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Abstract: Previous research studies have demonstrated that the relationship between remote 

sensing-derived parameters and aboveground biomass (AGB) could vary across different 

species types. However, there are few studies that calibrate reliable statistical models for 

mangrove AGB. This study quantifies the differences of accuracy in AGB estimation 

between the results obtained with and without the consideration of species types using 

Worldview-2 images and field surveys. A Back Propagation Artificial Neural Network (BP 

ANN) based model is developed for the accurate estimation of uneven-aged and dense 

mangrove forest biomass. The contributions of the input variables are further quantified 

using a “Weights” method based on BP ANN model. Two types of mangrove species, 

Sonneratia apetala (S. apetala) and Kandelia candel (K. candel), are examined in this study. 

Results show that the species type information is the most important variable for AGB 

estimation, and the red edge band and the associated vegetation indices from WorldView-2 

images are more sensitive to mangrove AGB than other bands and vegetation indices. The 

RMSE of biomass estimation at the incorporation of species as a dummy variable is 19.17% 

OPEN ACCESS 



Remote Sens. 2015, 7 12193 

 

 

lower than that of the mixed species level. The results demonstrate that species type 

information obtained from the WorldView-2 images can significantly improve of the 

accuracy of the biomass estimation. 

Keywords: mangrove; vegetation biomass; species level; variable importance; BP ANN; 

WorldView-2 

 

1. Introduction 

Mangrove forests have important ecological, economic, and social benefits [1]. These coastal 

ecosystems can reach very high primary productivity, and the high deposition rate and low decomposition 

rate of mangrove sediments suggest that mangrove ecosystems are important sources of global CO2 

absorption and therefore play an important role in mitigating global climate change [2,3]. Characteristics 

such as high carbon reserves, sensitivity to land use change, and huge ecological service values have made 

mangrove ecosystems a key part of strategies such as the United Nation’s Reduce Emissions from 

Deforestation and Forest Degradation and to Enhance Carbon Stocks (REDD+) Program [4] as well as the 

payments for ecosystem services (PES) [5] initiatives that are emerging in many countries. Forest 

biomass is a valid parameter for predicting yield and reflecting the characteristic dynamics and health of 

forest stands [6]. The structure and function of mangrove ecosystems can be elucidated by a quantitative 

study of the biomass of mangrove vegetation. Such analysis is conducive to the analysis of the 

distribution patterns of carbon reserves in tropical and subtropical coastal zones, and has great potential 

for evaluating the relationships between mangrove ecosystem productivity and global carbon cycling. 

Moreover, it also promotes the implementation of REDD+ and PES strategies, thus having great practical 

significance in developing domestic carbon trading markets and guiding mangrove-related planning and 

management [7,8]. 

China’s Ocean 21th Agenda Action Plan reports that the over 250,000 ha of mangrove forest that existed 

historically in China had been reduced by 68.7% by the end of 1990s because of development, reclamation 

of intertidal zones, and deforestation for cultivation [9]. Currently, more than half of the remaining mangrove 

forests in China are located in Guangdong Province. Since the report was issued, artificial planting has been 

implemented to restore and rehabilitate mangrove forests [10]. A recent study focused on the restorative 

effects of mangrove forests through artificial planting and its temporal changes [11]. However, a 

comprehensive examination of the mangrove forest recovery process is still lacking and the effects of 

these efforts require scientific and systemic study [12]. Studying the biomass distribution of mangrove 

forests provides an opportunity to address many of the mangrove restoration problems (such as selection 

of forest seeds) and could provide insights into the dynamics of vegetation recovery. 

Mangrove forests are not easily accessible to humans because of their growing environment in the 

intertidal zone [13]. Therefore, mangrove biomass estimation by means of field investigation combined 

with remotely sensed data is considered the ideal and practical method [14]. Remote sensing-based 

models commonly utilize field survey data (diameter at breast height (DBH), tree height, and density) 

and allometric equations to acquire biomass estimations for developing biomass models [15,16]. Remote 

sensing models for estimating mangrove vegetation biomass have been established in LandSat [17], 
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IKONOS [18], QuickBird [19], SAR [20], Rardarsat [21], SRTM [22] (coupled with ICEsat/GLAS, 

Landsat ETM+) and LiDAR [23] data, etc. Optical images are the most widely used and available sensor 

types, which is important for AGB estimations. 

Different mangrove species have different canopy densities. As a result, remote sensing-based 

mangrove biomass study, different mangrove species exhibit significant spectral signature differences 

in the electromagnetic spectrum independent of AGB [21,24]. In fact, biomass inversion processes based 

on traditional optical satellite data mainly consider the vegetation spectrum, such as normalized 

difference vegetation index (NDVI) or simple ratio index (SRI), etc. Since optical satellite data cannot 

obtain tree height as a parameter of biomass estimation, it is possible that some shrub or herbaceous 

species with dense canopies (such as Acanthus ilicifolius (A. ilicifolius), Aegiceras corniculatum  

(A. corniculatum) and Spartina alterniflora (S. alterniflora)) are identified as having higher biomass 

than tree species [21]. While an optical remote sensing model can be used to estimate AGB, such model 

for mixed species AGB assessment may lead to errors due to species dependent differences in the canopy 

density to AGB ratios. Therefore, detailed and accurate estimation of mangrove AGB based on optical 

sensors is still a challenge. 

