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Abstract: Accurate information of urban surface water is important for assessing the role it 

plays in urban ecosystem services under the content of urbanization and climate change. 

However, high-resolution monitoring of urban water bodies using remote sensing remains a 

challenge because of the limitation of previous water indices and the dark building shadow 

effect. To address this problem, we proposed an automated urban water extraction method 

(UWEM) which combines a new water index, together with a building shadow detection 

method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, 

China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, 

Huangpo and Huainan) ZY-3 imagery. The performance was compared with that of the 

Normalized Difference Water Index (NDWI). Results indicated that UWEM performed 

significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 

12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 

61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has 

more stable performances than NDWI’s in a range of thresholds near zero. It reduces the 
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over- and under-estimation issues which often accompany previous water indices when 

mapping urban surface water under complex environmental conditions. 

Keywords: ZY-3; Urban water bodies; Water index; Threshold stability; Shadow detection; 

Urban remote sensing; Support Vector Machine 

 

1. Introduction 

Urban surface water, which consists of both natural and man-made water bodies, is a vital part of 

urban aquatic ecosystems [1]. It plays a significant role in ecosystem health and services. It also 

contributes to the water balance which not only benefits the urban environment, but also enhances the 

livability of the urban landscape [2]. Changes in urban surface water may result in disasters, such as 

urban waterlogging, water shortage, and even outbreaks of waterborne diseases, with consequences to 

human health and life. Therefore, timely monitoring the distributions and dynamics of urban surface 

water is essential for many applications including flood protection [3], public health [4], food security [5], 

biodiversity protection [6], and water use and management policy [7]. 

With the rapid development of satellite techniques, remote sensing is able to provide an aerial view 

of ongoing processes on the Earth’s surface at multiple scales. It can also address the intricate nature of 

surface water [8] and allow an assessment of the risks placed on aquatic ecosystems [9]. There have been 

ample investigations about the spatiotemporal distribution of surface water using moderate resolution 

imagery [8,10–13]. However, these studies have not reliably detected small water bodies (SWB) due to 

the limited spatial resolution [14]. The frequency distribution of urban water body sizes is generally 

similar to the Pareto distribution, with many small water bodies and a few of large rivers and lakes [15]. 

In addition, urbanization impacts on small urban water bodies occur at disproportionate levels [15,16]. 

Therefore, high-resolution imagery should be used to monitor urban surface water to improve the 

precision. With a spatial resolution of 5.8 m and a swath width of 52 km, Ziyuan-3 (ZY-3)  

multi-spectral imagery is an ideal data source for landscape-scale urban surface water analysis. 

Many algorithms have been proposed for identifying water bodies with remote sensing imagery. 

These methods can be generally categorized into four classes: supervised or unsupervised classification 

method [17,18], linear un-mixing model [19], single-band or multiple-band thresholding method [20,21], 

and spectral water index method [11,22,23]. Among them, the spectral water index method is widely 

used because it is easy to apply with relative good accuracy [24]. The formulation of water indices has 

been steadily progressing over time. McFeeters [22] proposed the first water index named the 

Normalized Difference Water Index (NDWI) to delineate open water features using the near-infrared 

band and green band. Then, Xu [23] found the NDWI cannot efficiently suppress the signal of building, 

and proposed an alternative called Modified Normalized Difference Water Index (MNDWI), which 

achieved better performances in urban areas. Although MNDWI can remove the bias caused by 

buildings, accuracy problems still exist due to the low albedo surfaces. Researches [11] thus developed 

the Automated Water Extraction Index (AWEI) using multiple bands (1,2,4,5 and 7) of Landsat 5 TM 

images. It enabled the formulation of the water index in different backgrounds, and thus achieved higher 

accuracy in urban backgrounds and mountainous areas than MNDWI. Despite the obvious advantages 



Remote Sens. 2015, 7 12338 

 

 

of the water indices in expressing spectral reflectance pattern differences, if only a single cut-off 

threshold is used for water extraction, and the accuracy may degrade in some situations where water is 

mixed with objects that have similar spectral patterns, such as dark shadow. In order to address the 

shadow problem, some researchers have combined water indices with additional shadow detection 

methods, such as using DEM data to detect the shadow units [25], digital image processing techniques 

to remove the shadow noises [24] and manual shadow mask [26]. 

