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Abstract: We have mapped the primary native and exotic vegetation that occurs in the  

Cerrado-Caatinga transition zone in Central Brazil using MODIS-NDVI time series (product 

MOD09Q1) data over a two-year period (2011–2013). Our methodology consists of the 

following steps: (a) the development of a three-dimensional cube composed of the  

NDVI-MODIS time series; (b) the removal of noise; (c) the selection of reference temporal 

curves and classification using similarity and distance measures; and (d) classification using 

support vector machines (SVMs). We evaluated different temporal classifications using 

similarity and distance measures of land use and land cover considering several 

combinations of attributes. Among the classification using distance and similarity measures, 

the best result employed the Euclidean distance with the NDVI-MODIS data by considering 

more than one reference temporal curve per class and adopting six mapping classes. In the 

majority of tests, the SVM classifications yielded better results than other methods. The best 
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result among all the tested methods was obtained using the SVM classifier with a  

fourth-degree polynomial kernel; an overall accuracy of 80.75% and a Kappa coefficient of 

0.76 were obtained. Our results demonstrate the potential of vegetation studies in semiarid 

ecosystems using time-series data.  

Keywords: Caatinga; Cerrado; spectral angle mapper; spectral correlation mapper; euclidian 

distance measure; MODIS 

 

1. Introduction 

Studies of the spatial distribution and the processes governing the Brazilian Cerrado-Caatinga 

transition can significantly inform the management of these biomes. Ecotones are key indicators of local 

and global changes that facilitate an understanding of the landscape’s responses to changes in climate 

regimes and human influences. The Cerrado and Caatinga biomes have great biodiversity adapted to the 

seasonal stress that coexists in a complex mosaic [1–3]. The transition zone includes different vegetation 

types such as dry forest islands, gallery forests, and savannas that vary in their patch number and size. 

However, anthropogenic alterations are increasing in this environment, which is causing landscape 

fragmentation and harm to ecological functioning. 

Semiarid ecosystems have been threatened worldwide, with a reduction in area of approximately 50% 

on a global scale [4]. Portillo-Quintero and Sanchez-Azofeifa [5] estimate that 66% of dry tropical 

forests in Latin America have been deforested, mainly due to agricultural expansion; only fragmented 

landscapes remain. In Brazil, human activities have altered about 48% of the Caatinga [6,7] and 53% of 

the Cerrado [8]. These ecosystems have received less attention and consequent research than tropical 

rainforests. As a result, questions still remain about their extent, limit, biogeographical relationships, and 

land use processes, for instance [9,10]. 

Time-series satellite imagery has great potential for vegetation monitoring in semi-arid regions. In 

this context, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor instrument aboard 

the Terra and Aqua platforms [11] has been widely used for terrestrial monitoring due to its high 

temporal resolution and sensitivity to radiometric and geometric properties. Moreover, several 

phenological studies have been conducted using the vegetation indices of MODIS images in both natural 

ecosystems [12–14] and in anthropic landscapes such as agricultural expansion [15–17], crop  

phenology [18,19], pastures [20], and eucalyptus plantations [21].  

In semi-arid environments, MODIS data are being applied to studies of seasonality, phenology, fire 

events, and conservation [22]. Hüttich et al. [23] distinguish savanna types in South Africa from the  

in situ botanical survey combined with Landsat and MODIS images. Baldi et al. [24] quantify the 

connections among landscape patterns, ecosystem functioning, and agricultural use in the Dry Chaco 

and Chiquitania ecoregions that cover parts of Argentina, Bolivia, and Paraguay using  

MODIS-Normalized Difference Vegetation Index (NDVI) time-series data. Portillo-Quintero et al. [25] 

study the correlation between MODIS active fires and forest cover change in the tropical dry forest. 

Here, we aim to map the land use and land cover in the Brazilian Cerrado-Caatinga transition using 

phenological signatures from MODIS vegetation indices over a two-year period (2011–2013). However, 
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we used different aspects to identify how temporal features affect classification performance. In this 

context, we evaluated and compared different models for the support vector machines (SVMs) and 

temporal-signature classifications. We tested different compositions for temporal-signature classification 

in order to identify the best-fit method: (a) the number of temporal curves by class (single or multiple);  

(b) the number of classes used in the classification (six or eight); (c) the input data (NDVI-MODIS time 

series or signal components of the Minimum Noise Fraction (MNF) transform); and (d) three measurement 

types. The measures that we used to cluster similar phenological patterns included the spectral angle 

mapper (SAM), the spectral correlation mapper (SCM), and the Euclidian distance (ED). In addition, we 

compared the four most widely used kernel functions for SVM classification: linear, polynomial, radial 

basis function (RBF), and sigmoid. 

2. Study Area 

The study area is located in the southern Brazilian semi-arid region between 14°33'50" and 16°19'55" 

south latitude and 42°24'32" and 44°08'20" west longitude. The study area is 36,485 km2, 89.4% of which 

is located in the Minas Gerais state, and the remainder is contained in the Bahia state (Figure 1). 

The climate is tropical semi-arid with two well-defined seasons: a dry season (May through October) 

and a rainy reason (November through April). The average annual rainfall is approximately  

818 ± 242 mm [26], and roughly 50% of this precipitation is concentrated in the months of November, 

December, and January [27] (Table 1). The average temperature ranges from 21–25 °C, and the coldest 

months are June and July [26,27]. The geomorphology of the study area includes the São Francisco 

depression, highlands, and the Espinhaço ranges; the primary soil types are Entisols, Oxisols, Inceptisols, 

and Gleysols [28]. 

The native vegetation is composed of six predominant phytophysiognomies, of which two derive 

from the Caatinga domain (deciduous seasonal forest and semi-deciduous seasonal forest), and four 

derive from the Cerrado domain (Savanna Woodland and the following grassland formations: Savanna 

Grassland, Shrub Savanna, and Rupestrian Fields) [29]. The Cerrado predominates in the eastern part of 

the area in the Espinhaço Range, and the Caatinga occurs in the center and west of the area at elevations 

below 800 m between the São Francisco River and the Espinhaço Range. We also observed vegetation 

transition zones in the Parque Estadual Caminho dos Gerais, a protected area where Cerrado 

physiognomies [30] (mainly grassland) surrounded by Caatinga prevail (Figure 1). 

