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Abstract: Ecological measurements in marine settings are often constrained in space and time,
with spatial heterogeneity obscuring broader generalisations. While advances in remote sensing,
integrative modelling and meta-analysis enable generalisations from field observations, there is
an underlying need for high-resolution, standardised and geo-referenced field data. Here, we
evaluate a new approach aimed at optimising data collection and analysis to assess broad-scale
patterns of coral reef community composition using automatically annotated underwater imagery,
captured along 2 km transects. We validate this approach by investigating its ability to detect spatial
(e.g., across regions) and temporal (e.g., over years) change, and by comparing automated annotation
errors to those of multiple human annotators. Our results indicate that change of coral reef benthos
can be captured at high resolution both spatially and temporally, with an average error below 5%,
among key benthic groups. Cover estimation errors using automated annotation varied between 2%
and 12%, slightly larger than human errors (which varied between 1% and 7%), but small enough to
detect significant changes among dominant groups. Overall, this approach allows a rapid collection
of in-situ observations at larger spatial scales (km) than previously possible, and provides a pathway
to link, calibrate, and validate broader analyses across even larger spatial scales (10–10,000 km2).

Keywords: XL Catlin Seaview Survey; coral reefs; monitoring; support vector machine

1. Introduction

Understanding the underlying drivers and causal factors determining the existence and sustainability
of coral reefs has been propelled by the rapid degradation of these ecosystems [1,2]. These issues
include Crown-of-Thorns outbreaks [3], coral bleaching and mortality [4,5], and damage from tropical
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storms [6], in addition to the impacts of sedimentation, nutrient run-off, and pollution [7]. Given the large
footprint and cumulative effect of perturbations caused by these stressors, understanding their
net effect on coral reef communities requires system-wide analysis, and generates research and
management demand for broad-scale (>10,000 km2), standardised data sets. This is especially
important given the rapid ocean warming and acidification, effects of which are predicted to produce
large-scale changes that are beginning to occur across the planet at regional and global scales [8,9].

While meta-analysis can be an efficient way to synthesise underwater assessment efforts and generalise
within and throughout regions [10–14], variability across spatial scales, multiple observers, metrics
and methodologies can pose serious challenges for broad generalisations [1,14]. Alternatively, integrative
and multi-disciplinary approaches using extensive field observations, optical remote-sensing datasets
(satellite- and aerial-derived products) and modelling tools have the potential to enable investigators
to scale up field observations in order to understand processes driving change in coral reefs [6,15–17].
Irrespective of the approach used to understand reef functioning and change, there is a fundamental
need for broad-scale and standardised field data to accurately record and understand reefs under
transition in order to provide informed management advice in a timely manner [1,2].

Optical remote sensing provides broad-scale aerial coverage of coral reef systems (e.g., 10,000 km2)
with every pixel assessed relative to its habitat composition and with pixel size determining the
level of benthic detail mapped, resulting in 100% coverage of the study area [18]. However, optical
remote-sensing products do not provide sufficient detail and reliability when compared to field-based
measurements [19]. Conversely, field-based observations, while critical for the calibration of remote-sensing
imagery and validation of the resulting maps [17,20], typically cover only small areas (<1%) of the
study site [21].

Over the past three decades, underwater photography and videography has become increasingly
accessible and is now widely used for monitoring coral reef benthic communities. Recent advances
in digital photographic technology have enabled more efficient ways of obtaining observations and
collecting data on the state of coral reef ecosystems [17,22,23]. Underwater vehicles, as well as
diver-acquired methods [24–27], have also extended the capability of capturing large volumes of
photographic records. Such is the case of the approach we evaluate here, the XL Catlin Seaview Survey
(CSS), a method aimed at evaluating spatial and temporal patterns of benthic community structure
in coral reefs using high-resolution imagery collected across linear transects (~2 km in length) by
a customised underwater diver propulsion vehicle [24]. Insofar as the necessity for field data persists,
the underlying challenge is shifting from a focus on the generation of information to a focus on the
capacity of new tools to decode such information into meaningful metrics, which can extend our
understanding of how coral reefs are impacted by a rapidly changing environment.

