean square error (RMSE), and Willmott’s index of agreement (d) for the model validation as mean 

values of the four subset combinations. The subdivision of the table is equivalent to that of Table 5. The 

results of the bivariate BRMs are regarded in the following subsection; the fusion of both plant 

parameters to multivariate BRMs is examined in the last subsection of this chapter. As the results of the 

calibration and validation show a similar tendency, only the values of the validation are stated. However, 

to evaluate the robustness of the BRMs, an overall comparison of differences between calibration and 

validation is given at the end of this chapter.  
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Table 5. Statistics for the model calibration as mean values of the four subset combinations 

(R2: coefficient of determination; SEE: standard error of the estimate). 

  

Bivariate BRMs Multivariate BRMs 
    Whole Period Pre-Anthesis  Whole Period Pre-Anthesis 

  
Estimator R2 𝑺𝑬𝑬

𝒂 R2 𝑺𝑬𝑬
𝒂
 Estimatorb R2 𝑺𝑬𝑬

𝒂
 R2 𝑺𝑬𝑬

𝒂
 

D
ry

 b
io

m
a

ss
 

L
in

ea
r 

PH 0.65 250.71 0.76 143.34      

GnyLi 0.52 293.80 0.68 166.75 GnyLi 0.65 865.76 0.77 635.30 

NDVI 0.07 409.44 0.34 239.09 NDVI 0.69 537.36 0.76 518.25 

NRI 0.54 289.57 0.70 159.97 NRI 0.65 876.08 0.77 621.60 

RDVI 0.13 396.88 0.39 230.33 RDVI 0.69 479.48 0.76 535.08 

REIP 0.12 398.08 0.58 189.95 REIP 0.73 48353.45 0.76 6462.41 

RGBVI 0.05 413.80 0.26 252.59 RGBVI 0.68 557.08 0.76 580.76 

E
x

p
o

n
en

ti
a
l 

PH 0.84 0.37 0.84 0.34      

GnyLi 0.80 0.42 0.85 0.32 GnyLi 0.86 2.43 0.88 2.14 

NDVI 0.30 0.77 0.61 0.53 NDVI 0.85 2.85 0.88 3.99 

NRI 0.81 0.40 0.87 0.30 NRI 0.87 2.29 0.89 1.96 

RDVI 0.41 0.71 0.68 0.48 RDVI 0.85 2.52 0.88 2.84 

REIP 0.37 0.73 0.77 0.40 REIP 0.84 30.39 0.86 48.43 

RGBVI 0.23 0.81 0.48 0.60 RGBVI 0.85 2.51 0.87 2.73 

  

Estimator R2 𝑺𝑬𝑬
𝒂
 R2 𝑺𝑬𝑬

𝒂
 Estimator b R2 𝑺𝑬𝑬

𝒂
 R2 𝑺𝑬𝑬

𝒂
 

F
re

sh
 b

io
m

a
ss

 

L
in

ea
r 

PH 0.59 901.99 0.60 843.32      

GnyLi 0.58 913.81 0.62 829.48 GnyLi 0.62 3295.30 0.64 2968.91 

NDVI 0.25 1222.39 0.42 1022.79 NDVI 0.60 4561.69 0.63 5008.60 

NRI 0.59 909.94 0.62 821.35 NRI 0.62 3056.34 0.64 2718.09 

RDVI 0.35 1143.49 0.50 945.26 RDVI 0.61 3813.94 0.64 3955.80 

REIP 0.30 1180.82 0.55 894.62 REIP 0.60 14599.87 0.63 59169.39 

RGBVI 0.22 1243.84 0.37 1066.53 RGBVI 0.61 4007.93 0.64 3881.46 

E
x

p
o

n
en

ti
a
l 

PH 0.70 0.37 0.68 0.39      

GnyLi 0.76 0.33 0.76 0.34 GnyLi 0.77 1.87 0.77 1.77 

NDVI 0.46 0.50 0.65 0.41 NDVI 0.77 3.74 0.79 4.30 

NRI 0.77 0.33 0.77 0.33 NRI 0.77 1.67 0.77 1.56 

RDVI 0.59 0.43 0.74 0.35 RDVI 0.79 2.69 0.82 2.89 

REIP 0.47 0.49 0.71 0.37 REIP 0.72 22.27 0.74 73.05 

RGBVI 0.38 0.53 0.55 0.47 RGBVI 0.77 2.58 0.78 2.68 

a The SEE for exponential models is calculated from natural log-transformed biomass 

values; b each fused with PH. 

3.2.1. Bivariate Models 

All cases show moderate to good results for bivariate BRMs based on PH. For each time frame, PH 

shows the same and similar relationship with dry and fresh biomass, respectively (Table 6). Scatterplots 

of measured vs. estimated biomass for selected examples are shown in the last subsection in comparison 

with multivariate BRMs. 
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Table 6. Statistics for the model validation as mean values of the four subset combinations 

(R2: coefficient of determination; RMSE: root mean square error (g/m²); d: Willmott’s index 

of agreement). 