In the Espinhaço Range, the Cerrado occurs in acidic and dystrophic soils from quartzite rocks [31]. 

However, the vegetation is diverse, with the Savanna Woodland (Cerrado stricto sensu) found on more 

developed and deeper soils (e.g., Oxisol) and grassland formations (Savanna Fields) found on soils 

associated with rocky outcroppings [31,32]. 

The Caatinga region near the Espinhaço Range and the São Francisco River encompasses particular 

combinations of soil type, terrain, and hillsides that act as barriers to regular rainfall [33,34]. The Caatinga 

physiognomies include species such as Cavanillesia umbellata (Barriguda), Myracrodruon urundeuva, 

Tabebuia impetiginosa, and Aspidsperma pyrifolim occurring in soil erosion resulting from limestone or 

crystalline rocks of the Bambuí group [28].  
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Figure 1. Location map of the study area, with the spatial distribution of Caatinga and 

Cerrado domains indicated. 

Favorable soil conditions, mainly characterized by eutrophic soils, and water from the  

São Francisco River and its tributaries have enabled technical agriculture in the central and northwest 

regions of the study area. This agricultural area includes annual crops (corn, cane sugar, sorghum, beans, 

and cotton) and perennial crops (bananas, lemons, mangoes, and coffee) [35]. 

Extensive cattle and agricultural plantations, including a large irrigated area (the Jaíba Project), have 

suppressed the native vegetation [36]. In the eastern part of the study area, the Cerrado predominates 

due to the presence of low-fertility soil and deficient water. These environmental conditions restrict the 

development of agriculture on the site that specializes in planting species in the genus Eucalyptus [33]. 

In addition, scientific studies that could contribute to vegetation monitoring have been scarce, which has 

hampered conservation [37]. 
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Table 1. Meteorological data of the study area between 1977 and 2007 [27]. 

Climatic Data 
Month 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

Rainfall (mm) 175.6 96 93.3 33.1 8,0 5.4 15.1 31.4 31.2 54.2 117.8 150.7 

Average  

Temperature (°C) 
25.6 26 26.1 25.4 24.5 23.1 22.6 23.8 25.2 26.3 25.8 25.7 

Average Maximum 

Temperature (°C) 
30.8 31.5 31.5 31 30.4 29.1 28.8 30.3 31.6 32.5 31.2 30.8 

Average Minimum 

Temperature (°C) 
20.4 20.5 20.6 19.7 18.5 17 16.4 17.3 18.8 20.1 20.4 20.6 

3. Methodology 

The image processing included the following steps (Figure 2): (a) the acquisition of MODIS images; 

(b) the development of a three-dimensional cube composed of NDVI-MODIS time series;  

(c) the removal of noise; (d) the selection of temporal signatures and classification of time series using 

distance and similarity measures (ED, SAM, and SCM); and (e) classification using SVMs. 

 

Figure 2. Methodological flowchart of the digital image processing. 
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3.1. MODIS/Terra Time-Series Dataset 

We used the 8-day MODIS/Terra MOD09Q1 product relative to the surface reflectance data. This 

product includes bands 1 and 2 corresponding to red (620–670 nm) and near-infrared (841–875 nm) 

wavelengths, respectively. The MOD09Q1 product includes all 8-day inputs at 250-meter  

resolution [38]. The MOD09Q1 product does not provide direct data vegetation indices like the 

MOD13Q1 and MOD13A1 products [11,38,39]. However, the MOD13 products are only available as  

16-day composite images [40], which is not appropriate for describing the phenologies of the savanna. 

The images were converted to geographical coordinates, datum World Geodetic System 84 (WGS84), 

using the MODIS Reprojection Tolls program. 

The NDVI-MODIS time series data can be used to identify the savanna types since the evaluation 

period is not fewer than two years [23]. In addition, the best results consider the dry-season images that 

are largely free of clouds [23]. Thus, the long-term phenological observations, including the  

inter-seasonal variability, are useful for a detailed characterization of semi-arid vegetation [23,41]. For 

this study, the MODIS images were acquired over a period from September 2011 until October 2013, 

totaling 96 scenes. The initial and final date coincides with the peak of the dry season when the deciduous 

vegetation loses its leaves [26,41].  

3.2. Image Cube of NDVI-MODIS Time Series 

NDVI was calculated from the MOD09Q1 bands according to the following equation [42]: 

NDVI =  
ρ∗NIR −  ρ∗Red

ρ∗ NIR +  ρ∗ Red
 (1)  

where “ρ*NIR” (band 2) and “ρ*Red” (band 1) are the reflectance values for the near infrared and red 

ranges, respectively. All MODIS-NDVI images obtained over 2011–2013 were merged in a  

three-dimensional image cube; “X” and “Y” are related to geographical coordinates (longitude and 

latitude), and “Z” is the behavior of the target over time [43,44]. 

3.3. Image Denoising 

Noise is very common in time series of NDVI images from the cloud cover, shade, and instrumental 

defects that affect the identification and quantification of ground targets. Thus, noise elimination is 

necessary to acquire a high-quality seasonal curve. In this work, we combined two filtering techniques: 

median filter and Savitzky-Golay (S-G) [45].  

The median filter is a nonlinear smoothing technique that preserves signal edges or monotonic 

changes in trend and particularly removes short-duration impulse noise, which is not possible using 

linear algorithms [46]. The median filter employs a window moving over the temporal curve and obtains 

the median value, a particular case of the order statistic (or rank statistic) of a finite set of real numbers, 

that is taken as the output. However, the temporal median filter is effective only at low noise densities; 

its effectiveness decreases, and image details diminish given high noise-density interference in 

successive time series of images [47].  

The S-G combines the effective noise removal and the waveform-peak preservation (height, shape, 

and asymmetry) [48] and is adequate for phenological analyses of remote-sensing data [49–51].  
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Geng et al. [52] compare eight techniques to filter NDVI time-series data and conclude that the S-G 

filter yields the best results in the majority of situations. However, there is a lack of consensus about the 

most appropriate technique for smoothing time-series data [53,54]. Each method for smoothing  

time-series satellite sensor data has its own advantages and disadvantages in accordance with the purpose 

of the study [55]. 

