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Abstract: Land cover change processes are accelerating at the regional to global level.  

The remote sensing community has developed reliable and robust methods for wall-to-wall 

mapping of land cover changes; however, land cover changes often occur at rates below the 

mapping errors. In the current publication, we propose a cost-effective approach to 

complement wall-to-wall land cover change maps with a sampling approach, which is used 

for accuracy assessment and accurate estimation of areas undergoing land cover changes, 

including provision of confidence intervals. We propose a two-stage sampling approach in 

order to keep accuracy, efficiency, and effort of the estimations in balance. Stratification is 

applied in both stages in order to gain control over the sample size allocated to rare land 

cover change classes on the one hand and the cost constraints for very high resolution 

reference imagery on the other. Bootstrapping is used to complement the accuracy measures 

and the area estimates with confidence intervals. The area estimates and verification 

estimations rely on a high quality visual interpretation of the sampling units based on time 

series of satellite imagery. To demonstrate the cost-effective operational applicability of the 

approach we applied it for assessment of deforestation in an area characterized by frequent 

cloud cover and very low change rate in the Republic of Congo, which makes accurate 

deforestation monitoring particularly challenging. 
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1. Introduction 

Land cover change processes are accelerating from regional to global levels. Assessment of change 

processes is therefore urgently required in order to provide accurate and up-to-date information on past 

and current developments. The remote sensing community has developed increasingly reliable, 

consistent, and robust approaches for wall-to-wall mapping of land cover changes. Overall accuracy of 

the wall-to-wall maps is often in the range of 80% to 95%, depending on the source data, the change 

processes to be monitored, the biogeographic region, and the monitoring approach applied. Good 

overviews on methods for wall-to-wall land cover change monitoring are provided by [1,2]. 

A main requirement for operational applications, e.g., in the frame of international reporting for 

REDD (The United Nations Collaborative Programme on Reducing Emissions from Deforestation and 

Forest Degradation in Developing Countries), is that the wall-to-wall land cover change maps are 

complemented with accurate estimates of the area undergoing land cover changes [3]. 

The simplest approach to area estimation is to derive the area of land changes directly from the land 

cover change map. However, the errors of omission (error of excluding an area from a category to which 

it truly belongs, i.e., area underestimation) and errors of commission (error of including an area in a 

category to which it does not truly belong, i.e., area overestimation) are, in general, not equal. Such bias 

(systematic over- or under-estimation) shows up in the course of the accuracy assessment [4]. Adjusting 

area estimates on the basis of a rigorous accuracy assessment therefore represents an improvement over 

simply reporting the areas of classes as indicated on the map. The stratified estimator for area estimation 

based on error matrices was first introduced by [5]. Various approaches for area estimation have already 

been published for simple random, systematic, or stratified random sampling. A good overview of the 

general requirements for estimating area and assessing accuracy of land changes is given in [4,6]. They 

conclude that reporting only accuracy measures such as the overall accuracy and kappa coefficient is 

insufficient to fully address area estimation and uncertainty information needs. 

A main requirement for operational applications such as REDD reporting is that confidence intervals 

are provided for the accuracy measures and area estimates. Methods for constructing confidence 

intervals for area estimates using error matrix information have been described, e.g., by [4,7], for popular 

sampling designs such as stratified random and simple random sampling. When reference data for two 

dates for different locations are used to estimate change for maps derived from post-classification, the 

methods described by [6,8,9] can be used for stratified random sampling designs. In [8,9], a model-

assisted estimator with information from an error matrix is applied to compensate for bias as the result 

of classification errors and to estimate variances. 

A variety of probability sampling designs can be used for accuracy assessment, area estimation, and 

derivation of confidence intervals. The decision in choosing a sampling design relates to trade-offs among 

different designs in terms of advantages to meet the specified requirements. A detailed review of sampling 

design options and how these designs fulfill different objectives and criteria is given in [10]. 
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In the current publication, we propose an approach which specifically targets cost-effective 

application for large-area operational monitoring. The focus is on the sampling approach, which is 

applicable regardless of the procedure used to create the wall-to-wall land cover change map. The 

approach is exemplarily demonstrated for the assessment of deforestation in tropical forests in the 

Republic of Congo. 