  Bivariate BRMs Multivariate BRMs 

    Whole Period Pre-Anthesis  Whole Period Pre-Anthesis 

  

Estimator R2 RMSE a d R2 RMSE a d Estimator b R2 RMSE a d R2 RMSE a d 

D
ry

 b
io

m
a

ss
 

L
in

ea
r 

PH 0.66 257.57 0.88 0.80 147.75 0.92        

GnyLi 0.54 299.67 0.81 0.72 173.31 0.88 GnyLi 0.65 262.19 0.88 0.79 148.20 0.92 

NDVI 0.07 412.70 0.33 0.38 244.47 0.64 NDVI 0.71 250.35 0.89 0.80 148.32 0.92 

NRI 0.55 295.41 0.82 0.74 166.41 0.89 NRI 0.66 261.77 0.88 0.80 147.67 0.92 

RDVI 0.13 400.36 0.44 0.41 233.53 0.71 RDVI 0.72 247.16 0.89 0.80 148.27 0.92 

REIP 0.15 404.95 0.46 0.68 197.50 0.83 REIP 0.73 228.46 0.91 0.80 147.88 0.92 

RGBVI 0.04 416.42 0.26 0.28 254.41 0.58 RGBVI 0.70 261.30 0.88 0.80 149.33 0.92 

E
x

p
o

n
en

ti
a
l 

PH 0.85 0.39 0.95 0.85 0.36 0.95        

GnyLi 0.80 0.42 0.94 0.86 0.33 0.95 GnyLi 0.87 0.36 0.96 0.89 0.31 0.96 

NDVI 0.29 0.77 0.63 0.59 0.54 0.81 NDVI 0.85 0.38 0.95 0.87 0.30 0.96 

NRI 0.81 0.40 0.94 0.87 0.31 0.96 NRI 0.87 0.36 0.96 0.89 0.29 0.96 

RDVI 0.40 0.71 0.73 0.66 0.48 0.87 RDVI 0.85 0.38 0.95 0.88 0.30 0.96 

REIP 0.40 0.75 0.72 0.82 0.43 0.90 REIP 0.85 0.39 0.95 0.89 0.34 0.95 

RGBVI 0.22 0.82 0.55 0.48 0.62 0.75 RGBVI 0.85 0.38 0.95 0.86 0.31 0.96 

  

Estimator R2 RMSEa d R2 RMSEa d Estimator b R2 RMSEa d R2 RMSEa d 

F
re

sh
 b

io
m

a
ss

 

L
in

ea
r 

PH 0.67 963.45 0.84 0.70 892.55 0.85        

GnyLi 0.65 970.70 0.83 0.72 886.24 0.84 GnyLi 0.69 939.84 0.85 0.74 861.73 0.86 

NDVI 0.27 1254.02 0.58 0.51 1053.83 0.70 NDVI 0.67 952.58 0.84 0.73 862.84 0.85 

NRI 0.65 962.49 0.83 0.72 873.75 0.85 NRI 0.69 938.46 0.85 0.74 857.99 0.86 

RDVI 0.38 1175.32 0.67 0.59 964.42 0.77 RDVI 0.68 943.96 0.85 0.74 841.36 0.86 

REIP 0.41 1244.11 0.66 0.77 951.74 0.81 REIP 0.67 966.67 0.84 0.77 908.74 0.84 

RGBVI 0.21 1260.32 0.53 0.41 1066.26 0.67 RGBVI 0.66 948.90 0.85 0.71 852.97 0.86 

E
x

p
o

n
en

ti
a
l 

PH 0.73 0.40 0.89 0.71 0.42 0.88        

GnyLi 0.78 0.35 0.92 0.79 0.36 0.91 GnyLi 0.79 0.34 0.92 0.80 0.36 0.92 

NDVI 0.44 0.51 0.73 0.64 0.42 0.83 NDVI 0.78 0.34 0.92 0.79 0.34 0.92 

NRI 0.77 0.34 0.92 0.79 0.35 0.92 NRI 0.79 0.34 0.92 0.79 0.35 0.92 

RDVI 0.57 0.44 0.82 0.73 0.36 0.89 RDVI 0.80 0.33 0.93 0.83 0.31 0.93 

REIP 0.54 0.53 0.77 0.82 0.42 0.87 REIP 0.77 0.39 0.90 0.82 0.40 0.88 

RGBVI 0.36 0.54 0.68 0.53 0.47 0.78 RGBVI 0.76 0.34 0.92 0.76 0.34 0.92 

a The RMSE for exponential models is calculated from natural log-transformed biomass values; b each fused 

with PH. 