3.4. Classification Using Distance and Similarity Measures 

The types of measures used to assess spectral distance and similarity are important topics in spectral 

classification theory. Spectral classifiers compare image spectra to a reference spectrum from spectral 

libraries or to spectral endmembers in order to capture the dependencies among variables [56]. Spectral 

classifiers are widely used in hyperspectral image classification in which the difference between the 

methods is based on the measure adopted. In this study, we apply these classifiers to the temporal curves. 

Thus, the application of this method depends on two steps: the selection of reference signatures and the 

calculation of a similarity or distance measure between the reference and image curves. The advantage 

of this method is that the establishment of a temporal-curve library facilitates the classification of other 

images or the same image at other times. 

3.4.1. Reference Temporal-Signature Selection  

Reference-signature selection for the spectral classification employs a different strategy than other 

classifiers using training samples such as maximum likelihood or SVM. In this approach, only one 

signature represents the desired class. Therefore, a few key spectra (endmembers) can be used to explain 

the rest of the dataset [57]. Spectral signature extraction typically uses the sample mean in order to obtain 

an improved signal-to-noise ratio over that of single spectra. However, this sample has high similarity 

and low standard deviation unlike other classification procedures, wherein the representation of each 

class requires an extensive sampling in order to obtain the variations present on the target.  

An important feature of the temporal images is that a single class can possess different temporal 

curves for various reasons such as variations in cultivation and harvesting time, a heterogeneous spatial 

distribution of rainfall, and fire events, among others. However, the spectral classification considers only 

a reference signature for each class. An alternative is to use more than one temporal signature in order 

to independently map the different variations of a land use class and then merge them into a single class. 

We accordingly propose a refinement to identify subsamples within the initial sample that best represent 

the class variation; this methodology improves the classification results. In this context, convex 

geometry-based methods are widely used for isolating reference pixels (training points) from initial  

data [58–60]. This technique aims to detect endmembers that can be applied to the unmixing processing 

and spectral classification. In this study, the convex geometry was adapted to refine the initial samples 

of land-use/land-cover classes. This approach can be organized according to the following steps:  

(a) initial sample selection containing approximately 10,000 pixels for each class (with the exception of 

the water class that has a poor representation in the study area); (b) the use of the MNF transform [61] 

separately for each initial sample; (c) the identification in the initial sample of three subsamples with 

approximately 200 pixels using the n-dimensional viewer from MNF space; and (d) extracting average 

signatures from the subsamples considering the temporal data and the MNF signal components (Figure 3). 
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Figure 3. Procedure for the temporal-signature selection of land use and vegetal cover 

considering both the MODIS-NDVI data dimension and the actual dimensions of images 

from signal components of the MNF transform.  
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The initial sample selection considered the following information: (a) a land-cover map of Minas 

Gerais state produced by the State Forestry Institute and the University of Lavras from 2005–2007 [29] 

and updated for 2009 [62]; (b) municipal agricultural production information in 2012 from the Brazilian 

Institute of Geography and Statistics [35]; (c) high-resolution images from Google Earth from 2013; and 

(d) fieldwork conducted in 2013 to identify vegetation types. The analysis adopted the following classes: 

water, agricultural areas, pasture, deciduous forest, semi-deciduous forest, and savanna. In addition, a 

more detailed investigation was conducted in order to separate agricultural areas in annual and perennial 

crops as well as the savannas in woody and herbaceous formations (Table 2). 

Table 2. Classes of land use and land cover used in the classification of MODIS-NDVI  

time-series data. 

Sets Specifications Total Classes Classes 

1 

Regional.  

Annual and perennial crops  

are not separated;  

vegetation subtypes of the Cerrado biome  

are not separated.  

6 

Water; Agricultural Areas 1, 

Pasture 1, Deciduous Seasonal 

Forest 2,  

Semi-deciduous Seasonal Forest 2,  

and Cerrado3. 

2 

Detailed.  

Annual and perennial crops are separated; 

woody and herbaceous formations of the  

Cerrado biome are separated. 

8 

Water, Annual Crops 1, Perennial 

Crops 1, Pasture 1, Deciduous 

Seasonal Forest 2, Semi-deciduous 

Seasonal Forest 2, Savanna 

Woodland  

(Cerrado stricto sensu) 3, and 

Grassland formations 3.  

1 Anthropic use; 2 Forms of occupation related to the Caatinga biome; 3 Forms of occupation related to the  

Cerrado biome. 

The water class necessitates specific sampling. Water is present along the São Francisco River, which 

has small reservoirs and an average width of approximately 600 meters. The detection of these features 

is strongly influenced by the spatial resolution of the MODIS images since most of the pixels are spectral 

mixtures with other targets. Therefore, reference samples at the class edges may include a predominance 

of other targets and generate an overestimation classification where the water class overlaps with areas 

of other targets. However, a sampling strategy that considers only the restricted areas in the polygon 

interior, i.e., the pixels within a homogenous block, can lead to an underestimation of the target area. 

When the water class is restricted to the study area, we avoid collecting edge sites for the water class. 

The MNF transform is a method for both removing noise and compressing the image data into a small 

group of signal components [61]. The MNF transform is a procedure similar to principal component 

analysis, and it consists of a linear transformation that maximizes the signal-to-noise ratio to rank order 

the images, i.e., according to image quality. This procedure is sufficient for reducing data redundancy 

from hyperspectral images [61], aerial gamma-ray survey data [63], radar datasets [64], and a time series 

of remote-sensing data [47]. Thus, the MNF is an efficient way to identify a subspace with reduced 

dimensionality and enable an appropriate selection of reference data. In MNF space, the input data are 

divided into two parts: one part is associated with the signal components, and the other part is associated 



Remote Sens. 2015, 7 12169 

 

 

with the noise components. If we consider only the signal components, the data size decreases 

drastically. Identification of signal components considers the evaluation of image quality and the 

eigenvalues plot. Low eigenvalues contain little information and concentrate the noise-dominated 

components. In contrast, large eigenvalues are associated with spatially coherent images and concentrate 

the signal-dominated components. In this paper, we use the MNF transformation in two different ways: 

(a) to identify the best temporal signatures in each sample, and (b) over the entire image in order to 

obtain a different type of input data for classification (i.e., in addition to the temporal data we also used 

the MNF signal components as input data in the classification). 