2. Methods 

2.1. Overview and General Workflow 

The monitoring approach is based on wall-to-wall land cover change mapping, which is 

complemented with a sampling approach for accuracy assessment, area estimation of land changes, and 

provision of confidence intervals. A two-stage sampling design is applied in order to keep accuracy, 

efficiency, and effort of the estimates in balance, while also taking limited availability of reference data 

such as cloud cover into account. In the first stage, area frames of a size of, for instance, 5 km by 5 km 

are selected as primary sampling units (PSUs). In the second stage, a set of pixels (secondary sampling 

units or SSUs) are sampled per PSU. Stratification is applied in both stages in order to gain control over 

the sample size allocated to rare land cover change classes on the one hand and cost constraints for 

acquisition and processing of reference imagery on the other. The general workflow of the approach is 

shown in Figure 1. 

 

Figure 1. General workflow. 
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Bootstrapping is applied to provide confidence intervals for all derived accuracy measures as well as 

for the estimated area of land changes. 

2.2. Sampling Design 

A probability sampling design is a prerequisite for providing a rigorous foundation for the accuracy 

assessment and area estimation. The two conditions defining probability sampling are that the inclusion 

probability must be known for each unit selected in the sample and the inclusion probability must be 

greater than zero for all units in the population [11]. The inclusion probability for a unit is thereby defined 

as the probability that this unit (e.g., a pixel in the application example described below) is included in 

the sample.For operational applications over large areas, however, this cannot always be fully achieved, 

e.g., in the application example of the current project, frequent cloud cover leads to missing reference 

data for specific locations. In the example application we therefore allow limited shifting in the primary 

sampling units’ selection process, as described in Section 3. Under the assumption of random distribution 

of cloud cover at the local level, this introduces a small non-sampling error. 

Based on the objectives and requirements specified in the introduction, we propose a two-stage stratified 

sampling design as outlined in Figure 1. Wall-to-wall maps on land cover changes are used as input. 

In the first stage, stratified random sampling is applied to select the primary sampling units (PSUs). 

The primary sampling units are blocks which are covered with remote sensing imagery with significantly 

improved information content compared to the data used to derive the land cover change maps. The land 

cover changes to be monitored often affect only small portions of the total area, or they are spatially 

clustered over the region of interest. Only a limited number of very high resolution remote sensing scenes 

should be required for operational applications because of data acquisition and data processing cost. 

Stratification is therefore applied by using the land cover change map as described, for example, in [6].The 

change magnitude is calculated for each block, and the block is then assigned to one of the strata based 

on the percent area of changes, as described, e.g., in [12], where all blocks are associated to one of three 

strata based on the percent area of forest cover loss. The number of PSUs required depends mainly on 

the classification accuracy, the spatial pattern of the land cover, the spatio-temporal pattern of the land 

cover changes, the magnitude of the changes, and the required accuracy of the area estimates. As 

described in [6], sample size planning is inexact because it is dependent on accuracy and area information 

that must be estimated prior to conducting the actual accuracy assessment. However, an iterative 

procedure can be applied by specifying the number of primary and secondary sampling units based on 

comparable applications for the first iteration. The sample size allocation process can then be iterated 

until an allocation is found that yields satisfactory, anticipated standard errors for the key accuracy and 

area estimates [6]. 

In the second stage, stratified random sampling is applied to select the secondary sampling units 

(SSUs) with the pixel as the spatial assessment unit. To gain control over rare land cover change classes, 

stratification is performed based on the map classes that are validated as described, e.g., by [6] or [10]. 

This involves assigning all pixels within the sampled PSUs to strata based on the land cover change map 

categories. Stratified random sampling is then performed to select the secondary sampling units within 

each category. The allocation of the number of SSUs for the different strata depends on the specified 

monitoring objectives. Neyman optimal allocation is advantageous for estimating the area of change as 
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well as overall accuracy, whereas equal allocation (same number of SSUs in each stratum) is 

advantageous for estimating the error of commission (compare, e.g., [13]). 