It has been emphasized that the vegetation types should be considered for accurate AGB estimation [25]. 

However research on biomass estimation at the individual species type is rare. Chen et al. [26] used  

mixed-effects modeling to integrate conifer species for biomass mapping with airborne LiDAR and aerial 

photography, and concluded that the incorporation of species types reduced RMSE by 10%. Chadwick [23] 

integrated LiDAR and IKONOS multispectral imagery for mapping red and black mangrove species and 

their biomass. More studies are needed to further investigate the impact of species level information on 

biomass estimation. 

The saturation problem associated with the use of vegetation indices-derived optical images for 

biomass estimation has been demonstrated, especially for high-density mangrove forests [27]. Compared 

with other traditional vegetation indices-derived optical images, the vegetation indices computed from 

red-edge band are more sensitive at certain biomass densities and ranges [27,28]. There exist some 

attempts to map mangrove species and estimate wetland biomass with Worldview-2 images [29,30]. 

Mutanga et al. analyzed the red-edge band derived from hyperspectral data and WorldView-2 imagery 

and determined that they can be used to produce more accurate biomass estimation than the traditional 

vegetation indices for herbaceous vegetation [27,31,32]. However, whether the red-edge derived from 

WorldView-2 images can be used to improve sensitivity to biomass in high density tree canopies (i.e., 

mangrove forests) is still uncertain. The potential of applying multispectral high-resolution Worldview-2 

images to mangrove biomass still need further examination.  

There are various statistical models used in developing remote sensing-based models. Statistical 

models used in estimation of mangrove biomass mainly include multiple linear regression (MLR) [33] 

and machine learning [34] such as classification and regression trees (CART), support vector machines 

(SVM), artificial neural networks (ANN), and random forests (RF). Machine learning has great potential 

for research due to fewer assumptions about the data and process as well as excellent performance in 

recent studies [35]. ANN models possess the advantages of distributed parallel processing, nonlinear 

mapping, adaptive learning, and associative memory, and have been adopted in nonlinear regression 

models. This model achieves high computing efficiency and accurate results for complicated nonlinear 
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functions. In this study, we conducted remote AGB estimation of uneven-aged mangrove forests using 

a Back Propagation Artificial Neural Network (BP ANN) model [36–38]. 

The objective of this study is to explore the effectiveness of Worldview-2 images and develop a 

detailed and accurate remote sensing ABG model in uneven-aged and a high-density mangrove forest in 

consideration of species types using the BP ANN method. The study has also analyzed differences in 

accuracy of biomass estimation between methods that consider different mangrove species and those 

that assess mixed species assemblages. 

2. Materials and Methods  

2.1. Study Area  

Qi’ao Island (22°23′N–22°27′N, 113°36′E–113°39′E) is located in Lingding Bay of the Pearl River 

Estuary, Guangdong Province, China, near eastern Zhuhai [39]. As a typical tropical–subtropical 

wetland ecological system in the Pearl River Estuary, Qi’ao Island is the largest conservation area for 

artificially restored mangroves in China, covering an area of approximately 700 ha [40,41]. Forests 

within this dynamic landscape are characterized by uneven-aged trees and high spatial variability.  

We investigated remote AGB estimation of uneven-aged mangrove forests based on prevalent mature 

and native Kandelia candel (K. candel) and artificially restored Sonneratia apetala (S. apetala). They 

are mainly tree species homogeneously covered by only one of the species in study area. Vegetation 

grades from widespread mature stands of native K. candel located outside the enclosing levee in the high 

tidal zones, to artificially-restored S. apetala stands and smaller trees, shrubs, and herbaceous vegetation 

located progressively closer to the low tidal zones [41,42]. S. apetala and K. candel are the primary 

mangrove species on Qi’ao Island [43]. K. candel is distributed primarily in a small area along a northeast 

to southwest direction, as well as in tall and dense stands in the high tidal zone, and the stand has an age 

of approximately 45 years and tree height of 5.5–7.5 m. S. apetala was first planted in 1999 and is mainly 

distributed in the middle and low tidal zones. The fast-growing trees have increased in height about 1.5 m 

each year [44]. Tree height ranges from 2 m to 18 m. S. apetala generally has an afforestation 

specification of 1.0–2.0 m × 1.5m. The afforestation process has shown a trend of moving from medium 

to the low tidal zones over time. We found a gradient distribution for tree age and AGB from the high 

tidal zones to low tidal zones (Figure 1).  