The challenge of rapid and accurate analysis of large volumes of images has led to productive
collaborations between marine and computer science. While automated image analysis is extensively
used in satellite image analysis [28] and plankton ecology [29], its application to coral reef systems
is relatively new. Such methods, which typically rely on machine learning to map visual attributes
of images to semantic classes, are enabling marine scientists to extract useful ecological data from
photographic records [30–32] at speeds significantly faster than manual methods [24]. Furthermore,
the development of photographic sensors and computer vision methods has enabled integration of
new approaches in coral reef ecology to quantify a range of other metrics relevant to the discipline
(e.g., reef terrain complexity [33,34] and fish abundance [35]).

Previous studies have revealed the potential of automated image annotation to rapidly optimise
data mining from underwater imagery and generate reliable ecological metrics relative to coral
reefs [30,36–38]. While there is high fidelity between human and automated annotations, the latter
tend to introduce a level of variability or “noise” to the benthic coverage estimations, perhaps attributed
to changes in image quality over time and space (e.g., light, water clarity and distance of the camera
from the substrate, etc.) [24,30]. This raises the question of whether such methodologies as those
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used in the CSS produce viable outcomes for detecting and monitoring reef-scale changes in benthic
composition over time and at large spatial extensions (>10,000 km2)?

Here, we validate the application of automated image analysis on field imagery collected by
the CSS [24] with a central aim of scaling up underwater observations of coral reefs. In particular,
we explored and analysed the error introduced by automated image classification when it is used to
estimate changes in benthic community composition across large spatial (regional) and temporal scales
(years). Using imagery collected at multiple sites across 49 reefs from the Great Barrier Reef (GBR) and
Coral Sea Commonwealth Marine Reserve (CSCMR), we discuss the fidelity of automated and human
estimations in the context of variability introduced by multiple observers, in order to understand,
describe and offer potential applications and limitations of this technology.

2. Material and Methods

2.1. Study Site

Data were collected in 2012 and 2014, and extracted from a total of 107 transects, comprised
of 126,700 images and totalling 325,000 m2 of area surveyed across the outer reefs of the GBR and
three main atolls in the CSCMR: the Flinders, Holmes and Osprey reef atolls (Figure 1). A subset of
these transects was resurveyed in 2014 in the northern GBR (Figure 1), following the impact of category
5 Tropical Cyclone Ita. The re-survey data were used to evaluate the ability of the technique to detect
temporal changes.

Remote Sens. 2016, 8, 30  3 of 20 

 

in the CSS produce viable outcomes for detecting and monitoring reef-scale changes in benthic 
composition over time and at large spatial extensions (>10,000 km2)? 

Here, we validate the application of automated image analysis on field imagery collected by the 
CSS [24] with a central aim of scaling up underwater observations of coral reefs. In particular, we 
explored and analysed the error introduced by automated image classification when it is used to 
estimate changes in benthic community composition across large spatial (regional) and temporal 
scales (years). Using imagery collected at multiple sites across 49 reefs from the Great Barrier Reef 
(GBR) and Coral Sea Commonwealth Marine Reserve (CSCMR), we discuss the fidelity of 
automated and human estimations in the context of variability introduced by multiple observers, in 
order to understand, describe and offer potential applications and limitations of this technology. 

2. Material and Methods 

2.1. Study Site 

Data were collected in 2012 and 2014, and extracted from a total of 107 transects, comprised of 
126,700 images and totalling 325,000 m2 of area surveyed across the outer reefs of the GBR and three 
main atolls in the CSCMR: the Flinders, Holmes and Osprey reef atolls (Figure 1). A subset of these 
transects was resurveyed in 2014 in the northern GBR (Figure 1), following the impact of category 5 
Tropical Cyclone Ita. The re-survey data were used to evaluate the ability of the technique to detect 
temporal changes. 
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Figure 1. (A) Survey locations of the XL Catlin Seaview Survey in the (B) Great Barrier Reef (solid line)
and Coral Sea Commonwealth Marine Reserve (dotted line), Queensland, Australia. Survey transects
are shown in blue, while test sites are highlighted in red; (C) A detail of a specific transect is shown,
where the sampling unit is depicted in red; (D) Images are collected along each 2-km transect using
a customised diver propulsion vehicle; (E) Capturing underwater imagery of the reef benthos every
three seconds.
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2.2. Field Image Collection