Practical applications require accurate area estimation as well as accurate determination of the overall 

accuracy and of errors of commission and of omission. In a first step we therefore determine the 

minimum number of SSUs required for an accepted standard error of the error of commission per 

category according to [14] with: 

𝑛𝑐 =  
𝑝𝑐(1−𝑝𝑐)

σ𝑐
2  , c = 1,…,L (1) 

𝑛𝑐 number of SSUs for category c 

𝑝𝑐 estimated error rate for category c 

σ𝑐 accepted standard error of the error of commission for category c 

L number of categories 

For an accepted standard error of the error of commission of 0.05 and a conservatively estimated error 

rate of 0.50, a minimum sample size of nc = 100 SSUs results from this equation. In the demonstration 

application described below, a minimum number of nc = 100 SSUs (pixels) is therefore sampled within 

each land cover category. However, focusing on the error of commission only, by using an equal 

distribution of nc = 100 SSUs for all land cover change strata, would weaken the statistical analyses of 

the unchanged area, as land cover changes in most applications are rare (below several percent of the 

total area). In other words, the large unchanged area would be sampled with few SSUs in relation to its 

proportion, which impedes the detection of omission errors. To overcome this problem, additional SSUs 

are allocated according to Neyman optimal allocation, which minimizes the variance of the estimator of 

overall accuracy for a given total sample size n with [13]: 

𝑛𝑐 =
𝑛𝑁𝑐σ𝑐

∑ 𝑁𝑘σ𝑘
𝐿
𝑘=1

  (2) 

𝑛𝑐 sample size for category c 

n total sample size 

𝑁𝑐 population size for category c 

σ𝑐 estimated error rate for category c 

L  number of categories 

Nk population size for category k 

σk estimated error rate for category k 

The result of this procedure is an uneven distribution of the number of SSUs in the different strata, 

however, with a defined minimum number of SSUs per stratum, as described above. The definition of 

the sampling units as points, pixels, polygons with a specified minimum mapping unit, etc. depends on 

the specific application. An example implementation is described in the next section. 

As for the selection of the PSUs, an iterative procedure can be applied where, in a first iteration, a 

low total number of SSUs are randomly sampled. A decision as to whether the total number of SSUs 

needs to be increased in a next iteration can then be made based on the resulting confidence intervals for 

the area estimates and the estimated error measures. 
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2.3. Accuracy Assessment 

By taking into account economic constraints, the primary and secondary sampling units are used for 

accuracy assessment, for area estimation, and for computation of the confidence intervals in one 

consistent approach. An error matrix is generated based on the inclusion probability for each sampled 

pixel as a basis for all subsequent processing steps [15]. The rows of the error matrix represent the labels 

shown in the map and the columns represent the labels depicted in the reference data. The inclusion 

probability is thereby defined as the probability that a pixel is included in the sample. If the total number 

of blocks in a stratum h is denoted as Kh, the first-stage sample inclusion probability for each block in 

stratum h is π1h = B1h/Kh, with B1h as the number of the selected blocks (PSUs) in stratum h. The second-

stage inclusion probability is given by π2ch = nch/Nch with nch as the number of the sampled pixels (SSUs) 

for category c in stratum h and Nch as the total number of pixels classified as category c in stratum h. 

The final inclusion probability for both stages together for pixel u in stratum h is the product of the 

inclusion probabilities at both stages [16]. 

π𝑢𝑐ℎ
∗ =  π1ℎ ∗ π2𝑐ℎ (3) 

To combine sample data over several strata, a weighted estimator of the error matrix is required to 

account for the different inclusion probabilities among the strata. The estimation weight is the inverse 

of each sample pixel’s inclusion probability. The proportion of area for each cell of the error matrix is 

thereby estimated by 

𝑝̂𝑖𝑗 =  (
1

𝑁
) ∑

1

π𝑢𝑐ℎ
∗

𝑥∈(𝑖,𝑗)

 (4) 

where N is the total number of pixels in the whole target region from which the sample is selected, and 

the summation is calculated over all sample pixels that meet the condition for entry into row i and column 

j of the error matrix (i.e., pixel u belongs to row i and column j). The result of this processing step is an 

error matrix which is based on inclusion probabilities and which directly gives the main accuracy 

parameters as described in the following. Once p̂ij is computed for all cells of the error matrix, the overall 

accuracy is estimated by summing the p̂ij values on the main diagonal of the error matrix [17]: 