Considering the available water indices for high resolution images, NDWI is still the only choice for 

mapping urban water bodies because most high-resolution images only have visible and NIR bands, like 

IKONOS, RapidEye, and ZY-3. However, problems stand out when applying NDWI to high-resolution 

imagery. For example, the shadow problem, especially dark building shadow, is much more serious in 

high-resolution imagery (such as IKONOS with the spatial resolution of 4 m) than that of images with a 

medium resolution (such as TM with the spatial resolution of 30 m) [27]. Water bodies and dark shadows 

cannot be easily separated by their spectra [28]. Some researchers have used an object-based approach to 

detect the shadows with the help of additional characteristics such as texture, but this is very time-consuming 

and provides limited improvement to the problems [29]. On the other hand, urban environments pose 

specific challenges for mapping water bodies with remote sensing imagery [30]. The typical symptoms 

of urban surface water include: suspended solids, high levels of nutrients, and various pollutants ranging 

from heavy metals to personal care products, making the optical properties of urban surface water quite 

different from those of natural unpolluted one [7]. In addition, urban areas have increased levels of 

spatial heterogeneity, creating many small water bodies with complex morphologies. When facing these 

challenges, no method can provide automated water detection with considerable accuracy for high-resolution 

imagery. Thus, an improved urban water extraction method should be designed. 

In this study, we introduced a simple and automated urban water extraction method (UWEM), based 

on the idea of making full use of the spectral information of different objects in the visible and near-infrared 

bands (VNIR). As one water index may not address the whole problem, the UWEM combines a new 

water index, called High Resolution Water Index (HRWI), together with a building shadow detection 

method. The objectives of this study are to: (a) improve accuracy of urban surface water mapping by 

automatically suppressing the noises from artificial construction land and shadow; and (b) achieve stable 

thresholds under different water conditions with a high accuracy. 

2. Study Areas and Data 

2.1. Study Area 

Considering the complex terrain and significant difference in climates over China, five urban areas 

(Qingdao, Aksu, Wuhan, Fuzhou and Huainan) with variable environmental conditions  

(e.g., precipitation, humidity, and elevation) were selected as the study sites. Table 1 shows the basic 

characteristics of these study sites. Due to their range of variability, it is a great challenge to extract 

urban water bodies quickly, automatically and accurately using remote sensing imagery. 

The test site in Qingdao consists of abundant diverse water bodies located within a complex urban 

background. It was deliberately selected for algorithm development, while five sub-scenes with 

representative water types in other four cities were chosen for algorithm validation. The validation sites 
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were selected to test the accuracy and robustness of the new algorithm. Water bodies in all five sub-scenes 

exhibit complex features, including classic symptoms of urban water, such as turbidity, eutrophication 

and pollution. The initial four validation sub-scenes (Aksu, Fuzhou, Hanyang and Huainan) also have 

many dark shadows caused by tall buildings. The fifth validation sub-scene (Huangpo) consists of a large 

number of small water bodies in an urban background, but few dark shadows. 

Table 1. The characteristics of the study sites. 

City’s Name and 

Location 

Image Size 

(pixels) 
Water Types Topography Climate 

Color Infrared 

Composite 

Qingdao 

(36.2°N, 120.5°E) 

4574 × 5992 

(922.0 km2) 

Rivers  

Lakes 

Sea 

Harbors 

Reservoirs  

Ponds 

Aquatic parks 

Basin, plain, 

hills, etc. 

Warm 

temperate 

monsoon 

climate 

 

Aksu 

(41.4°N, 80.2°E) 

894 × 661 

(19.9 km2) 

Narrow clear river 

Narrow turbid river 
Basin 

Temperate 

continental 

arid 

climate 
 

Fuzhou 

(25.9°N, 119.3°E) 

1437 × 983 

(47.5 km2) 

Clear reservoirs 

Eutrophic reservoirs 

Clear man-made lake 

Basin and 

hill 

Subtropical 

monsoon 

climate 

 

Wuhan  

(30.7°N, 

114.4°E) 

Hanyang 
1135 × 658 

(25.1 km2) 
Polluted lakes 

Plain 

Subtropical 

monsoon 

humid 

climate 

 

Huangpo 
1430 × 1112 

(50.1 km2) 

Clear ponds 

Eutrophic ponds 

Big clear river 

Big clear lake 
 

Huainan 

(32.7°N, 116.9°E) 

1037 × 659 

(23.0 km2) 
Clear aquatic parks Plain 

Temperate 

monsoon 

climate 

 