Beyond that, a large area of S. alterniflora is distributed outside the tidal flat area, which is the 

reconstructed demonstration area for S. alterniflora management. Small amounts of A. ilicifolius, 

Acrostichum aureum (A. aureum), A. corniculatum, Phragmites australis (P. australis) and mangrove 

nurseries also exist. The regional position is shown in Figure 1. 

2.2. Field Investigation and Estimation of Mangrove Vegetation Biomass 

Field investigation for this research was conducted in two periods: 23 December to 27 December 2010 

and 10 January to 15 January 2011. Biomass samples were obtained through random sampling technique 

along almost all of accessible tidal creeks of Dawei Bay, Qi’ao Island, and covered most of the study 

area ensuring all of the biomass variation of tree stage represented. Field data were collected on 91 

rectangular plots (Figure 1), including 68 plots of artificially restored S. apetala and 23 plots of native, 
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mature K. candel with a 10 m × 10 m quadrat in each sample plot. In order to generate regressions for 

the allometric equations, we measured the height using a handheld laser range finder (referred to as laser 

heights with precision of 1m; Trueyard SP-1500H, Trueyard Optical Instruments co.) and diameter at 

breast height (DBH) (1.3 m) of every tree and recorded the number of trees (Figure 2a,b) within each 

plot. This study only considered trees with DBH ≥ 5 cm. GPS (Gamin GPS map 60CS) was used to 

record the longitude and latitude of the quadrat center.  

 

Figure 1. Location, planting sequence, and field sampling sites in the Qi’ao Island 

mangroves overlaid on a Worldview-2 images (band 7, 5, 3 false color combination) dated 

11 November 2010. (Coordinate system: Universal Transverse Mercator Zone 49N, 

WGS84) 

Since mangrove forests are protected in the Nature Reserve, allometric growth equations for  

S. apetala and native K. candel cannot be established by destructive measurements. Qijie Zan et al. 

published allometric growth equations for the exotic species (S. apetala and Sonneratia caseolaris  

(S. caseolaris)) and K. candel from the Pearl River in Shenzhen [45]. Since their study site is only 40 km 
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away from our study site, and both sites are at similar latitudes with comparable environmental settings 

that retain the same mangrove species, it is reasonable to assume that the equations developed in their 

study are applicable to this study without any significant error and uncertainty. Therefore, individual 

tree DBH and height measurements were converted to AGB estimates via allometric equations and then 

summed over the plot. The range of AGB was calculated from their regression equations (Table 1). 

 

Figure 2. Field investigation of mangrove areas: (a) quadrate investigation for mangrove 

species and (b) DBH measurement for S. apetala. 

Table 1. Allometric equations for mangrove forests based on DBH and height referenced 

Qijie Zan et al. [45]. 

Species Tissues Allometric Equations Correlation  

S. apetala 

Foliage lgWlf = −0.756 + 0.4355 lg（DBH2  Height） 0.94 

Branch lgWbr = 0.1590 + 0.3879 lg（DBH2  Height） 0.95 

Trunk lgWst = 0.3067 + 0.3302 lg（DBH2  Height） 0.95 

Bark lgWba = −0.3790 + 0.3559 lg（DBH2  Height） 0.91 

Flowers and fruit lgWfr = −2.3456 + 0.3791 lg（DBH2  Height） 0.97 

K. candel 

Foliage lgWlf = −1.1704 + 0.4855 lg（DBH2  Height） 0.87 

Branch lgWbr = −0.9067 + 0.5762 lg（DBH2  Height） 0.95 

Trunk and bark lgWst+ba = −0.3112 + 0.2542 lg（DBH2  Height） 0.88 

Flowers and fruit lgWfr = −3.1582 + 1.061 lg（DBH2  Height） 0.85 

2.3. Remotely Sensed Data and Processing  

WorldView-2 provides satellite images with eight multispectral bands (Table 2), and has advantages 

over other high spatial-resolution satellite images (i.e., IKONOS, QuickBird, and SPOT5) in terms of 

acquisition, revisit cycles, geometric accuracy, and multispectral bands [46,47]. WorldView-2 is the only 

commercial, high spatial resolution satellite imagery that provides a coastal zone band, a yellow band, a 

red edge band, and a near infrared 2 band. In particular, the red edge band is directly related to 

chlorophyll level, which reflects the growth condition of vegetation. To a certain extent, the red edge 

band is more sensitive to biomass at high densities than other bands such as near infrared band canopies 

(i.e., mangrove forests) [48,49]. The high spatial resolution of WorldView-2 images makes it possible 

to distinguish different mangrove species, which in turn helps improve the accuracy of mangrove 

biomass estimation. The WorldView-2 satellite image data with 2 m multispectral resolution was 

acquired on 11 November 2010. 
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Table 2. Satellite spectrum and spatial resolution parameters of WorldView-2. 