A customised diver propulsion vehicle with a camera system mounted on it (named SVII,
Figure 1D), consisting of three synchronised Cannon 5D-MkII cameras, was used to survey the
fore-reef habitats in the outer reefs of the GBR and CSCMR. Images (21 Mp resolution) were collected
every three seconds, approximately every 2 m, following a linear transect, averaging 1.8 km in length,
along the 10 m depth contour (Figure 1C–E). Images were geo-referenced using a surface GPS unit
tethered to the diver [24]. An on-board tablet computer enabled the diver to control camera settings
(exposure and shutter speed) according to light conditions. Depth and altitude of the camera relative
to the surface and the reef substrate were logged at half-second intervals using a Micron Tritech
transponder (altitude) and pressure sensor (depth). This meta-data allowed for selection of imagery
within a particular depth and altitude range (9–10 m depth and 0.5–2 m altitude) needed to maintain
consistency and address variable environmental conditions, as well as ensuring a spatial resolution
for each image of approximately 10 pixels¨ cm´1 (ratio between the number of pixels contained in
the diagonal of the image and its estimated size in centimetres). Using the geometry of the lens and
altitude values, this pixel to centimetre ratio was calculated to crop the image to standardised 1m2

photo quadrants. Details are provided in González-Rivero et al. [24].

2.3. Image Analysis

2.3.1. Label Set for Benthic Categories

A label set of 19 functional categories was established (Table 1). These categories were chosen for
their functional relevance to coral reef ecosystems and their ability to be reliably identified from images
by human annotators [38]. Four broad groups represent the main benthic components of coral reefs in
the GBR and CSCMR: “Hard Corals”, “Soft Corals”, “Algae”, and “Others”. Hard corals comprise
11 functional groups classified based on a combination of taxonomy (i.e., family) and colony shape
(i.e., branching, massive, encrusting, plating, and tabular). These groups were derived, modified and
simplified from existing classification schemes [39,40]. Soft corals were classified and represented by
three main functional groups: (1) Alcyoniidae soft corals, in particular the dominant genera; (2) sea
fans and plumes from the family Gorgoniidae; and (3) other soft corals.

Table 1. Label set defining of the benthic categories employed for the classification of coral reefs benthos
in the Great Barrier Reef (GBR) and Coral Sea Commonwealth Marine Reserve (CSCMR), Australia.

Group Short Name Taxonomic Description Overall Functional Attributes Ref.

Hard Coral

Acr. branching
Family Acroporidae, branching
morphology (excluding
hispidose type branching).

Major reef framework builders.
Competitive life-history strategy:
fast-growing species, spawning reproduction,
high susceptibility to thermal stress
(bleaching) and wave action. Provide habitat
to a range of other reef-dwelling species.

[41–47]

Acr. hispidose Family Acroporidae, hispidose
morphology

Competitive life-history strategy:
fast-growing species, spawning reproduction,
high susceptibility to thermal stress
(bleaching) and wave action.

[44–47]

Acr. other Other corals from the family
Acroporidae (e.g., Isopora)

Brooding reproduction, severe/high
susceptibility to thermal stress, and
low/moderate susceptibility to wave action.

[44,45,47,48]

Acr. encrusting Family Acroporidae, plate and
encrusting morphologies

Major reef framework builders.
Competitive and generalist life-history
strategies: fast/moderate growth rates,
spawning reproduction, high/severe
susceptibility to thermal stress, moderate to
low susceptibility to wave action.

[43–46,48]
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Table 1. Cont.

Group Short Name Taxonomic Description Overall Functional Attributes Ref.

Acr. Tabular
Family Acroporidae,
table, corymbose and
digitate morphologies

Major reef framework builders.
Competitive life-history strategy:
fast-growing species, spawning reproduction,
high/severe susceptibility to thermal stress
(bleaching), and high to low susceptibility to
wave action. High to moderate susceptibility
to disease outbreaks. Largely contribute to
reef structural complexity.