2.2. ZY-3 Multi-Spectral Imagery 

Launched in January 2012, ZiYuan-3 (ZY-3) is the first civilian high-resolution stereo mapping 

satellite launched by China (http://sjfw.sasmac.cn/en/ZY-3.html). Besides the panchromatic sensor 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%9A%96%E6%B8%A9%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%9A%96%E6%B8%A9%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%9A%96%E6%B8%A9%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%9A%96%E6%B8%A9%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%B8%A9%E5%B8%A6%E5%B9%B2%E6%97%B1%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%B8%A9%E5%B8%A6%E5%B9%B2%E6%97%B1%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%B8%A9%E5%B8%A6%E5%B9%B2%E6%97%B1%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%B8%A9%E5%B8%A6%E5%B9%B2%E6%97%B1%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%AD%A3%E9%A3%8E%E6%80%A7%E6%B9%BF%E6%B6%A6%E6%B0%94%E5%80%99
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.4.0.4311&q=%E6%B8%A9%E5%B8%A6%E5%B9%B2%E6%97%B1%E6%B0%94%E5%80%99
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designed for stereo mapping, ZY-3 is also equipped with a multispectral sensor (IRMSS), collecting 

visible (blue, green, red) and near infrared bands with a 5.8-m nadir resolution. Having four spectral 

bands similar to Landsat5 TM bands 1-4, ZY-3 imagery is a good candidate for applying previous 

methods to extract urban water bodies. With a revisit cycle of five days, IRMSS provides high-resolution 

imagery with a swath width of 52 km and a maximum acquisition capacity of 1,000,000 km2 per day, 

making it an ideal data for urban remote sensing applications. 

In this study, all ZY-3 images used in this study are of product type Level 1A acquired from IRMSS 

sensor. These images contain enough information about radiometric correction and geometric correction. 

The sub-scenes used are all free of clouds. The descriptions of the ZY-3 multi-spectral images are 

presented in Table 2. 

Table 2. Description of ZY-3 scenes and corresponding reference data. 

Experiment Sites 
ZY-3 Scene 

Reference Data and Sources 
Acquisition Date Path Row Solar Azimuth 

Water bodies in 

Qingdao, Shandong 
17 October 2012 885 133 47.1 

Google Earth™ image acquired on  

5–19 September. 2012 ©CNES/Astrium 

Rivers in Aksu, 

Xinjiang 
22 October 2013 93 120 36.7 

Google Earth™ image acquired on  

2 October 2013 ©CNES/Astrium 

Reservoirs in Fuzhou, 

Fujian 
9 May 2013 881 159 42.6 

Google Earth™ image acquired on  

16 Janaury 2013 © DigitalGlobe 

Polluted lakes, 

fishponds in Wuhan, 

Hubei 

12 August 2013 897 147 67.6 

Google Earth™ image acquired on  

16 August and 29 September 2013 © 

DigitalGlobe 

Water bodies in 

Huainan, Anhui 
4 November 2013 892 142 40.7 

Google Earth™ image acquired on  

2 October 2013 © DigitalGlobe 

2.3. Reference Data 

Table 2 shows the reference data used for accuracy assessment. When water boundaries could not be 

accurately determined by visual interpretation, images with high spatial resolution from Google Earth 

were used for reference.  

3. Method 

3.1. Image Preprocessing  

The ZY-3 images (Level 1A products) were orthorectified to improve the spatial accuracy using 

Geomatica-PCI 2013 commercial software. In this study, nine ground control points (GCPs) for each 

image were used in the relief displacement correction with the average root mean square (RMS) value 

less than 0.5 pixels for each image in the test sites. After that, each image was resampled to a spatial resolution 

of 5.8 m and projected to UTM, Zone *N (WGS-84 ellipsoid) (* depends on the imagery’s location). 

The images were then calibrated from raw digital number (DN) to surface reflectance values. 

Atmospheric correction was applied using the Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) module in ENVI v. 5.0. Feyisa, Meilby, Fensholt and Proud [11] summarized 

javascript:void(0);
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the retrieval method of Aerosol Optical Depth (AOD) and total Column Water Vapor data used in the 

FLAASH module (see [11] for details). If the AOD value was invalid with the method mentioned above, 

the initial visibility was estimated using observational data from a nearby meteorological station. 

3.2. Formulation of the High Resolution Water Index (HRWI) 

3.2.1. Index Model Selection 

Generally, there are two types of index formulation models: ratio model and coefficient model. Ratio 

models for water index begin with NDWI [22]. NDWI is a normalized ratio index between green and 

NIR bands, and is based on the fact that pure water can absorb more infrared energy than that of green 

light. However, the ratio model cannot significantly show the characteristics that water’s reflectance in 

visible and NIR bands is normally lower than that of other land objects. It will import bias when 

extracting un-pure or polluted water bodies which skew water index values in VNIR images. Therefore, in 

this study, the coefficient model was chosen to build the High Resolution Water Index (HRWI) formulation. 