OA = ∑ p̂jj

J

j=1

 (5) 

There are two more common accuracy measures. The error of commission (error of including an area 

in a category to which it does not truly belong, i.e., area overestimation) is estimated as: 

𝐸𝐶̂𝑗 = 1 −
𝑝̂𝑗𝑗

∑ 𝑝̂𝑖𝑗
𝐽
𝑖=1

 (6) 

The error of omission (error of excluding an area from a category to which it truly belongs, i.e., area 

underestimation) is estimated as: 

𝐸𝑂̂𝑖 = 1 −
𝑝̂𝑖𝑖

∑ 𝑝̂𝑖𝑗
𝐽
𝑗=1

 (7) 
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2.4. Area Estimation 

As described in the introduction, errors of omission and errors of commission are, in general, not 

equal, and the resulting bias is adjusted on the basis of the accuracy assessment. As the proposed 

approach uses probability sampling and the error matrix is based on inclusion probabilities, accuracy 

and area estimates can be computed directly from the error matrix. As each cell gives the unbiased 

estimator of the proportion of area, the area proportions for each reference-defined category j are 

estimated directly from the column totals ( 𝑝̂𝑗). An unbiased estimator of the total area of category j is 

then [4]: 

𝐴̂𝑗 = 𝐴𝑡𝑜𝑡  ×  𝑝̂𝑗 (8) 

with 𝐴𝑡𝑜𝑡 being the total mapped area. 

This estimator can be viewed as an “error adjusted” area estimator because it includes the area of map 

omission error of category j and leaves out the area of commission error. Although the area of estimated 

change is based on the reference sampling units, the map is an important component of the area 

estimation approach because of the role of the derived inclusion probabilities in the area estimator and 

the importance of stratification defined by the map classification [4]. 

The same information that is used for the accuracy assessment is therefore directly used to improve 

the area estimation by simply using the information provided by the error matrix. 

2.5. Derivation of Confidence Intervals 

Confidence intervals are derived in order to quantify the uncertainty of the accuracy measures and 

the area estimates. The confidence interval is a range that encloses the true (but unknown) value with a 

specified confidence (probability). For example, the 95% confidence interval has a 95% probability of 

enclosing the true value. In the proposed approach, bootstrapping is applied for derivation of the 

confidence intervals as, e.g., described in [18,19], where the selection of the bootstrap samples emulates 

the actual sample selection method. Bootstrapping is thus performed by repeated sampling of the PSUs 

and SSUs from the whole sample set with replacement. In the application example described in the next 

section, we selected 200 runs in the first phase and 200 runs in the second phase, which leads to a total 

of 40,000 runs. 

As described in [19], the percentile method interval is used for estimating the confidence intervals. 

The percentiles are estimated directly on the basis of the bootstrap distribution. For 95% confidence 

intervals, for example, the interval between 2.5% and 97.5% of the bootstrap quantiles is determined. 

All elements of the error matrix 𝑝̂𝑖𝑗 as well as the derived accuracy measures and the area estimates are 

calculated in each of the runs. With this bootstrapping approach, confidence limits around the derived 

overall accuracy, error of omission, and error of commission, as well as around the area estimates, are 

derived by treating the B samples as independent estimates of the same quantities. For example, the 95% 

confidence interval for the estimated overall accuracy is derived from the 2.5% to 97.5% quantile of the 

bootstrap distribution. Compared to the often-applied α percentiles of the standard normal distribution, 

the main advantage is that no assumption on normal distribution is required. In the next section some 

figures illustrate the procedure based on the application example. 



Remote Sens. 2015, 7 11999 

 

 

3. Results of a Case Study for Monitoring Deforestation 

The following example illustrates the workflow for monitoring tropical deforestation in the Republic 

of Congo in the frame of REDD (Reducing Emissions from Deforestation and Forest Degradation) 

reporting. To demonstrate the cost-effective operational applicability of the approach, we selected a 

study site characterized by frequent cloud cover and very low deforestation rates, which makes 

deforestation monitoring particularly challenging. 

3.1. Study Site and Data 

The study site is located in the northern part of the Republic of Congo. It is dominated by tropical 

rainforests covering more than 95% of the area and is one of the cloudiest regions in Africa. 