[43–46,49,50]

Massive
meandroid

Families Favidae and
Mussidae, massive and
meandroid morphologies

Major reef framework builders.
Stress-tolerant life history: slow-growing
species, spawning reproduction, moderate
susceptibility to thermal stress, and low
susceptibility to wave action.

[43–46,48]

Other corals

Other hard coral including all
other groups not represented by
the other coral categories of this
label set.

Mixed attributes. Low/moderate
susceptibility to thermal stress. [51]

Pocillopora Family Pocilloporidae

Reef framework builders. Competitive and
weedy life-history strategies: early colonisers
in reef succession trajectories, fast-growing
species, brooding reproduction, highly
susceptible to thermal stress, but moderate
resistant to wave action. High prevalence of
coral diseases.

[43–46,48,51,52]

Por. branching Family Poritidae,
branching morphology

Weedy life-history strategy: spawning
reproduction, high/moderate susceptibility
to thermal stress.

[45,46,53]

Por. encrusting Family Poritidae,
encrusting morphology

Brooding reproduction. Low/moderate
susceptible to thermal stress. [51,54]

Por. massive Family Poritidae,
massive morphology

Major reef framework builders.
Stress-tolerant life history: slow-growing
species, spawning reproduction,
low/moderate susceptibility to thermal
stress, and low susceptibility to wave action.

[43–46,48]

Algae
CCA Crustose Coralline Algae

Major reef framework builders
and cementers. Provide key contribution to
coral reef primary production. Facilitation of
coral recruitment.

[55–58]

Macroalgae Macroalgae. All genera.

Key contribution to coral reef primary
production. Provide food source and habitat
to a range of other reef dwelling species.
Critical role during phase shifts.

[59–62]

Turf Multi-specific algal assemblage
of 1 cm or less in height

Provide key contribution to coral reef
primary production. Nitrogen fixation.
Provide food source and habitat to a range of
other reef dwelling species.

[63–66]

Others
Sand Unconsolidated reef sediment Not applicable (N/A) N/A

Other Invert. Other sessile invertebrates Mixed attributes. N/A

Soft Coral
Alc. Soft coral

Soft coral, family Alcyoniidae,
genera Lobophytum
and Sarcophytum.

An important contributor to reef’s structural
complexity and biodiversity, providing
habitat to a range of other reef-dwelling
species. Slow-growing and suspension
feeders. Spawning and asexual propagation.
Deplete large amounts of suspended
particulate matter.

[67–70]

Gorg. Soft coral Sea fans and plumes
Provide habitat to a range of other
reef-dwelling species. Spawning and
brooding reproduction. Suspension feeders.

[67–69]

Other Soft coral Other Soft corals Mixed attributes. N/A

The main algae groups were categorised according to their functional relevance: (1) Crustose
Coralline Algae (CCA); (2) Macroalgae; and (3) Turf Algae. The latter is considered a grazed assemblage
of algae species of up to 1 cm in height. The remaining group, categorised as “Other”, consisted of
sand and other benthic invertebrates (Table 1).
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2.3.2. Point Annotations

All manual image annotations were conducted using point-sampling methods, sensu the Coral
Point Count Method [71], adapted to GBR species and functional groups (Table 1). In this method
a number of points are overlaid over the image at random locations, and the substrate types at each
point location are assigned to one of the labels (Table 1). We used the point annotation tool of CoralNet
for all manual annotation work [72]. A summary of the images and point annotations used in this
work is provided in Table 2.

Table 2. Summary statistics of the annotation effort employed in this study for training the machine
and validating the automated image estimations.

Description # Images # Points¨ Image´1 # Sites

Training of automated annotator 1237 100 N/A
Spatial error 1042 40 41

Temporal error 335 40 7
Inter-observer variability 124 40 5

2.3.3. Automated Estimation of Benthic Composition

In order to automatically estimate benthic composition from collected imagery, we used a machine
learning method, Support Vector Machine (SVM) [73], to automatically classify or identify benthic
substrate categories from images based on a training provided by human annotators. In general terms,
SVM are supervised classification models with associated learning algorithms that recognise patterns
from data (in our case, visual parameters described below) to discretise categories assigned a priori
(Table 1). Given a set of training examples, each one marked for belonging to a given category, a SVM
training algorithm builds a classifier that assigns new examples into one category or another.