3.2.2. Band Selection 

Water index was designed to enhance the contrast between water and non-water pixels [11]. The 

optimal bands combination should be determined to accurately and robustly discriminate water from 

other land cover types. In order to study the spectral difference between water and other land cover types, 

a dataset of pure pixel (the pixel which is covered by a single land cover type) [31] reflectance values 

were sampled from the ZY-3 image covering eight land cover types at the study site of Qingdao. This 

site includes all the primary features influencing the water extraction accuracy like shadows, dark 

building structures, and other low albedo surfaces. A total of 300 pure pixels were selected from the  

ZY-3 imagery for each land cover type. These pure pixels were collected through manual selection using 

high-resolution Google Earth images as reference dataset. Figure 1a,d show the statistical results of pure 

pixel reflectance values over eight land cover types for blue, green, red, and NIR bands, respectively. 

Each band has certain separability between water and other types. However, the blue band is vulnerable 

to scattered light disturbance [32]. Its value is unstable and may cause obvious variations in the optimal 

threshold values of the coefficient index. Therefore, green, red, and NIR bands were chosen to formulate 

the HRWI. 

3.2.3. Coefficient Calculation 

The optimal coefficients of the HRWI formula was determined using Support Vector Machine 

(SVM). The SVM is a non-parametric statistical learning technique, which is also a large-margin 

classifier. Its motivation is to find the best hyperplane which represents the largest separation between 

two class types. The advantages of the SVM over traditional methods in formulating water index are: 

first, SVM not only separates the training data sets with minimum error, but also enhances the stability 

by producing the optimum hyperplane maximizing the margin [33]; second, it shows promising 

performances even if the number of samples is limited [34]; third, SVM performs well in heterogeneous 

urban areas [35]. 
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The SVM is formulated as solving the constrained quadratic optimization problem (see Equations (1) 

and (2)) [36]. 

MaxW(α) = {∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑖,𝑗=1

} (1) 

Subject to = {∑ 𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛} (2) 

where, 

𝑥𝑖 ∈ 𝑅𝑑 are the training sample vectors,  

𝑦𝑖 ∈ {−1, +1} stands for the corresponding class label, 

K(𝑥𝑖 , 𝑥𝑗) is the kernel function, 

C is a constant. 

Kernel functions play an important role in SVM to solve the linear and non-linear problems. Here, 

creating a water index is a linear problem so that we choose a linear kernel function, which 

means K(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗. The hyperplane can be expressed as Equation (3). 

w × x − b = 0 (3) 

where,  

w is the normal vector which is perpendicular to the hyperplane,  

x is a three-dimensional vector composed of reflectance values from green, red and NIR bands,  

b is the intercept term.  

The value of w and b can be obtained by training the input vectors from the sample data. For a test 

pixel, it will be labeled as water if its value in the expression w × x − b is positive or labeled as non-water 

if its value is negative. Obviously, the expression w × x − b can be used as the water index which default 

value is zero.  

However, dark shadows and water were often misidentified by water indices [24]. And thus we used 

a shadow detection method (which will be discussed in Section 3.4.) to remove dark shadows. HRWI 

was designed to separate water from other land cover types except dark shadows. All land cover types 

except dark shadows were used for SVM training, where water is labeled as water while other types are 

labeled as non-water. After training, we obtained the coefficients for the optimal hyperplane. The 

coefficients were rounded for ease of use (the coefficients were round at 1 decimal because we also 

tested with the data rounding at the 2 decimal, but didn’t observe increased accuracy), and then the new 

water index HRWI (Function 1) was created.  

HRWI = 6 × G − R − 6.5 × NIR + 0.2 (4) 

where,G is the reflectance in green band,R is the reflectance in red band,NIR is the reflectance in NIR band. 

Figure 1e,f shows the statistical results of the HRWI and NDWI for each land cover type. The 

separability of HRWI and NDWI was measured using the M-statistic test which measures the separation 

between the histograms produced by the frequency distribution of all the pixel values within two classes 
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(see Equation (5) and Table 3). M > 1.0 implies good separability, while M < 1.0 are considered to 

contain significant class overlap [37].  

 

Figure 1. Reflectance and water index value distributions of major land cover types from 

pure pixels. Each box plot shows the location of the 10th, 25th, 50th, 75th, and 90th 

percentiles with horizontal lines (boxes and whiskers) and the circles are 5th and 95th 

percentiles (The dashed boxes show the spectral contrast between building and dark 

shadow).(a–d): the reflectance distributions of major land cover types in blue, green, red, 

NIR bands, respectively; e: the HRWI value distributions of major land cover types; f: the 

NDWI value distributions of major land cover types. 