Most VIs lead to better results for pre-anthesis than for the whole observed period. For dry biomass, 

the RGBVI performs worst for both time frames (Table 6, top left quarter). The largest difference 

between the whole observed period and the pre-anthesis can be found for the NDVI (R2 = 0.29 vs. 0.59), 

while the NIR VIs as the GnyLi perform more consistently (R2 = 0.80 vs. 0.86). Both, the NRI and the 

GnyLi also reveal best results for pre-anthesis (R2 = 0.87, 0.86) and for the whole observed period 

(R2 = 0.81, 0.80). In pre-anthesis, the relative difference between the NIR VIs and VISNIR VIs is 
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smaller. Figure 5 shows scatterplots of measured vs. estimated dry biomass of one validation dataset for 

selected VIs and as expected from the high R2 values, the estimated biomass from the GnyLi BRM 

corresponds well with the measured biomass (close to the 1:1 line). In pre-anthesis, the same applies the 

REIP whereas the NDVI and RGBVI saturate at about 185 g/m². For the whole observed period, biomass 

estimated by the BRM of REIP, NDVI and RGBVI does not align well with what was measured. The 

scatterplots reveal that the dynamic range of the models does not cover the range of the measured 

biomass values.  

 

Figure 5. Scatterplots of measured vs. estimated dry biomass for one validation data set for 

NDVI, RGBVI REIP, and GnyLi (exponential model). Pre-anthesis: crosses and solid green 

line; whole observed period: circles and dashed black line; 1:1 line: light grey. 

Better results are also obtained for pre-anthesis of fresh biomass than for the whole observed period, 

although the differences are smaller than for dry biomass. The NIR VIs perform most consistently for 

both periods and have the highest R² values for the whole observed period. However, particularly for the 

whole observed period, the relative difference between the NIR VIs and the VIS and VISNIR VIs is 

smaller than for dry biomass and in pre-anthesis, the relative difference between the NIR VIs and other 

VIs is further reduced. Additionally, the REIP (R2 = 0.82) yields better results than the NIR VIs (each 

R2 = 0.79). Again, the RGBVI performs worst. Figure 6 shows scatterplots of measured vs. estimated 

fresh biomass of one validation dataset for selected VIs. As expected from the high R² values, biomass 

estimated from the GnyLi BRM corresponds well with the measured values (close to the 1:1 line). In 

pre-anthesis, the same applies for the REIP, whereas the NDVI and RGBVI saturate at about 1,375 g/m². 
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As for dry biomass, the BRMs based on the REIP and particularly the NDVI and RGBVI show a poor 

relationship between estimated and measured fresh biomass. Overall, most VISNIR VIs and the RGBVI 

yield better results for fresh biomass than for dry biomass. The NIR VIs perform best and most 

consistently (Table 6, bottom left quarter).  

 

Figure 6. Scatterplots of measured vs. estimated fresh biomass for one validation data set 

for NDVI, RGBVI REIP, and GnyLi (exponential model). Pre-anthesis: crosses and solid 

green line; whole observed period: circles and dashed black line; 1:1 line: light grey. 

3.2.2. Multivariate Models 

For dry biomass, PH is the best individual estimator across the whole observed period (R2 = 0.85) and 

a slight improvement is only achieved when fused with one of the NIR VIs in a multivariate BRM (both 

R2 = 0.87). In pre-anthesis, PH and the NIR VIs perform similarly to the bivariate BRMs (R2 = 0.85, 0.86, 

0.87) and when PH is fused with the NIR VIs or the REIP, the predictability slightly increases (R2 = 0.89).  

For fresh biomass across the whole observed period, PH (R2 = 0.73) yields comparable results to the 

NIR VIs (both R2 = 0.77) although the fusion of PH with NIR VIs slightly improves the estimation (both 

R2 = 0.79). Only the multivariate BRM from PH and RDVI is very slightly better (R2 = 0.80). In 

pre-anthesis, REIP, GnyLi, NRI, and RDVI explain up to 11% more variation (R2 = 0.82, 0.79, 0.79, 

0.73) then PH (R2 = 0.71). When PH is fused with any VI, the predictability is improved compared to 

most individual estimators and even the RGBVI in combination with PH improves the estimation of dry 
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and fresh biomass for pre-anthesis yielding an R2 of 0.71 and 0.76, respectively. In the fused analysis, 

the RGBVI performs only slightly weaker than the other VIs. Nevertheless, only the RDVI fused with 

PH slightly increases the predictability (R2 = 0.83) compared to the bivariate BRM based on the RDVI. 

Figure 7 shows the scatterplots of measured vs. estimated values of one validation dataset from the 

bivariate BRM of PH and the multivariate BRM of PH and GnyLi for dry biomass in pre-anthesis and 

fresh biomass across the whole observed period. The model fit is only slightly improved by fusing PH 

with the VI. 

 

Figure 7. Scatterplot for one validation data set for the pre-anthesis (green) and for the whole 

observed period (black) of the bivariate BRM of PH (circles and solid regression line) and 

multivariate BRM of PH and GnyLi (crosses and dashed regression line) for fresh biomass 

(top) and dry biomass (bottom) (all exponential models); 1:1 line: light grey. 

The robustness of the models was evaluated by calculating the ratio between the R2 values of model 

calibration and validation for each BRM (Appendix Table A2). Since the R2 of calibration was divided 

through the R2 of validation, values above 1 indicate better results from the calibration and below 1 

indicate better results from the validation. Consequently, values close to 1 show a robust performance. 