After we completed the MNF transformation for each initial sample, its points were distributed in the 

n-dimensional visualizer of the environment for the visualization of images (ENVI) considering the first 

three MNF components to be the axes of the three-dimensional visualization [58,60]. Normally, the point 

cloud of the initial sample has a simple geometrical configuration (simplex) such as the triangle or 

tetrahedron where the vertices are the endmembers [58,60]. In the present case, the point cloud of the 

sampled data exhibits a triangular shape in which the three vertices are adopted as subsamples for 

classification. Additional information about endmember detection using the convex geometry is 

available in the literature [65–69]. The classification procedure used the average temporal curves of the 

subsamples considering both MODIS-NDVI time-series data and the MNF signal component from the 

entire image (Figure 3). The image classification that employed the MNF signal components was 

intended to not only reduce noise but also yield a greater distinction among classes. In this algorithm, 

the three temporal curves for the same class are classified independently and generate three different 

subclasses that are then merged into the same class after the map is obtained. This simple methodology 

allows us to consider different temporal curves for the same class, which yields a significant 

improvement in the time-series classification.  

3.4.2. Distance and Similarity Measures 

The similarity measures most frequently used in spectral classification include the cosine correlation 

adopted in the SAM [70] and the Pearson’s correlation coefficient adopted in the SCM [71]; the primary 

distance measure is the ED used in the minimum distance. The spectral measures yield different 

information about the target, which justifies conducting testing in order to determine the most 

appropriate procedure for a particular data type or target [72,73]. In this work, we test the similarity and 

distance measures for time-series image classification. 

The SAM method calculates the angle (expressed in radians: 0–π) formed between the temporal 

signature present in the pixel “X” and the reference “Y”, which can be described by the  

following equation [70]: 

SAM =  α =  COS−1  
∑ XiYi

N
i = 0

√∑ (Xi)
2N

i = 0 ∑ (Y)2N
i = 0

 
(2) 

The variable “I” corresponds to the temporal band, ranging from one to the number of temporal bands 

“N”. The higher the similarity between the temporal curves, the smaller the angle value. The SAM is 

unable to detect anti-correlated data and is invariant to bias factors. 
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The SCM is a modification of the SAM method and is invariant to the bias and gain factors; it can be 

used to detect anti-correlated data. SCM values range from −1 to 1; 1 implies a maximum correlation,  

0 implies completely uncorrelated values, and −1 implies that the values are perfect opposites. The major 

difference between the correlation methods is that SAM uses only values for X and Y; SCM uses data 

centered by the means “X” and “Y” [71]: 

SCM =  
∑ (Xi  −  X̅)(Yi  −  Y̅)i = N

i = 1

√∑ (Xi  −  X̅)2 ∑ (Yi  −  Y̅)2i = N
i = 1

i = N
i = 1

 
(3) 

The ED is a measure that is sensitive to the bias (additive) factor and gain (multiplicative) factor. The 

shorter the distance, the greater the likelihood that the temporal signature belongs to the reference group. 

The ED can be described by the equation: 

ED =  √ ∑ (Xi  −  Yi)
2

i = N

i = 1

 (4) 

3.5. Support Vector Machine 

SVMs [74] are a group of methods for supervised non-parametric statistical learning that constitute a 

powerful technique for general classification (pattern recognition) and regression (function 

approximation) problems with a perceptive model representation [75,76]. SVMs aim to generate a 

training data model that yields the target class only based on its attributes. Training vectors are mapped 

into a higher-dimensional space by a kernel function that describes a hyperplane, which consists of an 

optimal separation of the dataset into discrete classes according to the training samples. The four most 

widely used kernel functions are linear, polynomial, RBF, and sigmoid [77,78]. Table 3 lists the 

mathematical equations of these kernel functions. The choice of kernel function and its parameters are 

crucial factors for obtaining good results. The SVM learning process establishes what is known from the 

minimization of structural risk, thereby reducing the classification error on unseen data without prior 

assumptions of the probability distribution of the data [79]. On the other hand, statistical classification 

methods assume the data distribution a priori.  

Table 3. Mathematical equations of the most widely used kernel functions (“” is the gamma 

term, “d” is the polynomial degree term, and “r” is the bias term).  

Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗)  =  𝑥𝑖
𝑇𝑥𝑗 

𝐾(𝑥𝑖 , 𝑥𝑗)  

=  (𝑥𝑖
𝑇𝑥𝑗 +  𝑟)𝑑 ,  >  0 

𝐾(𝑥𝑖 , 𝑥𝑗)  

= 𝑒𝑥𝑝 ( − ‖𝑥𝑖 − 𝑥𝑗‖
2

) ,

 >  0 

𝐾(𝑥𝑖 , 𝑥𝑗)  

=  tanh (𝑥𝑖
𝑇𝑥𝑗  +  𝑟),

 >  0 

In the remote sensing field, Mountrakis et al. [79] provide a review of the use of SVM in image 

processing for remotely sensed data. These authors identify a wide range of application domains and 

sensors. Carrão et al. [80] investigate an arrangement of spectral bands and dates from MODIS data to 
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land cover classification using the SVM method. Vuolo and Atzberger [81] apply the least squares SVM 

algorithm to NDVI-MODIS time series for land-cover mapping and achieved good results. 

Here, we tested the SVM method considering the four major kernel functions (linear, polynomial, 

RBF, and sigmoid). We employed the ENVI program based on the LIBSVM library [82]. Our strategy 

for collecting training samples differed from strategies adopted for the spectral classifiers (SAM, SCM, 

and minimum distance). The representation of each class requires extensive sampling in order to obtain 

the variations in the temporal curves. Therefore, a sampling must contain a group of pixels  

(e.g., constituting a field plot) belonging to a land-cover/land-use class that contains the diversity of 

temporal curves from several areas of the image. We collected 200 training samples for each class. Our 

sampling assumed a uniform spatial distribution for each class and considered the same information 

from the images and maps described for the spectral classification. In the specific case of the water class, 

the training samples were derived from the samples used in the spectral classifications. These water 

samples were located preferably in the inner class to avoid pixels with a high percentage of spectral 

mixture. By adopting these samples, we avoid the reported problems of an overestimated classification for 

the water class. 