M = (𝜇1 − 𝜇2) (𝜎1 + σ2⁄ ) (5) 

where,  

μ1 − μ2 is the difference in the means of the water and other land cover type,  

σ1 + σ2 is the sum of the standard deviations.  

For the separability tests in Table 3, HRWI can achieve very good separability between water and 

vegetation. It also improves the separability between water and other land cover types, including bright 

building, dark building, asphalt, light shadow and soil. However, HRWI can not effectively suppress the 

dark shadows. The separability between water and dark shadow of HRWI is lower than that of NDWI 

(see Table 3).  
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Table 3. Separability tests of HRWI and NDWI using the M-statistic test. 

Pair Comparison 
M 

HRWI NDWI Difference (HRWI-NDWI) 

Water vs. Bright building 1.91 1.28 0.63 

Water vs. Dark building 2.26 0.50 1.76 

Water vs. Asphalt 2.56 2.08 0.48 

Water vs. Light shadow 2.23 1.72 0.52 

Water vs. Dark shadow 1.08 1.11 −0.03 

Water vs. Soil 2.55 2.16 0.39 

Water vs. Vegetation 3.30 3.43 −0.13 

3.3. Automated Building Shadow Detection Method 

In this section, we proposed an automated dark building shadow detection method which combines 

the spatial and spectral features of a building and its shadow. 

3.3.1. Spatial Relationship between a Building and Its Shadow 

Figure 2 shows the spatial relationship between a building and its shadow. The shadow is adjacent to 

the building on the edge between sun side and shade side. The solar azimuth in the metadata is used to 

determine whether the edge is located on the south or north side of shadows. 

3.3.2. Spectral Characteristics of Buildings and Shadows 

Figure 1 shows the spectral characteristics of buildings and shadows: first, the dark building shadow 

pixels’ reflectance in green band is much lower than their adjacent building pixels’, whereas the water’s 

reflectance in green band is close to that of its background like vegetation and soil (see the blue dashed 

square in Figure 1b); second, the dark building shadow pixels’ NDWI is close to or even smaller than 

their adjacent building pixels’, whereas the NDWI of water is much higher than that of vegetation and 

soil (see the red dashed square in Figure 1f). 

 

Figure 2. Sketch maps of the building and its building shadow (Edge stands for the edge 

between sun side and shade side, inside edge pixels stand for the shaded pixels which are 

adjacent to the Edge, outside edge pixels stand for the building pixels which are adjacent to 

the Edge). 
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3.3.3. Generating a Dark Building Shadow Prediction Model 

The NIR band can well separate dark shadow from other land cover types except water [38]. In the 

NIR band, we used an initial T (here, T = 0.1) to get a global mask including almost all “pure” dark 

shadow pixels. Then the “global-local” scheme [25,39] was used, applying it to each unit in an iterative 

way to get a local mask with high sub-pixel accuracy. With the above steps, we were able to get enough 

samples of dark shadows and water bodies. The SVM was used to generate a dark building shadow 

prediction model which uses the spectral differences between inside edge pixels and outside edge pixels 

in green band and NDWI as inputs (see Figure 2). A Gaussian radial basis function was chosen due to 

its superior performance compared with other kernel functions [40]. The Qingdao site was used to train 

the parameters of the model because it has many small water bodies with various backgrounds and 

numerous dark building shadows. 70% of the sample units were randomly selected for training and the 

rest of the units (30%) were used for verification. The sub-scenes of Fuzhou, Wuhan, and Huainan were 

further tested for validating the model’s robustness in other areas. The model has a high accuracy in all 

sites (see Table 4), indicating the model can separate small water bodies from dark building shadows 

accurately and automatically. 

Table 4. Accuracy assessments on dark building shadow prediction model (NSWB stands 

for the number of small water bodies, NDSB stands for the number of dark shadow bodies, 

NCPB stands for the number of correctly predict bodies, OA stands for the overall accuracy). 

City NSWB NDSB NCPB OA (%) Kappa 

Qingdao 82 106 181 96.28 0.92 

Fuzhou 71 168 223 93.31 0.85 

Huainan 105 136 228 94.61 0.89 

Wuhan 73 202 262 95.27 0.88 

3.3.4. Automated Dark Building Shadow Detection Method 

Figure 3 shows the flowchart of the automated dark building shadow detection method. First, binary 

segmentation in NIR band is performed to get the preliminary mask using an initial Tnir (here Tnir = 0.1). 