Wavebands Spectral Band Edges Spatial Resolution 

B1 coastal band 400 nm to 450 nm 2 m 

B2 blue band 450 nm to 510 nm 2 m 

B3 green band 510 nm to 580 nm 2 m 

B4 yellow band 585 nm to 625 nm 2 m 

B5 red band 630 nm to 690 nm 2 m 

B6 red-edge band 705 nm to 745 nm 2 m 

B7 near-infrared-1 band 770 nm to 895 nm 2 m 

B8 near-infrared-2 band 860 nm to 1040 nm 2 m 

In this process, the Worldview-2 image was geo-rectified to a 1:10,000 topographic map using ground 

control points based on the image-to-map method, followed by radiometric calibration using the sensor 

calibrating model of calibration utilities. The image was also corrected using the fast line-of-sight 

atmospheric analysis of the spectral hypercubes (FLAASH) model with the ENVI module (ENVI 5.1) [50]. 

The major input parameters of FLASSH were mid-latitude summer model (MLS), MODTRAN spectral 

resolution of 15 cm−1, urban aerosol model, atmospheric water vapor of 2.9 g/cm2, and DISORT streams 

8 for multiscatter model of Scaled DISORT. The longitude and latitude values recorded in the field 

survey were considered the central points to calculate the mean vegetation index value in a periphery  

5 × 5 grid (10 m × 10 m), with the central point included for the preprocessed image. The calculated 

value was regarded as the vegetation index of the quadrat. 

2.4. Mangrove Classification Based on WorldView-2 Images 

In this study, we focused on the AGB estimation at the species level using WorldView-2 images. The 

spatial distribution of the individual species was obtained by using object-oriented classification method 

and the nearest neighbor classifier, with separate training and validation samples. Since the target 

objects, S. apetala and K. candel, are mainly tree species homogeneously covered in study area, they 

can be separated from other objects using hard classification with nearest neighbor classifier. Figure 3 

shows the flow chart of mangrove species classification. 

Field investigation

Pre-processing of remote 

sensing

 The growing characteristics of 

mangrove species

WorldView-2 image

Subarea division

Multiresolution segmentation 

and features obtained

 Nearest neighbor classification

Error assessment

The final classification results

 

Figure 3. Flow chart of mangrove species classification based on WorldView-2 images. 

http://dict.youdao.com/search?q=flow&keyfrom=E2Ctranslation
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2.4.1. The Characteristics and Spatial Distribution of Mangrove Species 

The growing characteristics and spatial distributions of different vegetation types on Qi’ao Island are 

presented in Table 3. S. apetala and K. candel are the dominant tree species in study area, and other 

types of vegetation mainly include shrubs and herbaceous vegetation. To improve classification accuracy 

of mangrove species, the study area was further divided into 11 subareas based on spatial features and 

the age of the different mangrove species (Figure 4). 

Table 3. The characteristics of the different land cover types in Qi’ao Island. 

Land Cover Types Characteristics and Spatial Distribution Features 

Target 

objects 

S. apetala 
The tree species are tallest in height, distributed in medium to low tidal zones and 

occupied the largest area on Qi’ao Island. 

K. candel The tree species are mainly located outside the enclosing levee in the high tidal zones. 

Other vegetation 

Other vegetation types, including shrubs (A. corniculatum and A. ilicifolius) and 

herbaceous (S. alterniflora and P. australis) vegetation, are mainly distributed in medium 

and low tidal zones. 

2.4.2. Image Segmentation 

The mangrove species classification is based on an object-oriented method in eCognition 9.0 

software, which operates on image objects that have been extracted through image segmentation, rather 

than on individual pixels [51]. The segmentation technique in eCognition 9.0 is a bottom-up region 

merging technique where smaller image objects are merged into larger ones with the scale parameter 

controlling the growth in heterogeneity between adjacent image objects. The merging is stopped when 

image object growth exceeds the threshold defined by the scale parameter—the maximum allowable 

heterogeneity of image object [52]. Adjusting the scale parameter influences the average object size. A 

small value of scale parameter results in the decrease of the average size of image objects. The color 

parameter, ranging from 0 to 1, determines the weight of spectral (color) heterogeneity against shape 

heterogeneity in the total image object heterogeneity. Previous studies suggest that more meaningful 

objects are extracted with a higher weight for the color criterion [52,53]. The shape heterogeneity is 

further defined as a weighted sum of smoothness (the ratio of the border length and the shortest possible 

border length of the bounding box of an image object) and compactness (the ratio of the border length 

and the square root of the number of object pixels). The compactness parameter (0–1) gives the weight 

of the compactness versus the smoothness in the shape heterogeneity [54]. 