3.6. Accuracy Analysis 

We used the overall accuracy and the Kappa coefficient for the accuracy assessment of land-use or 

land-cover classifications [83]. Our calculations of these accuracy indices for the different 

methodological approaches assumed 1600 ground-truth points (validation sites) collected from a 

systematic, stratified sampling design. Stratified sampling by mapped land-cover classes guaranteed a 

specified sample size (200 pixels) for each mapped class. This sampling approach required a previous 

map from the visual classification of Landsat Thematic Mapper (TM) data on 12 September 2011 

(Figure 4a), which was updated for 2013 using high-resolution data from Google Earth and fieldwork 

observations (Figure 4b). The sampling points were extracted according to land cover classes and their 

geographical locations, which produced a spatially well-distributed sample. The validation dataset is 

distinct from the data used in the selection of the reference temporal signatures. The areas of land-use 

change were not considered in the accuracy analysis. The overall accuracy is the ratio of the number of 

pixels correctly classified by the total number of pixels, and the Kappa index is a measure described by 

the following equation:  

K =  
N ∑ xii

r
i = l − ∑ xi+x+i

r
i = l

 N2  −  ∑ xi+x+i
r
i = l

 (5) 

where “r” is the number of rows in the error matrix, “xii” is the number of observations in row “i” and 

column “I”, “xi+” and “x + I” are the marginal totals in row “i” and column “I”, respectively, and “N” is 

the total number of observations. 
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Figure 4. (a) Landsat-5 TM image from 12 September 2011, RGB color composite of TM 

bands 4 (red), 5 (green), and 3 (blue) and (b) high-resolution images from Google Earth  

from 2013. 

4. Results 

4.1. Noise Reduction 

The combination of the median filter and S-G exhibited good results for the noise elimination of the 

MODIS-NDVI time series. The median filter minimized the impulse noise from, for example, cloud 

cover or shade. However, the median filter can generate some linear levels due to the repetition of values. 

We found that S-G with a window size of nine [84] refined the result obtained by the median filter and 

smoothed the temporal profile without interfering with the maximum and minimum values. This 

methodology accordingly ensured data integrity. Figure 5 shows the results from the application of the 

filtering techniques in the time series. 

4.2. Classification using Distance and Similarity Measures 

Reference Temporal Signatures 

The temporal signatures of vegetation have the lowest NDVI values during the dry season  

(May through October) and the highest values in the rainy season (November through April). The 

formations with more dense canopies in the Caatinga domain (deciduous seasonal forest and  

semi-deciduous seasonal forest) have NDVI values of 0.80 ± 0.03 during the rainy season. The lower 
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NDVI values of the deciduous forest (0.33 ± 0.02) are due to loss of leaves. This vegetation has a quick 

recovery with the rainy season, which is more significant than the shrub-grasslands [85] (Figure 6a). The 

lower NDVI values for the semi-deciduous forests are above 0.44 (Figure 6b). This vegetation type is 

photosynthetically active throughout the year, even during periods of lower rainfall. The savanna 

woodland (Cerrado sensu stricto) has a maximum NDVI value of 0.70 (Figure 6c), slightly lower than 

the arboreal formations of the Caatinga. The savanna fields (grassland formations) exhibit mixed grasses 

and shrubs, which creates difficulties in the subtype identification [41]. Therefore, the distinction of 

grassland types (savanna grassland, shrub savanna, and rupestrian fields) was not possible based on 

temporal curves, and these different grassland types are considered to be a single class. The herbaceous 

scrub vegetation exhibited NDVI values ranging from 0.27–0.58 (Figure 6d); the woody-herbaceous 

vegetation exhibited NDVI values ranging from 0.35–0.70 (Figure 6c). 

 

Figure 5. MODIS-NDVI time series, (A) original data with noise, (B) time profile softened 

by the median filter, and (C) refined by the S-G. 

Grassland formations are significantly affected by water deficiency and accordingly exhibited the 

lowest NDVI values among all of the native vegetation that we studied. However, the phenological 

behavior between native grasslands and pasture, predominantly of the genus Brachiaria [33], can be 

differentiated. The pasture responds more quickly to the beginning of the rainy season and attains 

maximum photosynthetic activity (an NDVI value of 0.71) over approximately 8 days (Figure 6e). In 

the native grasslands, maximum photosynthetic activity occurs after approximately 24 days of the start 

of the rainy season. Furthermore, pastures exhibit higher NDVI than native grasslands for all of the 

curves that we analyzed. 
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Figure 6. Temporal signatures from the MODIS-NDVI time series and the MNF signal 

components: (a) deciduous seasonal forest, (b) semi-deciduous seasonal forest, (c) savanna 

woodland (Cerrado stricto sensu), (d) grassland formations, (e) pasture, (f) annual crops, and 

(g) perennial crops. 
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Differentiating among temporal signatures for all types of short-cycle crops was not possible. Distinct 

and simultaneous short-cycle crops may be found in the same locations in different configurations. 

However, annual-cycle crops are individualized even when various species are grown simultaneously. 

These cultures maintained a maximum NDVI level of 0.70 for a period of 180 days and exhibited similar 

minimum values (0.31 ± 0.01) (Figure 6f). This finding indicates a cyclical regularity of agricultural 

practices, nutritional conditions, and water availability, which does not occur as rigorously in nature. 

Perennial crops are deciduous with maximum NDVI values similar to those of the semi-deciduous forest 

(0.80 ± 0.03) (Figure 6g). The distinction between these types of vegetation is clearest in their minimum 

NDVI values: the forest exhibits a range of 0.44–0.60, and the perennial crop has more restricted range 

of 0.54–0.57. Crop performance compared with native vegetation is motivated by agricultural techniques 

that standardize the soil fertility, the number of species per unit area, and the availability of water. 