Then each initial unit is taken individually and delineated by a local segmentation to get a more precise 

boundary. For each unit, the spectral differences between inside edge pixels and outside edge pixels in 

green band and NDWI are calculated, respectively. The type of an unit (SWB or shadow bodies) is 

determined by the dark building shadow prediction model. Finally, the dark building shadow mask is 

obtained by removing the water bodies. 

NIR Band Global Mask Local Mask
Shadow Bodies

and SWB

Dark Shadow

Prediction Model

Shadow Bodies

SWB

Y

N

Shadow Mask

Tnir ‘Global-Local’Scheme Remove Large Bodies

 

Figure 3. Flowchart of automated dark building shadow detection method. 
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3.4. Urban Water Extraction Method and Accuracy Assessment 

Figure 4 describes the flowchart of UWEM. First, we used a HRWI cut-off threshold to get a 

temporary water mask. Then, we used the method mentioned in Section 3.3.4. to automatically produce 

a dark building shadow mask. After that, we removed dark shadow noises in the temporary water mask 

and got the final water extraction results. 

The widely used NDWI in VNIR imagery was chosen to compare the accuracy of UWEM. Both 

kappa coefficients and error matrices were used for accuracy assessment. The comparison between 

UWEM and NDWI was made at their optimal thresholds by using independent validation pixels 

generated with a random sampling scheme. The number of verification pixels (see Table 5) were chosen 

based on the percentage of water and water body area. 

Table 5. The number of verification pixels used in accuracy assessment at each test site. 

Test Site Aksu Fuzhou Hanyang Huangpo Huainan 

Number of verification pixels 29,988 20,000 5000 10,000 30,000 

    Image Pre-processing

    - Ortho-rectification

    - Atmospheric Correction

HRWI Thresholding

Building Shadow Mask

    - Remove Dark Shadows 

Band4 Thresholding

Georeferenced Surface 

Reflectance Data

Level 1A

ZY-3 MUX Imagery

Final

Water Results

Temporary

Water Results

Global-local Scheme

Dark Building Shade

Prediction Model

 

Figure 4. Flowchart of urban water extraction method. 

4. Results 

4.1. Water Extraction Maps 

Figure 5 shows the water extraction results using NDWI and UWEM at the five test sites. Visual 

inspection of Figure 5 indicated that the UWEM successfully extracted most of the urban water bodies 

with complete shapes, while the extracted results by NDWI were incomplete. For example, UWEM 

extracted narrow rivers in Aksu with complete shapes, whereas the extracted rivers in NDWI’s result 

were discontinuous (Figure 5a); Small ponds in Huainan were well detected by UWEM, whereas NDWI 

partially detected or even completely omitted them (see Figure 5e). At test sites Fuzhou, Hanyang, and 

Huangpo where water bodies were dominated by un-pure or polluted water bodies, such as eutrophic 

reservoirs, polluted lakes and eutrophic ponds, NDWI completely omitted some of eutrophic water 
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bodies (see Figure 5d) and had many omission errors near the polluted water bodies’ boundaries (see 

Figure 5b,c), but UWEM well detected most of these kinds of water bodies. What’s more, UWEM can 

effectively suppress the artificial construction land noises (see the white points in Figure 5) which were 

easily misidentified by NDWI. 

 

Figure 5. Comparison of water extraction results using NDWI and UWEM at the five test 

sites (NVP stands for the number of verification pixels). 

4.2. Water Extraction Accuracy 

Accuracy assessments (see Figure 6) indicate that the UWEM has a promising accuracy when 

extracting urban water bodies, with an average kappa of 0.95 and an average total commission and 

omission error of 9.26%. In comparison to the UWEM, the NDWI has a much lower average kappa 

(0.80) and a much higher average total commission and omission error (34.29%). The average total 

commission and omission error of UWEM was only 27.00% of that of NDWI. The UWEM significantly 

improved the accuracy at all test sites. At the test site in Aksu where water bodies were dominated by 

narrow rivers, NDWI achieved the highest accuracy with kappa coefficient of 0.89. However, it was still 

0.07 lower than that of the UWEM. Compared with NDWI, the total omission and commission error of 
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HRWI was reduced by 61.53%. At the test in Huainan where water bodies were dominated by small 

ponds, NDWI’s performance was not very well with kappa value of 0.84, while UWEM performed very 

well with kappa value of 0.96. At test sites in Fuzhou, Huangpo, and Hanyang where water bodies were 

dominated by un-pure or polluted reservoirs, ponds, and lakes, NDWI’s performances were poor, with 

kappa coefficients of 0.68, 0.74 and 0.87, respectively. By contrast, UWEM performed very well at these 

three test sites with kappa coefficients of 0.90, 0.96, and 0.98, respectively. The total omission and 

commission errors were reduced by 65.74%, 82.44%, and 83.51%, respectively. 