For the bivariate BRMs, PH and almost all VIs are supported as robust estimators by ratios close to 1 

for all cases. The weakest ratios are attained for the REIP, in particular for fresh biomass with linear 



Remote Sens. 2015, 7 11467 

 

 

BRMs (0.73, 0.71). For the multivariate BRMs, good ratios are found for all cases. Only the linear BRMs 

for fresh biomass show slightly weaker values for the pre-anthesis period. 

4. Discussion 

The overall aim of this study was to evaluate whether the fusion of PH and VIs can improve the 

predictability of dry and fresh barley biomass compared to each parameter as individual estimator. For 

this work, the use of TLS to derive PH was verified and bivariate BRMs based on PH or one of six VIs 

as well as multivariate BRMs based on the fusion of PH with each VI were established. Extensive 

fieldwork over three years supported the practical application of the presented methods for monitoring 

crop development on plot level. The same instruments were used for all measurements whereby 

variations through different sensors could be excluded. However, the design of the field experiment and 

the measurement program was slightly modified and optimized over the years. Hence, only a part of the 

acquired data was used for the final model generation in order to ensure the comparability between the 

data sets. In the following, first the retrieval of PH from TLS data is discussed before the different BRMs 

are examined.  

4.1. TLS-Derived Plant Height 

The presented study verified the reliability of the laser scanner Riegl LMS-Z420i for capturing crop 

surfaces. In comparison with past studies [31,43], the scanning angle to the field was optimized through 

the elevated position on the hydraulic platform. However, uncertainties still remain about the influence 

of the scanning angle and the fixed position of the scanner during the measurements. As maintained by 

Ehlert and Heisig [62]—the scanning angle can cause overestimations in the height of reflection points 

and should be considered in the calculation of heights. In this study, the crop surface was determined 

from the merged and cleaned point clouds of four scan positions, filtered with a scheme for selecting 

maximum points. Overestimations should therefore be precluded. 

For the practical implementation of CSM-derived plant height measurements, further aspects have to 

be considered. Usually, the factors time and cost have a major influence on choosing a system. As shown 

by Hämmerle and Höfle [63] the appropriate point density for generating a CSM varies depending on 

the application. In further studies, cost-efficient systems, such as the Velodyne HDL-64E [64], should 

be considered to investigate their potential for capturing crop surfaces in an adequate resolution. In the 

distant future, low-cost stationary systems might get permanently established for monitoring plant 

growth on field level. Moreover, recent developments have brought up new laser scanning platforms 

that might accelerate the field measurement process and optimize the scanning angle. First, ground-based 

mobile laser scanning (MLS) systems [65] should be taken into account for increasing the homogeneous 

distribution in the point cloud and thus enhancing a uniform field coverage. Second, unmanned aerial 

vehicles (UAVs), such as the recently introduced Riegl RiCOPTER [66], should be examined as a 

potential platform of a light-weight airborne laser scanning (ALS) systems. Promising results have 

already been achieved for measuring tree heights [67] or detecting pruning of individual stems [68] with 

UAV-based laser scanning. However, as examined in a comparative study for TLS and common  

plane-based ALS, the scanning angle and possible resolution influence the results [69] and thus have 

also to be taken into account for studies on UAV-based scanning systems.  
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In this study, TLS measurements were used to derive 3D information of points. As shown in other 

studies, captured intensity values could be used for qualitative analyses of the points, such as detecting 

single plants [70,71]. Whilst such analyses were not an object of this study they should be considered 

for further investigations. Moreover, full waveform analysis, commonly known from ALS, can simplify 

the distinction between laser returns on canopy and ground returns in TLS data [72,73]. The scanner 

used in this study however is not capable of capturing the full waveform. 

The maps of plant height demonstrate the potential of the present approach for deriving plant height 

information on plot level in a very high resolution. The methodology of spatial plant height mapping can 

be scaled to field level, as long as the maximum range of the scanner is regarded and the point density 

is above the required minimum. As shown by Hämmerle and Höfle [63], the coverage of the field and 

attained mean heights are influenced by the point density. The approach of pixel-wise calculating plant 

height from TLS-derived CSMs has already shown good results at the field level for monitoring a maize 

field, about 80 m by 160 m in size [74] and a sugar beet field, about 300 m by 500 m in size [43] captured 

from four and eight scan positions, respectively. Further studies are necessary for determining crop- or 

case-specific minimum values for the point density. In this context, the used sensor and its maximum 

range influence the required number of scan positions. 

Nevertheless, for this study, high coefficients of determination between averaged CSM-derived and 

manual measured plant heights validate the TLS measurements. For the absolute values, differences 

between the measurement methods have to be considered. Whereas for the manual measurement the 

heights of ten plants were averaged per plot, the CSM captured the entire crop surface. Consequently, 

differences in the mean heights occurred, which make precision analysis between TLS data and manual 

measurements infeasible. The precision of TLS measurements for agricultural applications is presumed 

from other studies [26,71]. It is important to note that a key advantage of the TLS data is that while 

plants for the manual measurements are subjectively selected, CSMs enable an objective assessment of 

spatially continuous plant height.  