4.3. Classification of the MODIS-NDVI Time Series and MNF Signal Components 

We evaluated different classifications of land use and land cover considering several combinations of 

procedures. Table 4 lists the accuracy indices for the different classifications obtained by arrangements of 

the following attributes: (a) the number of reference curves by class (single or multiple), (b) the number 

of land use/land cover classes (six or eight), (c) input data (NDVI-MODIS time series or MNF signal 

components), and (d) classification measures (SAM, SCM, or ED).  

The use of multiple temporal curves in the classification yielded better accuracy than the use of a 

single temporal curve in all cases (Table 4). Figure 7 shows the results from one or three reference curves 

per class compared with the NDVI-MODIS images, MNF signal components, and Landsat-TM. 

Furthermore, the increase in the number of land use/land cover classes (from six to eight) results in a 

decrease in accuracy when we take into account all classification measures and input data (Table 4). 

The best result was the combination that employed multiple curves, used ED on the MODIS-NDVI 

time series, and considered six classes of land use/land cover. We obtained an overall accuracy of 

79.06% and a Kappa coefficient of 0.74, which represents a very good classification. The same 

combination using the MNF signal components also achieved a very good classification with an overall 

accuracy of 75.18% and a Kappa coefficient of 0.69.  

The SCM method from the eight classes and a single signature yielded the poorest result for both the 

NDVI-MODIS data (overall accuracy of 45.81% and a Kappa coefficient of 0.38) and MNF signal 

components (overall accuracy of 57.62% and a Kappa coefficient of 0.51). SAM attained slightly better 

values considering the same configuration for the NDVI-MODIS data (overall accuracy of 50.43% and a 

Kappa coefficient of 0.43) and the MNF signal components (overall accuracy of 57.87% and a Kappa 

coefficient of 0.51). This poorer performance for the similarity measures was expected due to the 

interference of the seasonal behavior of vegetation, which yields similar behavior for the targets of vegetation 

after canceling the effects of gain and offset [86]. Despite the classes of semi-deciduous forest, savanna 

woodland, and savanna fields having distinct NDVI values, their temporal curves have similar shapes, which 

makes it difficult to distinguish these classes using similarity measures (Figures 6b–d). 
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Table 4. Accuracy assessment for the classifications using two types of input data  

(NDVI-MODIS time series and MNF signal components), three classification measures 

(SAM, SCM and ED), number of curves by class (single or multiple), and the two 

classifications with six or eight classes. 

One Temporal Signature per Class 

Method Classes 
Overall Accuracy Kappa Coefficient 

NDVI-MODIS MNF Signal 

Components 

NDVI-MODIS MNF Signal 

Components 
Euclidian Distance Measure 

6 73.50 72.43 0.67 0.66 

8 67.25 64.75 0.62 0.59 

Spectral Angle Mapper 
6 57.68 65.93 0.47 0.58 

8 50.43 57.87 0.43 0.51 

Spectral Correlation Mapper  
6 52.75 65.31 0.42 0.57 

8 45.81 57.62 0.38 0.51 

Three Temporal Signatures per Class 

Method Classes 
Overall Accuracy Kappa Coefficient 

NDVI-MODIS Signal MNF NDVI-MODIS Signal MNF 

Euclidian Distance Measure 
6 79.06 75.18 0.74 0.69 

8 70.56 68.37 0.66 0.63 

Spectral Angle Mapper 
6 60.81 68.43 0.51 0.61 

8 54.68 61.37 0.48 0.55 

Spectral Correlation Mapper  
6 55.25 66.18 0.45 0.58 

8 45.18 60.06 0.37 0.54 

Figure 8 illustrates the classified images using the distance and similarity measures  

(SAM, SCM, and ED) and the two data types (NDVI-MODIS and MNF signal components). These 

maps consider the eight classes described in Table 2. All of the classified images detected the dominance 

of the Cerrado in the eastern part of the studied area and the Caatinga in the western part. Agricultural 

activities also had a regional division; annual cycle crops were found in the northwest, and perennial 

crops were found in the south central and eastern part of the study area largely in the classifications of 

the ED algorithm. 

Table 5 lists the confusion matrices for the ED classifications with eight classes considering the 

MODIS-NDVI data and the MNF signal components. The Cerrado classes (savanna woodland and 

grasslands) demonstrated the highest omission and commission error rates in both ED classifications. 

These vegetation types exhibited a strong overlap with one other. The continuous variations between 

shrub and herbaceous vegetation generate a mixed behavior that hinders the detection of Cerrado 

subtypes. Merging the Cerrado classes (savanna woodland and grassland formations) yielded a 

significant improvement in classification performance.  

The deciduous formation exhibited the best accuracy among all of the native vegetation types that we 

evaluated (Table 4). Unlike the Cerrado, the deciduous forest presents temporal signatures with specific 

shapes and only few variations (Figure 6a), which enables a relative improvement in accuracy regardless 

of the algorithm that we adopt. Classification errors occurred near fragment edges where spectral mixing 

was present. However, the semi-deciduous forest did not achieve the accuracy of the deciduous forest, 

causing confusion with the savanna types and permanent crops (Table 4); the forest was largely located 
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in the southeastern part of the study area. The pasture class was characterized by lower omission and 

commission error rates. 

 

Figure 7. Classified maps built from (a) one or (b) three temporal curves and  

holding the remaining factors constant: ED, six classes (land use and land cover), and  

NDVI-MODIS input data. (c) RGB color composite of NDVI-MODIS images  

(12/27/2011–04/30/2012–09/05/2012). (d) MNF (components 1-2-4 as RGB), and (e) 

Landsat-TM (bands 4-5-3 as RGB). 
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Figure 8. Classified images considering two types of input data (NDVI-MODIS time series 

and MNF signal components), three types of similarity and distance measures  

(SAM, SCM, and ED), and the more specific set of use classes (eight classes). 
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Table 5. Confusion matrices for the classifications based on the ED and eight mapping 

classes from the MODIS-NDVI data and MNF-signal components. 