Deforestation occurs at very low rates and is concentrated close to settlements along rivers and roads. A 

sufficiently large area of 100,000 km2 was selected to demonstrate the operational applicability of the 

approach for large areas. A deforestation map derived from Landsat 5 Thematic Mapper (TM) and 

Landsat 7 Enhanced Thematic Mapper (ETM) imagery for the period 2000 to 2010 with a spatial 

resolution of 30 m by 30 m per pixel was provided by project partner Gesellschaft für Angewandte 

Fernerkundung AG. An overview of the study site showing the location of the deforested areas 

(aggregated to one deforestation category) is shown in Figure 2. 

 

Figure 2. Study site located in the northern part of the Republic of Congo with deforested 

areas highlighted in red. 
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According to nomenclature specifications defined in [20], the categories “forest”, “non-forest”, 

change from “forest to cropland”, “forest to grassland”, “forest to wetland”, and “forest to settlement” 

were mapped. As pre-processing steps, the project partner Gesellschaft für Angewandte Fernerkundung 

AG relatively calibrated the ortho-rectified satellite images to generate blocks consisting of several 

scenes which were processed together. They applied a semi-automatic classification procedure for 

generating the land cover change map where, in a first step, automated change detection was performed, 

and in a second step, the change detection results were revised by visual interpretation. 

For accuracy assessment and area estimation, very high resolution (VHR) and high resolution (HR) 

archive imagery was available (see Table 1). In the context of the current application example, VHR 

refers to satellite images with a spatial resolution of at least 5 m per picture element, whereas HR refers 

to satellite images with a spatial resolution in the range of 5 m to 30 m. 

The European Space Agency (ESA) provided ortho-rectified, multi-temporal HR satellite images 

from SPOT, ASTER, and RapidEye via their data warehouse free of cost. The Airbus Defence and Space 

company provided a VHR Pléiades scene free of charge. Landsat 7 data were downloaded from USGS 

servers free of cost. In addition, IKONOS-2 and GeoEYE satellite data acquired in 2009 and 2011  

(5 km by 5 km frames) was purchased for the project, according to the sampling requirements  

described below. 

Table 1. Satellite scenes used for accuracy assessment and area estimation (pan for 

panchromatic and ms for multispectral data). 

Satellite Sensor Spatial Resolution Acquisition Years Number of Scenes 

GeoEye-1 0.5 m (pan), 2 m (ms) 2009–2011 12 

Ikonos-2 1 m (pan), 4 m (ms) 2009–2011 12 

Rapideye MSI 5 m (ms) 2009–2011 6 

Landsat TM and ETM 15 m (pan), 30 m (ms) 2000–2013 46 

Spot 4 HRVIR 20 m (ms) 2000, 2001 5 

Spot 5 HRG 10 m (ms) 2009, 2010 3 

Terra Aster 15 m (ms) 2007, 2010 2 

Pléiades HiRI 0.5 m (pan), 2 m (ms) 2013 1 

3.2. Sampling Design 

As described above, two-stage stratified random sampling was applied. In the first stage, n = 32 area 

frames were selected as primary sampling units, which is comparable to other approaches, e.g., [21], who 

selected n = 31 primary sampling units for assessing the accuracy of the Alaska National Land Cover 

Database. For stratification into the categories of low, medium, and high change magnitude, the mean 

deforestation rate was calculated for 10 km by 10 km blocks on the basis of the deforestation map.  

The selection of the PSUs for each of the three strata was then performed by random sampling. By taking 

into account cloud and cloud-shadow problems and the extent of VHR archive satellite scenes, we used 

the 10 km by 10 km blocks, within which the selected area frames were shifted. Our primary sampling 

units (PSUs) are therefore 5 km by 5 km area frames, which are shifted within the 10 km by 10 km 

blocks. In addition to the VHR satellite data, multi-temporal HR satellite data was also available for each 

area frame as described above. For retrospective monitoring of land cover changes for which archive 
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imagery is required, we recommend this procedure of shifting within blocks, especially for areas 

characterized by frequent cloud cover. However, for monitoring current/future land cover changes, 

tasking of satellite acquisitions such as, e.g., for Pléiades acquisitions can be recommended, if possible 

within cost constraints. 