Ideal object-oriented segments should cover singular entities outlining objects of homogeneous 

appearance without over or under segmentation [55]. In this study, the segmentation parameters (scale 

parameter, shape index, compactness index, color index, and smoothness index) were continuously 

adjusted through repeated experiments and comparison of the segmentation results, the parameter values 

that produced the best visual effect with singular entities outlining objects of homogeneous appearance 

were selected [55].  
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2.4.3. The Classification for Mangrove Species 

The nearest neighbor algorithm is a non-parametric method used for the classification of mangrove 

species [56]. The input features of the training samples consist of a multi-dimensional feature space, 

each sample with a class label. A test point is classified by assigning the label which is most frequent 

among the training samples with nearest distance to that test point [57]. A commonly used distance 

metric for continuous variables is Euclidean distance. The following 14 image attributes were input 

variables to train and construct the classifier: 

(1) 8 spectral attributes: mean values of 8 bands of WorldView-2 for each image object; 

(2) 5 shape attributes: area, density, length/width, shape index, and width of each image object; 

(3) 1 vegetation attribute: NDVI for each image object. 

Every subarea was classified separately using above 14 attributes and the nearest neighbor classifier 

based on the same optimal segmentation parameters. Half of the collected samples were used for training 

and the other half for validation. The evaluation of performance was carried out for the species 

classification by confusion matrix.  

2.5. Calculation of Vegetation Indices 

Vegetation indices are computed from combinations of different bands. Previous studies have shown 

that remotely sensed data is closely related to the biophysical parameters of vegetation [58]. External 

influences, such as sun angle, cloud, terrain, shadow, satellite observation angle, leaf angle, soil 

background, and plant canopy, etc., can be effectively minimized through a combination of different  

bands [59,60]. In this study, B5 (red band), B7 (near-infrared-1 band) and B8 (near-infrared-2 band) of the 

Worldview-2 images were used to calculate six vegetation indices, including the normalized difference 

vegetation index (NDVI), the simple ratio index (SRI), and the difference vegetation index (DVI) [61]. 

The indices are computed as: 
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Apart from the near infrared band, the red edge band is useful in studying precision agriculture, plant 

phenology, and vegetation biomass. Three vegetation indices based on the red edge band (red-edge NDVI 

(RE-NDVI), red-edge SRI (RE-SRI), and modified red-edge SRI (mRE-SRI)) were selected for the 

inversion study. The computational formulas are as follows: 

6 5
65

6 5

- B B

B B

RE NDVI
 


 

 (7)  
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6 1
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5 1
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 


 

-
 (9) 

In this study, the predictors, including the eight bands derived from WorldView-2 and above nine 

vegetation indices, and the mangrove AGB samples were used as input parameters to build, test and 

predict mangrove forest AGB estimation with ANN model.  

2.6. Biomass Modeling Accuracy Assessment 

A BP ANN was used to estimate AGB of uneven-aged mangrove forests. An ANN is a mathematical 

model inspired by biological neural networks and has strong abilities of linear and nonlinear fitting. The 

ANN algorithm adopted in this study is a nonlinear layered feed-forward model with standard back 

propagation [38,62]. This learning algorithm uses an iterative gradient descent training procedure. The 

neurons in each layer only affect the neurons in next layer. The initial ANN weights are assigned 

randomly, and adjusted through a back propagation mechanism. The weight adjusting process is repeated 

until the model output reaches an acceptable level of accuracy. 

In this study, an independent validation dataset was not available for the models accuracy estimation 

due to the limited number of samples. An iterated 5-fold cross-validation (CV) process was performed 

to assess the accuracy, stability, reliability and generalization ability of the model [63]. Each iteration 

uses 80% of samples for training, and 20% of samples for validation. We divided the samples points of 

each species into 3 parts in terms of AGB values for stratified random sampling, which ensures that each 

subsample contains the whole range of AGB values. Five iterations were carried out, and the RMSEs of 

the individual iterations were averaged to yield the overall accuracy.  

The ANN algorithm was used to develop AGB model of uneven-aged mangrove forests using the  

64-bit vision of Matlab 7.0 for Windows. The model building, tuning and accuracy evaluation were 

performed by the “Neural Network Toolbox” using the iterated cross-validation (CV) process and 

stratified random sampling. The main tuning parameters for network (including the number of hidden 

layer neurons, network iterations, transmission functions of the hidden and output layers) were 

continuously adjusted by comparing the root mean square error (RMSE) between the measured and 

estimated biomass to determine the optimal network model [64]. The values of learning rate and training 

accuracy were 0.01 and 0.001, respectively. Other parameters used the default values in “Neural 

Network Toolbox” [65]. All the variables, including above vegetation indices (NDVI75, SRI75, DVI75 

NDVI85, SRI85, DVI85, RE-NDVI65, RE-SRI65, and mRE-SRI651) and image-derived bands, species types 
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and measured biomass were normalized. After normalization, they were used as the input and output 

variables of the BP ANN model, respectively.  