MODIS-NDVI Data 

Class Water 
Annual 

Crops 

Grassland 

Formations 

Savanna 

Woodland 
Deciduous Pasture 

Perennial 

Crops 
Semi-Deciduous Total 

Water 177 0 0 0 0 0 0 0 177 

Annual Crops 1 110 11 9 3 7 2 1 144 

Grassland 

Formations 
17 23 90 64 1 11 2 2 210 

Savanna Woodland 0 23 69 74 1 0 11 14 192 

Deciduous 0 26 8 10 181 3 0 1 229 

Pasture 5 13 6 1 12 179 0 0 216 

Perennial Crops 0 1 5 8 0 0 158 22 194 

Semi-deciduous 0 4 11 34 2 0 27 160 238 

Total 200 200 200 200 200 200 200 200 1600 

MNF-Signal Components 

Class Water 
Annual 

Crops 

Grassland 

Formations 

Savanna 

Woodland 
Deciduous Pasture 

Perennial 

Crops 
Semi-Deciduous Total 

Water 171 0 0 0 0 0 0 0 171 

Annual Crops 1 112 10 10 2 0 0 4 139 

Grassland 

Formations 
17 11 105 60 1 4 0 1 199 

Savanna Woodland 2 12 40 60 1 1 6 29 151 

Deciduous 0 20 5 11 155 8 0 4 203 

Pasture 9 25 8 5 41 187 0 0 275 

Perennial Crops 0 9 11 15 0 0 165 23 223 

Semi-deciduous 0 11 21 39 0 0 29 139 239 

Total 200 200 200 200 200 200 200 200 1600 

The distinction between annual and perennial crops occurred only in monoculture areas over large 

areas in which prevailing crops were irrigated via a center pivot. We found that it was difficult to separate 

crop types on small farms with intercropping or small-scale monocultures. In addition, the dynamic and 

multiple uses of land resulted in confusion in the image classification. The confusion matrix regarding 

the ED reveals some mistakes for the water class (Table 5). Water bodies are contained in rivers and 

small reservoirs, which are susceptible to interference by spectral mixture; this interference hampers 

their detection and causes detection errors. 

The accuracies of the SAM and SCM methods improve significantly with the use of MNF signal 

components and begin to approach those of the ED results [44,86]. However, the SAM and SCM 

classification of the MNF signal fraction overestimated the area of water bodies relative to pastures. 

Although the MNF signal-component curves for these two classes have different absolute values, the 

resulting shapes are similar (Figure 9). Therefore, the gain and offset cancellation through the similarity 

measure results in a normalization, which prevents the two classes from being perfectly disentangled. 

This example highlights the difficulties of working in MNF space, which can generate similar curves 

that are not present in the original data. Despite the mistakes in the water bodies, the SAM and SCM 
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classifications using the MNF signal components as input data yield a higher accuracy for the other 

classes, which justifies their higher values of a Kappa coefficient and overall accuracy. The ED 

classification accuracy using the MNF signal fraction produced a worse result. 

 

Figure 9. MNF signal-component curve for the water (green line) and pasture (red line) 

classes, which are characterized by different values and similar shapes. 

4.4. Classification Using SVMs 

We evaluated different SVM classifications considering main kernel functions (linear, polynomial, 

RBF, and sigmoid), two input data types (NDVI-MODIS time series and MNF signal components), and 

the number of classes (six and eight). The parameters that we used included a gamma term of 0.1 for all 

kernel types except the linear kernel and a bias term of 1 for the polynomial and sigmoid kernels. Table 6 

lists the accuracy indices for the different SVM classifications. In the majority of tests, the SVM 

classifications yielded better results than the classifications using distance and similarity measures. In 

terms of the spectral classifiers, SVM showed a smaller difference in accuracy values between the 

classifications with six and eight classes. The results using NDVI-MODIS time series or MNF signal 

components also exhibited similar values. The only exceptions were the linear and sigmoid kernels, in 

which the use of the MNF resulted in a significant improvement in the classification. 

Table 6. Accuracy assessment for SVM classifications considering two types of input data 

(NDVI-MODIS time series and MNF signal components), main kernel function (linear, 

polynomial, RBF, and sigmoid), and six and eight classes. 

Method Classes 

Overall Accuracy Kappa Coefficient 

NDVI-MODIS 
MNF Signal 

Components 
NDVI-MODIS 

MNF Signal 

Components 

Linear 
6 78.81 79.00 0.739 0.742 

8 72.43 73.00 0.685 0.691 

Polynomial 2  
6 80.18 78.93 0.756 0.741 

8 73.87 72.93 0.701 0.690 

Polynomial 3 
6 80.12 79.37 0.755 0.746 

8 73.87 73.18 0.701 0.693 

Polynomial 4 
6 80.75 79.81 0.763 0.752 

8 74.37 73.75 0.707 0.700 
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Table 6. Cont. 

Method Classes 

Overall Accuracy Kappa Coefficient 

NDVI-MODIS 
MNF Signal 

Components 
NDVI-MODIS 

MNF Signal 

Components 

Polynomial 5 
6 80.62 80.06 0.762 0.755 

8 74.43 74.12 0.707 0.704 

Polynomial 6 
6 80.12 80.56 0.755 0.761 

8 74.12 74.56 0.704 0.709 

RBF 
6 80.43 80.06 0.759 0.755 

8 74.25 73.93 0.705 0.702 

Sigmoid 
6 65.68 78.18 0.574 0.732 

8 58.12 72.37 0.521 0.684 

 

Figure 10. SVM classification maps considering two types of input data (NDVI-MODIS 

time series and MNF signal components) and three types of polynomial kernel functions 

(fourth, fifth, and sixth degrees). 
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Figure 11. Comparison between the classifications considering six classes: (a) SVM  

(fourth-degree polynomial kernel) and (b) ED. 

The best result was the SVM classifier using a fourth-degree polynomial kernel in the NDVI-MODIS 

data with six classes, which achieved an overall accuracy of 80.75% and a Kappa coefficient of  

0.765 (Figure 10). The same kernel function using the MNF signal components time series also achieved 

a very good classification with an overall accuracy of 79.81% and a Kappa coefficient of 0.752. The 

remaining polynomial and RBF kernels also exhibited very similar accuracy values. 

Figure 11 compares the two classification using SVM (a fourth-degree polynomial kernel) and 

spectral measurements (ED), which exhibit high visual similarity. 