A total of 1237 images were randomly drawn from the pool of 126,700 images and used as training
data for the automated annotator. Training images were annotated by a human annotator at 100-point
locations per image (Table 2), where the substrate beneath each point was identified to the taxonomic
resolution described herein (Table 1). The goal of the automated annotation method was to learn
from the human annotations and to automatically analyse the remaining 125,463 images (representing
approximately 1% of the total number of images in the dataset). Although the automated annotation
method can technically annotate every single pixel in every single remaining image, here we followed
the standard point sampling protocol and only created automated annotations at 100 randomly selected
points per image. The reasoning for this was twofold: (1) to ensure straight-forward comparisons
to percentage cover estimates from the human annotations; and (2) because studies indicate that the
estimation error is small if the number of points per image is sufficiently large (>10) [71].

We adopted the automated annotation method of Beijbom et al. [30,38]. In this method, the visual
parameters of texture and colour descriptors are first encoded as 24-dimensional vectors for all pixels
in all images. This information is then summarised into a 250 ˆ 250 pixel neighbourhood [38] (which
roughly corresponds to 25 ˆ 25 cm of substrate) around each point of interest (e.g., a labelled point in
the trained data or a point in the unlabelled images) using Fisher Encoding [74], resulting in a 1920
dimensional “feature” vector. The feature vectors extracted from the training data are used to train
a linear SVM and the trained SVM is finally used to annotate entire datasets from 2012 and 2014,
including the “validation set” discussed below. We use the publicly available code [75] to extract the
features and liblinear [76] to train the SVM, all performed within a MATLAB environment (MATLAB
2014a, MathWorks, Inc., Natick, MA, USA). Feature extraction required ~20 s per image, SVM training
required ~1 h for training and <1 s per image with 100 points per image, which approximately
translates to an automated analysis rate of 170 images per hour for benthic coverage.
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2.4. Validation of Automated Analysis of Field Imagery

In order to validate automated annotations, we performed a cross-validation exercise between
machine and human estimations of benthic cover. Specifically, we evaluated two types of errors for
detecting patterns in benthic composition using automated image annotation: (1) error variability
across a large spatial extent (GBR and CSCMR), accounting for inter-reef variability in composition,
appearance and light conditions; and (2) error for detecting temporal change in a given reef.
These analyses are contextualised by comparing machine-introduced variability (error) to human
inter-observer variability, which enabled the determination of thresholds for pattern detection using
automated annotation. These results provide an important benchmark regarding the opportunities
and limitations of rapid, broad-scale and automated assessment tools.

2.4.1. Evaluation Sites

Coral reefs are heterogeneous ecosystems composed of spatial patterns that range from the scale
of an individual to that of an ecosystem [77,78]. At the broadest spatial scales, physical processes are
the dominant determinant of spatial structures, whereas biological processes override the effects of
environmental processes at fine spatial scales [79,80]. Here, we use spatial autocorrelation analysis
to set a scale of reference to depict assemblages of communities on the reef where behaviour is more
predictable. Without a set reference, we are left with a spectrum of spatial scales where, at one end, we
are describing the noise in the data (spatial units smaller than the spatial range of the pattern), while
at the other end we are failing to detect patterns because multiple assemblages are aggregated into
a single spatial unit (spatial units larger than the spatial range of the pattern).

Therefore, it was necessary to identify a minimum sampling unit from the kilometre-scale transects
derived from the CSS in order to assess the ability of the machine to capture benthic community
composition patterns across time and space in a replicable and predictable fashion. To do so, we
determined a standard scale for replicable and predictable patterns of community composition by
investigating the multivariate spatial autocorrelation of benthic coverage (Appendix). Using this
approach, we were able to standardise a sampling unit (hereafter: “site”) from the 2 km transects
collected by the CSS to 70 m subsections which best account for local heterogeneity of a given reef
(Figure 1), and we ensured replicability by maximising the detection of change across space and time
(details provided in the Appendix).