To quantify the effect of mangrove species information on AGB estimation accuracy, we conducted 

three different experiments to build BP ANN models of mangrove species. In experiment 1 (Expt.1 for 

short), we did not distinguish the individual species and built a single BP ANN model for the mixture of 

above species. This model is named the Mixed Species Model. In experiment 2 (Expt.2), a dummy variable 

indicating S. apetala or K. candel as an extra variable is added to the Mixed Species Model. The model is 

named the Dummy Species Model. In experiment 3 (Expt.3), we built a separate BP ANN model for each 

of the two individual species, respectively. The models are named the Individual Species Models.  

After building the BP ANN models of mangrove forests biomass, indicators of RMSE, relative RMSE 

(RMSEr) were utilized to estimate models accuracy by analyzing the measured and predicted values. 

Their computational formulas are as follows:  

2
ˆ( )i iy y

RMSE
n


-∑  (10)  

r

RMSE
RMSE

y
  (11)  

where 𝑦𝑖 (i=1,2,…,n) and 𝑦𝑖̂ represent the actual and predicted value of AGB at plot i based on validation 

data, respectively where as 𝑦̅ represents actual average of AGB. n is the number of validation plots. 

2.7. Importance of the Variables 

The contribution of each input variable to mangrove AGB estimation (including the eight bands from 

Worldview-2 image, above nine vegetation indices and species) was quantified by using the whole 

sample dataset and “Weights” method applied to the Dummy Species Model [66]. The relative 

importance of an input variable was determined by partitioning the connection weights of the ANN 

model, involving partitioning the hidden-output connection weights of each hidden layer’s neuron into 

components associated with each input neuron [67]. The input-hidden layer connection weight was 

divided by the sum of the absolute value for all input neurons. The hidden-output layer connection weight 

was divided by the sum for each hidden neuron of the sum for each input neuron. The relative importance 

of the given input variable is then obtained by all output weights. 

3. Results 

3.1. Mangrove Classification at Species Level 

On the basis of the multi-resolution segmentation by object-oriented nearest neighbor classification, 

the optimal spatial scale parameters for the mangrove species classification in this study were selected 

as follows: scale parameter (30), shape index (0.3), compactness index (0.4), color index (0.7), and 

smoothness index (0.6). On the basis of field survey data and the prior knowledge, the study area was 

further divided into 11 subareas (Figure 4), which were classified separately by means of a nearest 
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neighbor classifier. According to the object type of the subarea, four different land cover types were 

correctly classified, including: K. candel, S. apetala, other vegetation, and water area. 

With uncertainty factors influencing the imaging, analysis and classification process, a difference 

exists between the classification of the remote sensing images and the actual terrain coverage. Therefore, 

the accuracy of the classification results was evaluated on the basis of the validation dataset obtained 

from field survey (Table 4). The total classification accuracy was 87.68% and the Kappa coefficient was 

0.82. The classification results are shown in Figure 4, and the areas of S. apetala and K. candel were 

137.74 ha and 4.24 ha, respectively. 

Table 4. Confusion matrix of object-oriented classification for mangrove species. 

Classified Data 
Reference Data  

K. candel S. apetala Other Vegetation Water Area Total User’s Accuracy 

K. candel 68 0 8 0 76 89.47% 

S. apetala 0 252 30 0 282 89.36% 

Other vegetation 12 48 339 13 412 82.28% 

Water area 0 0 12 216 228 94.74% 

Total 80 300 389 229 998  

Producer’s accuracy 85.00% 84.00% 87.15% 94.32%   

Overall accuracy: 87.68%；Kappa：0.82 

 

Figure 4. Subarea division and classified map of the mangrove vegetation on Qi’ao Island. 

3.2. Estimation of Mangrove Vegetation Biomass 

Biomass was calculated through allometric equations (Table 5). The first three parameters in Table 5 

are derived from our field observations. The native K. candel has a density of 5257 trees per ha. Biomass 

ranges from 170.96 t/ha to 448.19 t/ha, with an average of 273 t/ha. S. Apetala has a growing density 
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1860 trees per ha. Biomass ranges from 37.44 t/ha to 258.17 t/ha, with an average of 125.49 t/ha. The 

biomass of the former is significantly greater than the latter because K. candel is a native species, 

approximately 40 years of age, and a much higher growing density than S. apetala.  

Table 5. Biomass of K. candel and S. apetala in field sampling. 

Species 
Average 

Height(m) 

Average 

DBH (cm) 

Number of 

Trees per ha 

Range of  

Biomass 

(t/ha) 

The Mean 

of AGB  

(t/ha) 

Standard 

Deviations (t/ha) 

K. candel 6.62 8.32 5257 170.96~448.19 272.97 67.27 

S. apetala 11.41 13.23 1860 37.44~258.17 125.49 55.23 

3.3. The Relationship between the Biomass and the Selected Variables 

Application of the “Weights” method to the built Dummy Species Model revealed the importance 

values of all variables including the eight bands from Worldview-2 image and the above nine vegetation 

indices and species (Figure 5). The results indicate that species type is the most important variable. 