4.2. Biomass Estimation from Plant Height 

Generally, PH performed well for the estimation of biomass in the pre-anthesis and the whole 

observed period. For dry biomass, PH was the best predictor for the whole observed period and similar 

good predictor as the best performing VIs for the pre-anthesis. However, PH performed far better for 

dry biomass than for fresh biomass, although these values are only distinguished by the water content of 

the sample. Thus, a possible explanation is the fact that the water content is not only influenced by the 

changing plant phenology across the growing season, but also by varying weather conditions. Moreover, 

during each day the available soil water and transpiration conditions vary. Hence, the amount of fresh 

biomass might vary more between the campaigns while the dry biomass is less influenced. Since PH is 

hardly affected by the water content of the plants, the varying water content in the fresh biomass adds 

noise to the BRM based on PH which results in lower R2 values. 

4.3. Biomass Estimation from Vegetation Indices 

All VIs in this study have previously shown a relationship with biomass and LAI. Since the VIs use 

different bands within the spectral range, they were subdivided into three categories VIS VIs (RGBVI), 
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VISNIR VIs (NDVI, RDVI, REIP), and NIR VIs (NRI, GnyLi). The VIs showed varying performances 

for the estimation of dry and fresh biomass, also depending on the regarded time frame of the growing 

season. Generally, the VIs within a category showed a similar behavior.  

The saturation problem of the NDVI type VISNIR VIs was confirmed: Typically, crops reach 100% 

canopy cover around mid-vegetative phase. However, most crops continue to accumulate biomass and 

LAI afterwards. At a LAI of about 2.5–3, the absorbed amount of red light reaches a peak while the NIR 

scattering by leaves continues to increase. Thus, the ratio of NDVI type VISNIR VIs will only show 

slight changes [13]. In this study, the sensitivity thresholds were about 185 g/m² and 1,375 g/m² for dry 

and fresh biomass, respectively. Additionally, after heading the canopy de-greens due to flowering and 

fruit development (after BBCH 5, Table 2). This leads to an increased reflectance in the red part of the 

spectrum and thus, decreases values of the VISNIR VIs, while the biomass does not decrease. Herein, 

this discrepancy resulted in an inadequate model parameterization for the BRMs of the VISNIR VIs and 

poorer results for the whole observed period than for pre-anthesis.  

A similar behavior was observable for the RGBVI. The inferior results might be explained by the fact 

that this VI does not take the reflectance in the NIR region into account, where most of the absorption 

features for biomass-related plant compounds are situated [75]. These results align well with the ones 

presented by Bendig et al. [54], where low correlations were found for the RGBVI with biomass after 

booting stage (BBCH 4, Table 2). In pre-anthesis, relationships of the RGBVI with dry and fresh biomass 

were similar. These results suggest that the RGBVI is mostly related with vegetation cover and not 

directly with biomass. 

In contrast, NIRVIs, such as GnyLi and NRI, use bands only in the NIR and are thus not affected by 

the absorption in the red part of the spectrum, which could explain the overall more consistent and better 

performance of the NIR VIs, particularly after anthesis. A later saturation of these VIs aligns well with 

other studies [53,56]. Similarly, the REIP did not show any saturation effects in the pre-anthesis and 

yielded very good results for dry and fresh biomass. These findings can be explained by the major 

influence of the NIR bands that are not normalized as they are in the NDVI type VIs. Thus, the REIP 

saturated later than the VISNIR and VIS VIs. Nevertheless, across the whole observed period, the 

performance of the REIP also decreased due to saturation. The importance of the NIR domain for 

biomass estimation aligns with other studies [15,16,53,56] and should be further investigated. Similar to 

PH, the NIR VIs performed better for dry than for fresh biomass while the VISNIR VIs generally 

performed better with fresh biomass. This suggests that the VISNIR VIs respond more to the canopy 

water content and the related reflectance change in the NIR shoulder rather than directly to the biomass.  

Overall, the results show that the NIR VIs perform best in the prediction of fresh and dry biomass. 

Moreover, the results indicate that the VIS and VISNIR VIs might not be directly related to biomass. 

However, no rigorous sensitivity analysis was carried out in this study but, as indicated by the results, 

such analyses should be carried out in the future. 

In general, hyperspectral field measurements have been shown to be useful in earlier studies to 

estimate biomass [14–17]. However, VIs are prone to errors by illumination changes [76] and 

multiangular reflection effects [77]. So far, the influence of these effects on the estimation of plant 

parameters have not been comprehensively investigated and should be examined for evaluating the 

potential of VIs for plant parameter estimations. Moreover, ground-based spectrometer measurements 

are laborious and time-consuming. Automated platforms are under development in different fields of 
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remote sensing to overcome this difficulty but they have not yet become standard. Kicherer et al. [78] 

developed a robotic platform for phenotyping grapevine based on automatic image acquisition. Results 

of a mobile multi-sensor phenotyping platform for phenotyping of winter wheat are presented by  

Kipp et al. [79]. Moreover, hyperspectral UAV-based systems showed promise [55,80–83]. 