5. Discussion 

A wide range of densities of woody and herbaceous layers characterizes the vegetation types in the 

Brazilian Cerrado-Caatinga boundary. The vegetation changes within the Cerrado and Caatinga biomes 

and along their borders. As a result, an accurate classification using coarse-resolution satellite imagery 

is challenging. Spectrally separating the vegetation from a single date is difficult due to large seasonal 

variabilities. A significant improvement is achieved using temporal information that describes different 

phenological behaviors. We have used temporal trajectories to characterize and classify different 

vegetation and land-use areas.  

We made numerous comparisons in order to identify the optimal image processing for land-cover and 

land-use mapping in our study region. A characteristic of the phenological classification should consider 

the different responses to the same type of vegetation caused by environmental variations. In semiarid 

regions, natural climatic variability results in isolated events such as rain, wind, and fire over  

distances [87–89]. This variability in physical events is responsible for different behaviors within the 

same vegetation type, such as regeneration, vegetative growth, flowering, fruiting, and seed dispersal.  
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In the spectral classifiers, the classification efficiency increases when more than a single temporal 

signature is applied to describe each land-use/land-cover class. The number of temporal signatures per 

class should correspond to the number of different temporal patterns described by the analyzed classes. 

In this approach, the endmember-detection method, which is widely used in hyperspectral imaging, can 

be adapted for time-series data. Among the classification measures, the ED exhibited the best 

performance. Different forms of vegetation present seasonal, cyclical behavior that varies largely in 

magnitude (gain and offset factors). The similarity metrics operate exactly in the curve shapes 

(nullification of magnitude), resulting in smaller differences in the temporal curves and consequently 

reducing the effectiveness of the classification. These inherent limitations of SCM and SAM make these 

techniques less suitable than ED. The MNF transform results in significant data reduction, which yields 

only approximately 10% of the original data. The use of MNF signal components instead of NDVI-

MODIS data did not improve the classification accuracy of the ED. However, these input data caused a 

significant change when used with the similarity metrics (SCM and SAM) because they removed the 

redundancies between the curves and the cyclical behavior. In this case, the elimination of the gain and 

offset factors did not produce similar curves, thereby improving the efficiency of similarity metrics. 

Classification using distance and similarity measures makes it possible to establish a temporal signature 

library that can be used in other geographic areas and at other time periods. 

The classifications using SVM yielded the most accurate results. A comparison between the different 

kernel functions demonstrated that the fourth-order polynomial function exhibited the best result. The 

accuracy values of the different functions and input data (NDVI-MODIS data and MNF signal 

components) were very similar. The lowest accuracy values were recovered using the sigmoid function. 

Therefore, this method preserves efficiency while considering different temporal behaviors for the  

same target. 

The separation between annual and perennial crops has limitations, especially in areas with family 

farming. This agricultural occupation includes multiple activities and high dynamics in smaller territorial 

extensions, which affects detection quality using MODIS data [24]. Another constraint is to differentiate 

the savanna types because they consist of a nearly continuous grass layer overlaid by a discontinuous 

tree layer. The boundaries between the savanna physiognomies are typically gradual and fragmented on 

the landscape, which impedes proper detection from the 250-meter-resolution images due to their high 

spectral mixture. Other authors [90,91], even combining MODIS time-series and climate data 

(precipitation, humidity, soil moisture, light intensity, and day length), have already noted this difficulty. 

The application of high spatial and temporal resolution images such as the RapidEye can be a possible 

solution to offer accurate detection [92]. The water class, which possesses a narrow lateral extension, 

presents spectral mixture interference that affects the detection of bodies in this class. 

Future studies should test other classifiers such as the K-nearest neighbor [93] and Random  

Forest [94] algorithm in order to achieve greater accuracy. An additional test that can be performed 

involves evaluating the time-series interval for phenological classification. Alcântara et al. [95] 

recommend the inclusion of at least two years of MODIS-NDVI data to conduct abandoned agriculture 

mapping. Huttich et al. [23,96] suggest improving the accuracy of the native vegetation classification in 

savanna environments by using vegetation-index time series spanning more than two years with a 

temporal resolution of fewer than 16 days. Depending on the application, the analysis of time series can 



Remote Sens. 2015, 7 12184 

 

 

also require shorter time-series intervals (e.g., seasonal, monthly, or daily) as seen in studies of burned 

areas [97–99] or change detection [100,101]. 

6. Conclusions 

We have defined a method for native and exotic vegetation mapping in the transition region of  

semi-arid ecosystems (Cerrado-Caatinga) by comparing different ways of conducting time-series 

processing. Spatial variations from the climatic factors in semi-arid environments cause a gap between 

the phenological curves of the same vegetation. Therefore, slightly different temporal signatures can 

represent the same target. The different factors that can compose the classification highlight the 

importance of studying dynamics in dry savanna ecosystems. Kappa coefficient statistics for 

classification sets range between 0.38 and 0.76. Our comparative study of classification methods 

demonstrated that there is a relationship between the accuracy and complexity of the number of classes. 

Savannah woodland and grassland formations are difficult to separate, and their unification into a single 

class significantly improves the classification accuracy. 

In the spectral classifier, improved accuracies were achieved by integrating the following parameters: 

ED, using more than one reference curve per class, and the adoption of six mapping classes (water, 

farming, pasture, deciduous forest, semi-deciduous seasonal forest, and Cerrado). This configuration 

yielded an overall accuracy of 79% and a Kappa coefficient of 0.74. The similarity measures yielded 

poorer performance for the NDVI vegetation time series because of the strong similarity of the curve 

shapes that followed the climate seasonal variation.  

SVMs are suitable for classifying time series in which a target can be characterized by different 

curves. Our comparison of the different kernel functions yielded very similar results. The best result was 

obtained using the fourth-order polynomial kernel.  

The limitation of the spatial resolution of the MODIS sensor hinders the identification of arboreal and 

herbaceous physiognomies and activities on small family farms. Future work using other time intervals 

and images with a periodicity of fewer than 8 days may yield better results. Furthermore, other classifiers 

such as K-nearest neighbor and Random Forest should be tested for time series classification in the 

Brazilian Cerrado-Caatinga boundary.  
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