Incorporation of species type is the key for improving the AGB estimation accuracy. The next two most 

important variables are the B6 and mRE-SR651, indicating B6 and the derived vegetation indices to be 

more valuable than other bands and their associated vegetation indices in AGB estimation. 

 

Figure 5. Ranked variable importance based on “Weights” method based on the built 

Dummy Species Model. 

3.4. Model Results and Accuracy Test 

The BP ANN models were developed using AGB as the output variables and selected predictors 

derived from Worldview-2 images and species types as input variables. The accuracies of the BP ANN 
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models were tested though RMSE based on above three different experiments (Table 6). The estimation 

accuracies of the BP ANN models in Expt.2 and Expt.3 were significantly better than the Mixed Species 

Model in Expt.1. The estimation accuracy at the mixed species level produced the highest RMSE (72.26 t/ha, 

43.14% of the average AGB). Expt. 2, with the inclusion of a dummy species variable, performed much 

better than the Mixed Species Model, with a 19.17% decrease in RMSE. Overall, the Individual Species 

Model in Expt. 3 performed the best, with S. apetala having the lowest RMSE (24.32 t/ha, 18.97% of 

the average AGB) and K. candel a low RMSE (52.38 t/ha, 19.52% of the average AGB).  

Table 6. The RMSE of biomass estimation among three different experiments. 

BP ANN Model RMSEs (t/ha) 
Average RMSE 

(t/ha) 

Average 

RMSEr (%) 

Expt.1 Mixed species 74.41 71.75 82.38 68.80 63.97 72.26 43.14% 

Expt.2 Dummy species  40.69 38.23 45.92 33.44 42.45 40.15 23.97% 

Expt.3 
K. candel 52.12 48.37 49.48 42.23 69.70 52.38 19.52% 

S. apetala 31.54 26.92 22.46 18.27 22.45 24.32 18.97% 

3.5. Spatial Distribution of Mangrove Vegetation Biomass 

Spatial distributions of mangrove vegetation biomass in three different experiments are presented in 

Figures 6–8, respectively. In Expt.1 for the mixed species level (Figure 6), AGB of K. candel was 

underestimated, ranging from 36.23 to 447.26 t/ha, with an average of 212.69 t/ha; whereas that of S. 

apetala was overestimated, ranging from 33.55 to 446.64 t/ha, with an average of 204.39 t/ha. 

Comparison with the actual measured values (Table 5) revealed that the biomass predictions obtained 

by the ANN were not consistent in terms of mean value and distribution range. The highest AGB was  

S. apetala and mainly distributed in the middle tidal zones. The predicted AGB of K. candel was less 

than S. apetala distribution at the middle tidal zones. 

In Expt.2, for the incorporation the species types as a dummy variable (Figure 7), the accuracy of 

AGB prediction was much improved over that of Expt. 1. The estimated K. candel AGB ranged from 

120.23 to 442.14 t/ha, with an average of 258.84 t/ha; whereas that of S. apetala was between 30.42 and 

321.99 t/ha, with an average of 131.32 t/ha. Comparison with the actual measured values (Table 5) 

revealed that the biomass mean value obtained by the ANN was consistent with the actual mean, but the 

biomass range was a little different from the actual distribution range. The spatial distribution pattern 

was also in accordance with the field investigation. 

In Expt.3, for the individual species level (Figure 8), AGB prediction of K. candel was mainly 

between 174.13 and 448.47 t/ha, with an average of 263.21 t/ha; whereas that of S. apetala was between 

37.65 and 257.86 t/ha, with an average of 128.15 t/ha. The above results revealed that the predictions of 

spatial distribution of biomass are consistent with the observation in terms of the actual mean and 

distribution range (Table 5). The predicted K. candel was mainly distributed in the high tidal zones, and 

the predicted S. apetala mainly in the middle tidal zones, especially in the central portion of the study 

area. The experimental results matched the field study very well. 
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Figure 6. Spatial distribution of mangrove vegetation biomass at the mixed species level 

based on the artificial neural network (ANN) model in Expt.1. 

 

Figure 7. Spatial distribution of mangrove vegetation biomass at the incorporation of species 

as a dummy variable based on the ANN model in Expt.2. 
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Figure 8. Spatial distribution of mangrove vegetation biomass at the individual species level 

based on the ANN model in Expt.3. 

4. Discussion  

4.1. Biomass Estimation Accuracy Involving Species Types 

The results above revealed that species type was the most important variable among all input 

parameters for mangrove AGB estimation in this study. In Expt.3, species-specific BP ANN models had 

the highest estimation accuracy and were significantly better than the model at the mixed species level 

in Expt.1.  