In the second stage, a set of pixels (secondary sampling units or SSUs) were randomly sampled within 

the VHR satellite scenes with the wall-to-wall deforestation map being used for stratification. The 

number of sampled pixels was determined according to Equation (1) for a conservatively estimated error 

rate of 0.50 and an accepted standard error of the error of commission of 0.05, with a minimum sample 

size of n = 100 pixels per stratum. As described above, such equal distribution of n = 100 SSUs for each 

stratum would weaken the statistical analyses of the unchanged area, as the large unchanged area would 

be sampled with few SSUs in relation to its proportion. To overcome this problem, additional SSUs were 

allocated using Neyman optimal allocation as defined in Equation (2), for a priori estimated error rates of 

3% for forest, 10% for non-forest, and 50% for the deforestation categories. This results in an allocation of  

n = 4015 pixels to the category “unchanged forest” and n = 377 pixels to the category “unchanged  

non-forest”. For the deforestation categories, a total of n = 208 pixels would be allocated using Neyman 

optimal allocation. As specified above, however, a minimum of n = 100 pixels is allocated to each of the 

deforestation categories. A total of n = 4792 SSUs was therefore randomly sampled within the  

respective strata. 

 

Figure 3. Example of a six-month time lag between a Landsat ETM scene (left image) and 

a RapidEye scene (center image), and example of a geometric shift between a reference scene 

and the provided forest map (highlighted in yellow), seen in the right image. 

For each SSU, the reference category was visually interpreted on the basis of the VHR data and the 

high resolution satellite time series including the production scenes. Time lags and geometric shifts were 

taken into account in the interpretation process, e.g., a sampling unit was not labeled as erroneous if a 

geometric shift was observed between the VHR reference data and the deforestation map and the 

deforestation was detected correctly (see Figure 3). 

The resulting information on the classified and reference categories for each SSU was then used for 

accuracy assessment as well as for estimating the area of deforestation including the estimation of  

confidence intervals. 
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3.3. Accuracy Assessment 

For all subsequent processing steps, an error matrix was generated based on the inclusion probabilities 

as defined in Equations (3) and (4). The rows of the error matrix represent the labels shown in the 

deforestation map and the columns represent the labels depicted in the reference data (see Tables 2 and 3). 

The diagonal entries represent correct classifications, or agreement, between the map and reference data, 

and the off-diagonal entries represent misclassifications. 

Table 2. Error matrix based on inclusion probabilities. 

Reference 

Map 

Stable 

Non-Forest 

Stable 

Forest 

Forest to 

Cropland 

Forest to 

Grassland 

Forest to 

Wetland 

Forest to 

Settlement 

Stable non-forest 0.0223 0.0047 0.0004 0.0000 0.0000 0.0000 

Stable forest 0.0028 0.9631 0.0029 0.0000 0.0000 0.0009 

Forest to cropland 0.0000 0.0001 0.0010 0.0000 0.0000 0.0000 

Forest to grassland 0.0000 0.0003 0.0000 0.0002 0.0000 0.0000 

Forest to wetland 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

Forest to settlement 0.0000 0.0001 0.0001 0.0000 0.0000 0.0010 

Total 0.0251 0.9683 0.0044 0.0002 0.0001 0.0019 

Table 3. Error of commission and omission in percent. 

 
Stable Non-

Forest 

Stable 

Forest 

Forest to 

Cropland 

Forest to 

Grassland 

Forest to 

Wetland 

Forest to 

Settlement 

Error of commission 18.8 0.7 8.5 60.8 39.7 18.2 

Error of omission 11.1 0.5 77.9 12.9 49.3 49.6 

The accuracy assessment shows a high overall accuracy of 98.8%. As shown in Table 2, this high 

overall accuracy is due to the highly accurate mapping of the dominating category “stable forest”, 

whereas the errors of omission and commission are high for the deforestation categories. This is expected 

as Landsat TM imagery with a spatial resolution of 30 m per pixel was used for deforestation mapping 

and deforestation within the study site occurs mostly on small patches, such as, e.g., the extension of 

settlements at the border with small housing units. 