2.4.2. Estimating Error across Space

A total of 41 sites containing a total of 1042 images were randomly selected across the GBR and
CSCMR transects from 2012 and 2014. These images are hereafter collectively denoted “validation
set”, and were selected to eliminate overlap with the set used to train the machine learning algorithm
(Figure 1, Table 2). All images in the validation set were manually annotated at 40 points per image
using the random point methodology detailed above. The relative cover of 19 benthic categories
(Table 1) was averaged for all the images present within each site, and the error estimated as the
absolute difference between the machine and a human annotator (Equation (1)):

Sk,z “

ˇ

ˇ

ˇ
ci,k,z ´ cj,k,z

ˇ

ˇ

ˇ
(1)

where S is the spatial error of automated annotation across sites (z) for a given benthic category or
label (k), c represents the mean percentage cover of label k at site z, as estimated by the human (i) or
the automated (j) annotator.

The distribution of the absolute errors followed a non-normal and skewed distribution, thus the
geometric mean was calculated to represent the average error among sites for each label category.
Non-parametric bootstrap simulations were used to estimate the 95% confidence intervals around the
mean [81].
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While S (Equation (1)) provides the necessary details for understanding the limitations of the
methods for each category, a broad analysis on the differences between automated and manual
estimations was provided using a community approach. Specifically, Diversity (Shannon-Weiner
Index—H’), Evenness (Pielou index—J’), and Community Dissimilarity (Bray-Curtis index) indices
were used to describe the variability in the automated estimates compared to manual estimates from
a compositional perspective.

Diversity indices measure the community biodiversity by considering the number of species, or
groups, and their proportional abundance. While diversity is central to the compositional structure
of the community, comparative analysis may be difficult because diversity indices combine both the
number of species (richness) and their dominance (evenness). Therefore, we also included an index for
evenness (Pielou index—J1) derived from the Shannon Index, which is commonly used in ecology [82],
to evaluate the capacity of machine annotations to capture the species contribution to the community
composition. Bray-Curtis dissimilarity (Equation (2)) was used as a summary metric to quantify
the pair-wise compositional dissimilarity between automatic and manual estimations, based on the
percentage cover of each benthic category.

BCk,z “ 100

řn
k“1

ˇ

ˇ

ˇ
ci,k,z ´ cj,k,z

ˇ

ˇ

ˇ

řn
k“1

ˇ

ˇ

ˇ
ci,k,z ` cj,k,z

ˇ

ˇ

ˇ

(2)

where BC represents the Bray-Curtis dissimilarity and c is the relative abundance of each benthic
category (k) for a given site (z) where percentage cover has been estimated manually (i) and
automatically (j). Using this metric, a value of zero means a complete congruence between manual
and automated estimations of the community composition, while a value of 100 means complete dissimilarity.

2.4.3. Estimating Error in Detecting Change over Time

Following a major cyclone impact on the GBR in 2014, a subset of 40 transects from 2012 were
re-surveyed in 2014. Using this dataset, we evaluated whether temporal changes in benthic composition
can be resolved using automated image annotations. For this purpose, seven sites were selected within
a gradient range of impact assessed at being between 0 and 40% loss in coral cover. Images contained
within these sites for 2012 and 2014 surveys were automatically annotated and contrasted against
human annotations. For each site, the benthic coverage for each label category was averaged and the
error of detecting change was calculated as the absolute difference between the automated and human
estimates of change for each of the 19 labels (Equation (3)):

TEk,z “

ˇ

ˇ

ˇ
∆ci,k,z ´ ∆cj,k,z

ˇ

ˇ

ˇ
(3)

where TE is the temporal error of machine annotation in detecting the change for each label (k) at
a given site (z), and ∆c is the difference of mean percent cover between 2012 and 2014 (change after the
cyclone) estimated by both the human (i) and the automated (j) annotators for each label and site.

As with the spatial error, the distribution of the temporal error followed non-normal and rather
skewed distributions. Therefore, the geometric mean and bootstrap 95% confidence interval were
estimated for each label category [81].