Unfortunately, the promising NIR domain is currently not well covered by UAV sensing systems.  

4.4. Biomass Estimation with Fused Models 

Leaves make up a major part of the biomass, and VIs related to biomass are often also responsive to 

LAI [13,84]. Thus, it was assumed that the spectral information would complement the PH information 

by adding information about the canopy density and cover.  

As described above, PH and VIs showed varying performances in the estimation of fresh and dry 

biomass and for pre-anthesis or the whole observed period. For dry biomass in pre-anthesis, the NIR VIs 

performed slightly better than PH. Here, the fusion with all VIs improved the predictability, whereby the 

NIR and VISNIR VIs yielded the best results. This can be explained by the sensitivity of the VIs to the 

vegetation cover in early growth stages. For the whole observed period, PH clearly outperformed the 

VIs in the multivariate BRMs and only the fusion with the NIR VIs increased the predictability slightly 

compared to PH alone. For the VIS and VISNIR VIs, the above described saturation effects might have 

counteracted the positive effect of the vegetation cover estimation in the early growth stages. 

Additionally, for pre-anthesis and across the whole observed period, the multivariate BRMs performed 

similarly regardless which VI was used. This indicates that most of the prediction power can be 

accounted to PH. 

For fresh biomass across the whole observed period, the NIR VIs performed best, followed by PH. 

Although the VISNIR VIs did not perform well in the bivariate BRMs, they could improve the results 

when fused with PH. As described above, VISNIR VIs respond to the water content. Thus, they might 

have complement the PH information for the estimation of fresh biomass. Still, only a slight 

improvement was achieved with the fused models compared to the NIR VIs alone and overall, the results 

of multivariate BRMs with different VIs differed only slightly.  

In pre-anthesis, only the NDVI and RGBVI performed poorer than PH while the REIP performed 

best for the fresh biomass. In combination with PH, the results of the NDVI and RDVI were improved 

the most, while the latter one also achieved the best results of all fused models. For the NIR VIs and 

REIP none or only very minor improvements were achieved and as for the whole observed period, the 

water was important because it influences the reflectance in the NIR. Additionally, the VIs correspond 

to vegetation cover in the early growth stages. Thus, in pre-anthesis already the VIs performed well and 

PH only rarely contributed to the prediction power. Only the RGBVI, NDVI, and RDVI might have 

carried complementary information to the PH.  

In this study, the NIR VIs showed the overall best performance of the VIs and seemed to carry similar 

information as PH. Overall, PH and NIR VIs showed the best potential for biomass estimation as 

individual and fused estimators. This aligns with a recent study by Marshall and Thenkabail [15], in 

which they have shown the importance of PH and the NIR domain for fresh biomass estimations. The 

VISNIR VIs seemed to be influenced by the water content and their performance strongly depended on 

the regarded time frame of the growing season. Although, no comprehensive sensitivity analysis was 
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carried out, these findings align well with other studies [56,85]. Further studies are needed to investigate 

the influence of the growing stage on the estimation, and whether estimators, which have been found as 

suitable in across growth stage estimations, are suitable for estimation at individual growth stages. Such 

in-season estimations are particularly important for applications in precision agriculture. Additionally, 

in this study VIs known for estimating biomass from hyperspectral data were used. Thus, the full 

potential of the fusion of 3D spatial and spectral data may not have been explored. Future studies should 

investigate whether other parts of the spectral range complement PH information better.  

Overall, this study demonstrated the strength of bivariate BRMs based on PH and NIR VIs for 

estimating biomass, with only slight improvements achievable through multivariate models. In contrast, 

the weak performances of the VIS and VISNIR VIs as individual estimators were compensated through 

the fusion with PH. However, statements have to be limited, since the models indicated that PH 

contributed the most to the prediction power. In this context, it has to be noted that neither linear nor 

exponential models reflected the relation between estimators and biomass perfectly and thus more 

complex functions have to be considered, which might take the benefits of VIs, like sensitivity to water 

content, better in to account. 

For practical applications the benefit of the fused models might be outweighed by the expenses to 

deploy two different systems. Referring to this, limitations through the attainable spatial and temporal 

resolution of each system have to be regarded. As already mentioned, TLS measurements can be scaled 

up to larger fields, as long as a sufficiently point density can be achieved, which has to be determined 

crop- and case-specific in further studies. Apart from that, laser scanning appeared as powerful tool for 

the non-destructive and objective assessment of spatially resolved plant height data. Statements about 

the accuracy of the measured plant heights are hardly possible due to the already mentioned different 

spatial resolution of the plant height measurements, however the averaged difference of 0.05 m between 

TLS-derived and manual measured plant heights corroborate the results (Table A1). A main benefit of 

the field spectrometer measurements is the high credibility of the acquired spectral data, based on a large 

number of former studies, however the dependence on solar radiation and the small numbers of 

measurements per regarded spatial area, herein per plot, are the main disadvantages. Consequently, systems 

are required which are capable to assess larger areas in less time with the same accuracy of the results. Ideally, 

spatial and spectral information should be acquired directly through one sensor. For example, recently 

developed sensing systems and techniques allow to create hyperspectral point clouds [86] and hyperspectral 

digital surface models [83] with only one sensor and thus, derive 3D spatial and hyperspectral 

information at the same time. Thus, it can be expected that 3D hyperspectral information will become 

increasingly available and combined analysis approaches should be further developed. 