3.4. Area Estimation 

Accurate estimation of the area undergoing land cover changes is an important prerequisite for 

fulfilling REDD reporting requirements. As clearly stated in the Good Practice Guidance for Land Use, 

Land Use Change and Forestry [20]: “Estimates should be accurate in the sense that they are 

systematically neither over nor under true emissions or removals, so far as can be judged, and that 

uncertainties are reduced so far as is practicable”. As described above, errors of omission and errors of 

commission are, in general, not equal, which leads to systematic over- or underestimation of the true 

area. For the category “change from forest to settlement”, the error matrix in Table 2 shows, e.g., that a 

fraction of 0.1% of the total area is classified correctly as change from “forest to settlement”, a fraction of 

0.09% is classified incorrectly as “stable forest” instead of “change from forest to settlement”, a fraction 
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of 0.01% is classified incorrectly as “change from forest to settlement” instead of “stable forest” and a 

fraction of 0.01% is classified incorrectly as “forest to settlement” instead of “forest to cropland”. 

Whereas, according to the deforestation map, a fraction of 0.12% of the total area is mapped as change 

from “forest to settlement” (the row total in the error matrix, expressed in percent), the improved area 

estimate taking into account the over- und underestimations shows that a fraction of 0.2% changed from 

forest to settlement (the column total in the error matrix, expressed in percent). By applying Equation (8), 

improved area estimates are therefore derived simply by multiplying the total mapped area with the 

column totals of the error matrix. Table 4 shows that the improved area estimates significantly differ 

from the mapped areas, e.g., according to the map, changes from forest to settlement occurred in an area 

of 117 km2, whereas the area estimated on the basis of the error matrix is 191 km2. This significant 

underestimation of the area of change from “forest to settlement” in the deforestation map is caused by 

small housing units, which cannot be detected well with Landsat TM imagery because of the relatively 

low spatial resolution of 30 m per pixel. 

Table 4. Area estimates (area in km2) and upper and lower bounds at the 95%  

confidence interval. 

Category 
Mapped Area 

in km2 

Improved Area 

Estimates in km2 

Lower Bound 

(95% Confid.) 

Upper Bound 

(95% Confid.)  

Non-forest 2661 2442 1304 2933 

Forest 94396 94260 93926 95595 

Forest to cropland 100 426 105 1094 

Forest to grassland 45 20 6 34 

Forest to wetland 20 10 0 20 

Forest to settlement 117 191 94 360 

3.5. Derivation of Confidence Intervals 

A 95% confidence interval is normally used for estimation of emissions and removals under the 

United Nations Framework Convention on Climate Change [3]. The 95% confidence interval has a 95% 

probability of enclosing the true but unknown value of the parameter. The 95% confidence interval is 

enclosed by the 2.5th and 97.5th percentiles of the probability density function. These percentiles are 

estimated directly on the basis of the bootstrap distribution by applying 200 runs for selecting the PSUs 

in the first phase, and within each of these runs, applying 200 runs for selecting the SSUs, which leads 

to a total of 40,000 runs. Figure 4 shows the results of these 40,000 runs for estimating the area of change 

from forest land to settlement. As stated above, the deforestation map indicates an area of 117 km2, 

whereas the area estimated by bootstrapping is 191 km2, with a range between 94 km2 and 360 km2 at 

the 95% confidence interval. Please note that the bootstrap distribution as shown in Figure 4 is non-

Gaussian, with asymmetric confidence intervals. 

The bootstrapping results show an overall accuracy of 98.8% and a range of the overall accuracy 

between 97.6% and 99.3% at the 95% confidence level. Table 4 shows the area estimates including the 

confidence intervals as required for REDD reporting. 
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Figure 4. Bootstrapping for estimating area of change from forest land to settlement, with  

n = 200 runs for first-phase sampling and n = 200 runs for second-phase sampling. 

4. Discussion 

Sectorial monitoring of selected land cover change processes is already performed operationally.  

For example, national forest inventories have for decades provided accurate data for the forestry sector 

in developed countries. Several operational land cover change monitoring programs have been put in 

place by the European Union, ESA, NASA, FAO, universities, and others, which provide valuable 

information on land cover changes. The data, however, is often provided at low spatial or low temporal 

resolution or at low accuracy levels or for specific sectors only, and is often not provided up-to-date. 