 

Figure 6. The accuracy of UWEM and NDWI at each optimal threshold. 

4.3. Threshold’s Stability 

The default threshold cannot always provide a high accuracy result because of the tempo-spatial 

variations in heterogeneous urban areas. To reduce the trial-and-error time in adjusting the threshold, the 

thresholding method need to keep good performance in a range of thresholds near the default value. 

Figure 7 shows the accuracy of UWEM and NDWI in the neighborhood of the default threshold value 

including each optimal value. The accuracy variation of UWEM is more stable than that of NDWI in 

terms of both the range [−0.05, 0.05] and the range [−0.1, 0.1] (see Table 6). Moreover, the UWEM can 

provide good performance at default values (e.g., the minimum kappa value is 0.9) (see Figure 7). 

Therefore, the UWEM alleviates the manual trial-and-error issue which is often normal and serious in 

water indices [41]. 



Remote Sens. 2015, 7 12349 

 

 

 

Figure 7. The accuracy of the UWEM and NDWI at five test sites in a range of thresholds near zero. 

Table 6. Standard Deviation of Kappa values in a range of thresholds near zero using 

UWEM and NDWI (the step in each range is 0.01). 

Method Range 
Aksu Hanyang Fuzhou Huangpo Huainan 

STD(Kappa) STD(Kappa) STD(Kappa) STD(Kappa)  STD(Kappa) 

UWEM [−0.05, 0.05] 0.027 0.008 0.042 0.029 0.036 

NDWI [−0.05, 0.05] 0.098 0.075 0.153 0.034 0.176 

UWEM [−0.1, 0.1] 0.052 0.013 0.095 0.067 0.069 

NDWI [−0.1, 0.1] 0.257 0.215 0.197 0.082 0.269 

5. Discussion 

The performances of UWEM are better than that of NDWI in terms of accuracy and stability under 

various urban backgrounds using high-resolution ZY-3 multi-spectral images. The UWEM combined a 

new water index (HRWI) with an automated building shadow detection method. SVM model was used 

to optimize the UWEM parameters from training sets at Qingdao. The parameters were verified to be 

robust at different test sites (see Figure 6). The good performance can be explained as follows: 

1. For the shortcomings of ratio model, the coefficient model is a better choice to develop a water index, 

because it can better reflect the differences of spectral characteristics between water and other  

surface features. 

2. Unlike the general empirical algorithms [11], there are two prominent advantages in the coefficient 

model developed with SVM: the inherent default threshold of the index is zero; the index can achieve 

the largest separation between water and other land cover types. Therefore, SVM is an outstanding 

method for training coefficient index. This study provides a potential method for remote sensing 

researchers to develop a suitable water index using the coefficient model, which is of great 

significance to relative studies in the future. 

3. To reduce the commission errors caused by dark shadow, a dark building shadow prediction model 

was proposed using two spectral variables as inputs. These two variables combine the spectral 
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characteristics of a building and its shadow, making the model keep both good separation  

and stability. 

4. The automated building shadow detection method in UWEM was used to address the 

misidentification caused by dark building shadows. Figure 8 shows the extracted shadow mask at the 

test site in Huainan where background has abundant dark shadows. Visual inspection of Figure 8 

indicated good performance of the automated shadow detection method. For example, the method 

well detected shadows of different kinds of buildings (Figure 8b2). It can also well detect the 

shadows of tall buildings (Figure 8d2). What’s more, it performs well in the scenes where 

backgrounds have water bodies (Figure 8c2).  

 

Figure 8. The extracted shadow mask at the test site in Huainan using the method proposed 

in Section 3.3.4.a: the ZY-3 color composite (NIR, Red, and Green); b1: enlarged view of 

the highlighted region b in a; b2: the extracted shadow results of b1; c1: enlarged view of 

the highlighted region c in a; c2: the extracted shadow results of c1; d1: enlarged view of 

the highlighted region d in a; d2: the extracted shadow results of d1. 