5. Conclusions and Outlook 

Continuously conducting a field experiment with different barley cultivars and the related TLS, field 

spectrometer, and manual measurements enabled the acquisition of an extensive data set. High R² values 

up to 0.89, between TLS-derived and manual measured plant heights verified the applicability of the 

presented approach for a pixel-wise calculation of plant height (PH) from high resolution crop surface 

models (CSMs). Six established vegetation indices (VIs) were used to extract information from the 

hyperspectral data. Based on PH and VIs, bivariate and multivariate biomass regression models (BRMs) 
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were established, with varying performances. Whereas PH was supported as strong estimator in the 

bivariate models (R² up to 0.85), VIs showed highly different results (R2: 0.07–0.87). The multivariate 

models yielded improvements in some cases (R2 up to 0.89), however in most cases PH had the greatest 

contribution to the prediction power. 

Different models appeared best suitable for dry or fresh biomass estimations, also depending on the 

regarded time frame of the growing season, but in all cases exponential models performed better than 

the linear ones: For dry biomass, the bivariate BRM with PH showed the best results for the whole 

observed period (R2 = 0.85), whereas for the pre-anthesis the REIP and the near-infrared (NIR) VIs 

GnyLi and NRI showed slightly better results than PH (R2 = 0.86, 0.87). Multivariate BRMs from PH 

and one VI slightly improved the R² values compared to the bivariate BRMs in some cases. For fresh 

biomass, the bivariate BRMs of the NIR VIs showed the best results for the whole observed period (both 

R2 = 0.77). For pre-anthesis, the REIP (R2 = 0.82) showed slightly better results that the NIR VIs (both 

R2 = 0.79). The multivariate BRM could slightly improve the results in some cases. Additionally, it can 

be noted that also weakly performing VIs, such as the NDVI or RGBVI, improved the estimations 

slightly when fused with PH in the multivariate BRMs, both for fresh and dry biomass. These results 

suggest that specific models should be chosen for specific applications, and a fusion of PH and VIs does 

not always substantially improve the results. Additionally, when PH and VIs are fused, the choice of the 

VI does not seem critical in all cases. 

Altogether, it should be noted that the presented results are a first step towards the fusion of remotely 

sensed 3D spatial and spectral data for a precise and non-destructive estimation of crop biomass. Other 

ways of data fusion may further increase the prediction power. Further studies are also necessary to 

investigate differences between the years, cultivars, and fertilizer treatments. Moreover, as already 

mentioned, in-season biomass estimations are important for precision agriculture. Therefore models 

should be established based on data sets from only one campaign to investigate the potential for timely 

monitoring and in-season estimations. Accurate and rapidly ascertainable estimations in a high spatial 

resolution during the growing season could support spatially resolved nitrogen nutrition index 

calculations. Thereby in-field variations can be considered for optimizing fertilizer application and 

shrinking the gap between potential and current yield. The fusion of 3D spatial and spectral data might 

improve such calculations as weaknesses and limitations of one estimator might be compensated through 

the other one. 

With regard to the application in the field, the usability of new platforms should be further 

investigated. UAV-based light-weight ALS systems reveal potential for vegetation mapping. 

Futhermore, new technologies like hyperspectral snapshot camera systems which enable the derivation 

of 3D spatial and hyperspectral information at the same time carry great potential for agricultural 

applications. Combined with estimation models based on structural and spectral and information, such 

approaches can become a powerful tool for applications in precision agriculture and biomass monitoring. 
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Appendix 

Table A1. Statistics for the plot-wise averaged CSM-derived and manual measured plant 

heights (n: number of samples; 𝑋̅ : mean value; min: minimum; max: maximum;  

SD: standard deviation). 

        CSM-Derived Plant Height (m) Manual Measured Plant Height (m) 

 BBCH N level n 𝑿̅ min max SD 𝑿̅ min max SD 

2012           

1 N/A 40 18 0.15 0.06 0.22 0.04 0.20 0.15 0.25 0.03 

  80 18 0.18 0.14 0.24 0.03 0.20 0.15 0.26 0.03 

2 30 40 18 0.21 0.13 0.28 0.04 0.35 0.28 0.42 0.05 

  80 18 0.27 0.20 0.35 0.04 0.35 0.30 0.42 0.04 

3 49 40 16 0.58 0.47 0.72 0.08 0.63 0.52 0.80 0.09 

  80 15 0.64 0.48 0.80 0.11 0.66 0.54 0.79 0.08 

4 N/A 40 14 0.73 0.61 0.81 0.06 0.86 0.74 0.96 0.06 

  80 14 0.81 0.71 0.92 0.06 0.89 0.80 1.00 0.06 

2013           

2 18 40 18 0.21 0.05 0.37 0.09 0.19 0.14 0.25 0.03 

  80 18 0.11 −0.07 0.25 0.08 0.20 0.16 0.27 0.03 

3 30 40 18 0.33 0.15 0.51 0.11 0.29 0.19 0.56 0.09 

  80 18 0.25 0.01 0.40 0.11 0.28 0.17 0.45 0.08 
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Table A1. Cont. 