2.4.4. Inter-Observer Variability

In order to maximise the sampling size to evaluate the error introduced by automated annotation,
previous error estimates were conducted using one human annotator as a reference. However, underlying
variability across annotators, when identifying benthic substrate [23], can compromise automated
estimates and hinder the application of this tool. On the other hand, machine estimations that resemble
or even improve human error can serve as an ideal tool. While it is expected that human observations
have higher levels of agreement than automated annotations, differences among human annotators
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across the label set can help contextualise the capacity of automated annotation in resolving different
labels being assigned. To explore inter-observer variability further, we used three different human
annotators with similar ecological backgrounds and expertise to annotate five randomly selected sites
in order to enable estimation of variability among human annotators. We assumed the average percent
cover estimates for each label across the three human annotators to be a close approximation to the
true abundance of benthic groups than any individual estimates. Human estimates in conjunction
with automated estimates for each label were compared against the average estimation among
human annotators for each sampling unit. Hence, the error estimation was calculated as the absolute
difference between each annotator (including the automated annotator) and the average estimation for
each label. The geometric mean of the difference and the bootstrap 95% confidence intervals across
sampling units were calculated as the error followed a non-normal distribution.

3. Results

3.1. Estimating Error across Space

On average, automated image annotation introduced an absolute error of 2.5% ˘ 0.2% for all 19 benthic
categories and across 41 randomly selected sites in the GBR and CSCMR. This means machine
predictions of benthic cover were, on average, 2.5% different from the estimations provided by
human annotators. Furthermore, differences were observed across different benthic categories
(Figure 2). Within the algal functional group, Turf algae estimates showed the largest error: 10.9% ˘ 2.5%.
Broad categories, such as “Other Soft Corals” and “Turf algae”, which include a number of species with
different archetypes and morphologies, generally exhibited the largest automated annotation errors.
Conversely, and despite the large phenotypic plasticity as well as the number of species grouped into
these categories, a high fidelity between the automated and human annotations was recorded.Remote Sens. 2016, 8, 30  10 of 20 
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Figure 2. Spatial (S) and temporal (T) errors from automated benthic estimations across the GBR
and CSCMR. Errors are presented for each one of the 19 labels presented in Table 1, where the short
name for each label is detailed, and aggregated by functional groups (“Hard Corals”, “Algae”, “Other”
and “Soft Coral”). Points represent the mean machine error and error bars represent the machine
error margins.
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Spatial patterns of benthic community structure across GBR and CSCMR sites, described by
indices of diversity and evenness, were captured by automated estimations (Figure 3, Linear Regression,
R2 = 0.5, p < 0.05). A relatively disperse relationship between automated and human estimates of
diversity and evenness was observed, showing increased variability when compared to more consistent
patterns observed for the spatial error (Figure 3). Using the Bray-Curtis distance as an overall metric of
dissimilarity between automated and human annotations at a community level, automated estimations
differed by 24.5% ˘ 2.9% from human estimates. As a comparison, the Bray-Curtis distance among
41 sampling units for the GBR and CSCMR atolls for manually annotation averaged 37.7% ˘ 0.8%.
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Figure 3. Comparisons of automated and manually estimated benthic composition among test sites,
using: (A) Diversity index of Shannon; (B) Evenness index of Pielou; and (C) Community dissimilarity
index of Bray-Curtis. The first two panels (A,B) represent a correlation plot of estimated (by the
machine) and observed (by human annotator) values of diversity and evenness for each test site.
The continuous line in both plots represents a fitted linear regression model to evaluate the relationship
between observed and estimated values. Linear fit, Coefficient of Determination (R2) and significance
(p-value) are shown in the graph. In panel C, the range of community dissimilarity values between
automatically and manually estimated benthic composition for each test site is presented in a density
histogram (light grey). Overall dissimilarity among all test sites (manually estimated only) across the
GBR and CSCMR (dark grey) is included for context.