When taking into account the tremendous impacts that land cover changes cause from the local to the 

global level, current operational monitoring systems are inadequate in providing all required 

information. Free availability of dense time series data from Sentinel-2 with increased temporal, spatial, 

and spectral resolution compared to current freely available data such as, e.g., from the Landsat satellite 

series, and the availability of very high resolution satellite imagery at moderate cost will improve this 

situation significantly. 

Accurate monitoring of land cover changes is especially challenging when the change rate is very 

low, such as in the application example, where the change from forest to settlement was only 0.2%. 

However, such low change rates are typical for many applications. The accuracy of land cover change 

maps is often not sufficient to provide accurate estimates for change processes with such low change 

rates. Several methods were therefore developed to complement land cover change maps with a sampling 

approach for accuracy assessment, improved area estimation, and derivation of confidence intervals as 

required, for example, in international reporting. 

For one-stage sampling approaches, e.g., simple random sampling or stratified sampling, analytic 

formulas for accuracy assessment and derivation of confidence intervals have been published, e.g.,  
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by [4,5,13,22]. In these sampling approaches, however, processing of a large number of VHR satellite 

scenes would be required, as the sampling units are not grouped spatially into clusters. For most land 

cover change monitoring applications, the acquisition dates of the VHR satellite scenes must also be 

within pre-defined time intervals. This limits the applicability of, e.g., Google Earth or related services, 

as acquisition dates and VHR coverage of these services strongly depend on financial constraints.  

In cases where VHR satellite imagery is already provided on a wall-to-wall basis within required time 

intervals, wall-to-wall mapping of land cover changes would be possible, but is often out of scope due 

to constraints in terms of cost and implementation time. However, one-stage stratified sampling can be 

recommended in this case. As, in general, such data is not available, two-stage sampling can be 

implemented, as proposed in the present approach. 

When using a sampling scheme with more than one stage, standard errors of the accuracy estimators 

depend on the specific sampling design implemented at each stage. As a practical approach to estimating 

standard errors in such a sampling scheme, the design is often treated as if it were a one-stage cluster 

sample with the clusters selected by simple random sampling, where the inclusion probability for any 

pixel is calculated as the product of probabilities for each stage [21]. Approximate equations for the 

associated accuracy statistics and standard errors are usually given in such cases, e.g., in [21,23]. Instead 

of applying such approximate and highly complex equations, which are often based on normal 

distribution assumptions, the current approach uses bootstrapping, as confidence intervals can be 

constructed without having to make normal theory assumptions [18]. The main drawback of the current 

approach lies in the added complexity for stratification within the cluster sampling design. Specifically, 

the number of the required primary sampling units needs to be estimated, as it depends on accuracy and 

area information, which is not known prior to the actual accuracy assessment. However, the number of 

primary sampling units can be increased iteratively, until an allocation is found that yields satisfactory 

anticipated standard errors for the key accuracy and area estimates [6]. 

The area estimates and verification estimations rely on a high quality visual interpretation of the 

sampling units based on time series of satellite imagery. 

5. Conclusions 

We propose a cost-effective approach to complement land cover change maps with a sampling 

approach, which is used for accuracy assessment and accurate estimation of areas undergoing land cover 

changes, including provision of confidence intervals. In order to keep accuracy, efficiency, and effort of 

the estimations in balance, stratification is applied in both stages of the sampling approach, which targets 

the following specific requirements: 

• General applicability for a wide range of operational applications 

• Cost-effective implementation for large-area monitoring 

• Based on globally available data (e.g., freely available Sentinel 2 imagery, complemented with a 

limited number of very high resolution scenes) 

• Accurate monitoring of typically rare land cover change processes (e.g., change rates below 1%) 

• Implementation of a probability sampling design to provide a rigorous foundation for accuracy 

assessment and area estimation 
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• Provision of confidence intervals for accuracy measures as well as area estimates as required in 

international reporting. 

The application of the approach for assessment of deforestation in an area characterized by frequent 

cloud cover and very low change rate in the Republic of Congo demonstrates that these targets are 

achieved, even under particularly challenging monitoring conditions. 
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