In order to show the role of the proposed shadow detection method, we compared the accuracy results 

of HRWI, NDWI, HRWI with shadow detection method (SDM), and NDWI with SDM (NDWIS) at 

each optimal threshold (see Table 7). UWEM, which combines HRWI with SDM, showed the best 

performance with the highest accuracy in detecting urban water bodies in all cases. The NDWIS did not 

achieve a high accuracy in each test site even though it had higher accuracy than NDWI in Hanyang and 

Huainan, with the help of SDM. The reason is that SDM cannot remove the noises caused by buildings, 

and NDWI in NDWIS has to raise the threshold to suppress the signal of the buildings (such as bright 

building and dark building, see Table 3) at the cost of increasing the omission error. Using only HRWI 

cannot guarantee high accuracy in test sites where backgrounds have many dark shadows, such as 

Huainan and Fuzhou. The reason is that only HRWI has to raise the threshold to suppress the signal of 

dark shadows (see Table 3) at the cost of increasing the omission error. Therefore, we can conclude that 
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HRWI and shadow detection method should be applied together in order to extract urban water bodies 

with high accuracy and robustness. 

Table 7. Summary of the accuracy using HRWI, NDWI, UWEM, and NDWI with shadow 

detection method at each optimal threshold. (OE stands for omission error, CE stands for 

commission error, NDWIS stands for NDWI with shadow detection method). 

Method 
Aksu Hanyang Fuzhou Huangpo Huainan 

Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% 

HRWI 0.91 15.58 1.97 0.97 3.04 1.90 0.78 30.37 11.33 0.96 5.07 2.21 0.83 28.94 0.60 

NDWI 0.89 15.3 6.85 0.87 12.47 9.60 0.68 42.67 13.78 0.74 32.2 9.26 0.84 22.86 6.48 

UWEM 0.96 4.53 3.99 0.98 1.42 2.22 0.90 6.81 12.53 0.96 5.07 2.21 0.96 4.27 3.24 

NDWIS 0.89 15.3 6.85 0.88 11.75 8.94 0.68 42.67 13.78 0.74 32.2 9.26 0.88 20.89 1.59 

Although high-resolution images have been available for a few decades, urban environment studies 

still lack automated methods to characterize urban water extent with adequate detail. The UWEM is a 

simple and automated method based on high-resolution imagery that fills this gap. Urbanization makes 

land cover in general, and water-related features in particular, change more rapidly [1]. Small water 

bodies are the most susceptible [15,16]. The UWEM performed well when extracting small water bodies, 

thereby providing a useful and efficient tool with which man-made urban surface water change can be 

easily monitored.  

Despite a number of improved methods on water mapping [11,23–25] have been proposed, few tests 

have been undertaken on various water conditions. On the other hand, testing in various environments 

with enough number of test sites is particularly important when extracting urban water bodies. The 

proposed algorithm provides consistent and accurate water detection results for a variety of water 

conditions with respect to turbidity, eutrophication and pollution. Thus, the extracted urban surface water 

is reliable for urban surface water change analysis and can also serve as basic information for further 

analyses of water quality. 

Here, three points should be noted when applying UWEM in other urban areas. First, it is suggested 

that atmospheric correction should be applied. If the HRWI is just calculated using top-of-atmosphere 

(TOA) reflectance, the accuracy and optimal threshold values may differ slightly from those observed 

in this study. Second, those water bodies whose surfaces are totally covered by phytoplankton or aquatic 

vegetation cannot be extracted correctly and need to be dealt with using alternative methods. Third, the 

dark building shadow prediction model helps effectively suppress dark shadows, making the UWEM 

more accurate and stable. However, if the dark shadows are connected to SWB, the model may degrade 

accuracy. It is a difficult problem, yet can be remedied by editing to produce an accurate building shadow 

mask, and then combine it with the HRWI to accurately map water bodies in urban areas.  

6. Conclusions 

We developed a water extraction scheme to delineate urban surface water with high-resolution 

imagery for urban environmental studies and applications. Using ZY-3 multi-spectral imagery, we 

proposed a new water index named High Resolution Water index (HRWI) designed for high-resolution 

remote sensing imagery. A building shadow detection method, which combines the spatial and spectral 
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features, was introduced to remove dark building shadows often existing in urban areas. With four cities 

having different climate and topography in China, accuracy assessment results showed that this 

algorithm had a good performance with average kappa coefficient of 0.95 and average total commission 

and omission error of 9.26%. Compared with NDWI, this algorithm significantly improved accuracy by 

lessening commission and omission errors by 73.00%. What’s more, this algorithm has good 

performances in a range of thresholds near default value, which means that this algorithm can keep good 

performance with high accuracy, stability, robustness irrespective of different environment conditions 

in different test sites. 

It is believed that this algorithm, which combines a new water index with a building shadow detection 

method, can significantly improve the urban surface water detection accuracy, and should promote high 

resolution remote sensing imagery’s integration in urban hydrological applications. 
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