While the mean of RMSE of Expt. 2 is only slightly higher than that of Expt. 3, the range of the 

predicted AGB and the spatial distribution is not as accurate as those of Expt. 3. It should be pointed out 

that the number of samples needed in Expt. 2 is much less than that of Expt. 3. Therefore, when field 

samples are hard to obtain, the Dummy Species Model of Expt. 2 may be an acceptable alternative to 

the Individual Species Model in Expt. 3. 

Given that optical imagery cannot obtain tree height as a crucial parameter in biomass estimation, 

detailed and accurate estimation of mangrove forest AGB still presents a challenge when parameters 

derived from optical imagery are applied to biomass estimation. Studies of plant allometry indicated that 

biomass is determined not only by canopy parameters but also by other factors such as wood density, trunk 

taper and tree height [68–70], which are closely relevant to the floristic characteristics of the species. As a 

result, the biomass estimation model depends on canopy parameter and species types [71]. In addition, the 

spectral differences of different mangrove species should be considered in mangrove AGB estimation [24]. 

Therefore, species types should be input the models in biomass estimation to improve estimation 
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accuracy. Biomass estimation with consideration of species type information can avoid the weakness of 

the optical imagery and errors caused by spectrum differences among tree species to some extent. 

4.2. The Remote Sensing-Derived Input Variables Contribution to the Mangrove Biomass 

This study found that the red edge band or the associated vegetation indices B6 and mRE-NDVI651) 

were more important than other bands in estimating AGB (Figure 5). The results were consistent with the 

conclusion of the previous research [27]. A reason for the advantage of B6 is that a slight change of 

vegetation properties will lead to a notable shift in the red edge spectral curve [72]. Therefore, the 

parameters computed from the red edge band are more sensitive to biophysical parameters of vegetation 

such as canopy biomass compared to the other bands. The red edge and its derived VI can help resolve 

saturation of tree biomass estimation to some extent in a densely vegetated mangrove area [27]. Such 

indices may yield more accurate estimations compared to other bands and its derivative indices. 

4.3. Spatial Distribution of Mangrove Vegetation Biomass 

Historical data, field investigation, and remote sensing image interpretation of Qi’ao Island were 

utilized to further verify the rationality and accuracy of the models used for estimating mangrove 

vegetation biomass. The field study showed that K. candel had high individual density and large biomass 

and small gradient changes in biomass spatial distribution. S. apetala, which was first artificially restored 

and planted in 1999, generally shows a trend of afforestation from the medium to low tidal zone, based 

on growing sequence. Thus, its biomass decreases progressively from the medium to the low tidal zone, 

and trees growing near the medium tidal zone have larger canopies and greater biomass compared with 

those in other locations. Individuals growing outside the forest edge and near the mudflats were younger 

and had smaller biomass [73,74]. 

In the present study, the Worldview-2 images-based ANN models were employed to predict the 

spatial distribution of the uneven-aged mangrove vegetation biomass. The predicted AGB of K. candel 

was less than S. apetala distribution at the middle tidal zones for the mixed species in Expt.1 (Figure 6). 

The results for the mixed species were not consistent with our field investigation.  

The biomass estimations of mangrove forest biomass at the individual species level (Expt. 3) or with 

the incorporation of species type information as a dummy variable (Expt. 2) based on the ANN model 

were reasonable and in agreement with the field investigation results and known sequences of mangrove 

afforestation. The biomass of K. candel was largest in specific strips in the study area, whereas the 

biomass of S. apetala was larger around the middle tidal zone and smaller outside the forest edge and 

near the mudflats in Expt.2 and 3. Overall, the spatial accuracy of Expt. 3 is better than that of Expt. 2. 

5. Conclusions  

The main goal of this research was to explore the feasibility and accuracy of a remote sensing model 

for AGB mapping in uneven-aged and high-density mangrove forests. Our study showed that spatially 

accurate AGB estimates of mangrove forests can be achieved using the BP ANN model and selected 

variables derived from WorldView-2 imagery with consideration of species type information.  
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Our study quantified the contribution of species type information in mangrove biomass estimation. 

The model incorporating of species type information as a dummy variable improved the accuracy as 

much as 19.17% in terms of RMSE over the model for the mixed species. The species-specific models 

reached even higher accuracies. Conventional errors caused by spectrum and height differences among 

tree species can be avoided by incorporation of species type information using the WorldView-2 images.  

In addition, the study confirmed that the red edge band of WorldView-2 and its derived data are more 

effective in predicting the biomass of high-density mangrove forests than traditional bands. There exists 

great potential for mapping the spatial distribution and important biophysical elements of mangroves at 

regional scales with high-resolution multispectral WorldView-2 imagery. Future research will focus on 

the contributions of red-edge band to the improvement of biomass estimation accuracy. The potential of 

applying high-resolution Worldview-2 images in inversion of vegetation biomass and other biophysical 

parameters needs to be fully investigated. 
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