    CSM-Derived Plant Height (m) Manual Measured Plant Height (m) 

 BBCH N level n 𝑿̅ min max SD 𝑿̅ min max SD 

4 41 40 18 0.57 0.33 0.83 0.17 0.52 0.39 0.70 0.09 

  80 18 0.56 0.24 0.79 0.18 0.57 0.31 0.81 0.13 

5 57 40 16 0.84 0.64 1.11 0.13 0.77 0.66 0.95 0.07 

  80 16 0.79 0.58 1.04 0.12 0.81 0.54 0.94 0.11 

6 68 40 14 0.78 0.65 0.97 0.09 0.77 0.66 0.84 0.05 

  80 14 0.77 0.66 0.90 0.08 0.83 0.76 1.00 0.06 

7 81 40 14 0.75 0.62 0.96 0.10 0.72 0.65 0.82 0.06 

  80 14 0.72 0.62 0.83 0.07 0.79 0.67 0.89 0.07 

2014           

2 29 40 18 0.16 0.12 0.24 0.03 0.19 0.12 0.30 0.04 

  80 18 0.18 0.15 0.25 0.03 0.18 0.13 0.27 0.04 

3 31 40 18 0.41 0.36 0.51 0.04 0.38 0.31 0.52 0.05 

  80 18 0.42 0.34 0.52 0.05 0.36 0.27 0.45 0.05 

4 49 40 18 0.63 0.53 0.70 0.04 0.59 0.53 0.65 0.03 

  80 18 0.63 0.57 0.70 0.04 0.57 0.51 0.64 0.04 

5 56 40 18 0.80 0.69 0.87 0.04 0.78 0.68 0.85 0.04 

  80 18 0.81 0.75 0.93 0.04 0.78 0.72 0.89 0.04 

6 74 40 18 0.76 0.66 0.84 0.04 0.77 0.68 0.83 0.03 

    80 18 0.79 0.73 0.85 0.03 0.75 0.71 0.82 0.03 

Table A2. Ratio between model calibration and validation ( 𝑅𝑐𝑎𝑙
2 : coefficient of 

determination from calibration; 𝑅𝑣𝑎𝑙
2 : coefficient of determination from validation). 

   Bivariate BRMs Multivariate BRMs 

     Whole Period Pre-Anthesis   Whole Period Pre-Anthesis 

   Estimator 𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  Estimatora 𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  

D
ry

 b
io

m
a
ss

 

L
in

ea
r 

PH 0.98 0.95    

GnyLi 0.96 0.94 GnyLi 1.00 0.97 

NDVI 1.00 0.89 NDVI 0.97 0.95 

NRI 0.98 0.95 NRI 0.98 0.96 

RDVI 1.00 0.95 RDVI 0.96 0.95 

REIP 0.80 0.85 REIP 1.00 0.95 

RGBVI 1.25 0.93 RGBVI 0.97 0.95 

E
x
p

o
n

en
ti

a
l 

PH 0.99 0.99       

GnyLi 1.00 0.99 GnyLi 0.99 0.99 

NDVI 1.03 1.03 NDVI 1.00 1.01 

NRI 1.00 1.00 NRI 1.00 1.00 

RDVI 1.03 1.03 RDVI 1.00 1.00 

REIP 0.93 0.94 REIP 0.99 0.97 

RGBVI 1.05 1.00 RGBVI 1.00 1.01 

  



Remote Sens. 2015, 7 11475 

 

 

Table A2. Cont. 

  Bivariate BRMs Multivariate BRMs 

    Whole period Pre-Anthesis   Whole Period Pre-Anthesis 

  Estimator 𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  Estimator a 𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  𝑅𝑐𝑎𝑙
2 /𝑅𝑣𝑎𝑙

2  

F
re

sh
 b

io
m

a
ss

 

L
in

ea
r 

PH 0.88 0.86    

GnyLi 0.89 0.86 GnyLi 0.90 0.86 

NDVI 0.93 0.82 NDVI 0.90 0.86 

NRI 0.91 0.86 NRI 0.90 0.86 

RDVI 0.92 0.85 RDVI 0.90 0.86 

REIP 0.73 0.71 REIP 0.90 0.82 

RGBVI 1.05 0.90 RGBVI 0.92 0.90 

E
x

p
o

n
en

ti
a

l 

PH 0.96 0.96       

GnyLi 0.99 0.96 GnyLi 0.97 0.96 

NDVI 1.05 1.02 NDVI 0.99 1.00 

NRI 1.00 0.97 NRI 0.97 0.97 

RDVI 1.04 1.01 RDVI 0.99 0.99 

REIP 0.87 0.87 REIP 0.94 0.90 

RGBVI 1.06 1.04 RGBVI 1.01 1.03 

a each fused with PH. 
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