3.2. Estimating Error in Detecting Change over Time

Comparisons of survey data prior to and after a major cyclone impact on the Northern GBR
(Tropical Cyclone Ita) demonstrated that automated predictions of change in benthic communities
had an error of 4.2% ˘ 3.3% (Figure 2). When examining each benthic category in detail, we found
differences in the amount of error introduced by the automated annotation among the labels, similar to
the differences found in spatial errors (Figure 2). Within the coral functional group, the temporal error
averaged 2.5% ˘ 0.6% and remained below 5% for most of the labels. The exception was the group of
hard corals from the family Acroporidae with an encrusting morphology (Acr. encrusting), where the
estimated error was 8.6% ˘ 3.9%. In regard to the algae groups, turf algae again showed the largest
error (12.1% ˘ 2.8%). The error for other substrate types, including “Soft Corals”, remained below 5%
with the exception of the broad category of soft corals, “Other Soft Corals”, which included the largest
diversity of soft corals species (5.3% ˘ 2.8%).
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3.3. Inter-Observer Variability

Human annotations were consistently more precise than machine annotations, with human error
ranging between 1% and 7% among categories (Figure 4). However, similar to automated annotation
errors, considerable variation was noted across labels, with turf algae showing the highest error among
human annotators 4.8% ˘ 0.78%. The turf algae errors were also the largest for the automated annotator.
Note that the error estimates from machine annotations are greater than in Figure 2. This is most likely
due to a lower sampling size for this exercise (41 vs. 5 sites). Therefore, our results were interpreted
based on the relative difference between machine estimation errors and inter-observer variability.
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Figure 4. Inter-observer variability in the estimation of benthic composition for a subset of sites (n = 5)
compared against the error introduced by the automated annotator. Error is presented for each one
of the 19 labels presented in Table 1 and aggregated by functional groups (“Hard Corals”, “Algae”,
“Other” and “Soft Coral”). Points represent the mean machine error and error bars represent the
machine error margins.

4. Discussion

Overall, the percentage cover estimated from automated annotations captured spatial and
temporal patterns of benthic community composition across the GBR and CSCMR, but with higher
quantification errors the than inter-observer variability among human annotators. Our study reveals
that machine estimates can measure changes in benthic composition, over time and space, with a minimum
detection threshold ranging from 2% to 12% among 19 benthic categories. Using this approach,
the method described here has the capacity to gather ecological metrics at kilometre scales with
consistently low errors. The generation of standardised, high-definition and spatially sound datasets,
via the methods described here, presents an opportunity to fill key data gaps (e.g., stock assessment,
biodiversity, temporal trends) [17] and to track and understand the functional attributes of coral reef
systems across broad temporal (e.g., years to decades) and spatial (e.g., >10,000 km) scales. This methodology
is limited by a narrower taxonomic precision when compared to many smaller and more controlled
photographic or in-situ surveys. These are clearly trade-offs that need to be considered in applying “hands-on”
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versus semi-automated survey technologies [22,23,30]. Advances and further improvements in
image capturing and analysis tools are likely to reduce this limitation over time and are further
discussed herein.

4.1. Error across Space

Mean estimations of the spatial error, introduced by the automated analysis, varied among
categories and averaged 2.5%. These errors increased with the functional aggregation of communities
(e.g., diversity and dissimilarity indices). Overall, the relative impact on this error of the data
interpretations will depend on the relative abundance of the organisms, taxonomic resolution and the
ecological relevance of the variability recorded. While we observed a relatively low estimation error,
the noise introduced by the automated analysis may lead to misinterpretations of rare categories for
which the average abundance is similar to the quantification errors estimated here (2%–3%). The impact
of automated analysis errors on the assessment of more dominant benthic groups, on the other hand,
is less pronounced. For example, the mean abundance of hard corals in the GBR and CSMCR ranged
from 21% to 31%, in accordance with other studies [50,83,84], and the error of automated estimations
averaged to <5%. The errors reported here fall within the expected values for these sites considering
the complexity of their respective substrates.

Such variability in the representation of rare and dominant categories is carried over in
community structure metrics, where indices of diversity and evenness are sensitive to the abundance
of rare categories [85]. Hence, greater variability in the automated estimations of diversity and
evenness was observed, although the ability of the machine to capture spatial trends was preserved.
Community structure estimation errors can be summarised by measuring the dissimilarity in the
community assemblage estimated by the machine when compared to a human annotator, following
a traditional approach in community ecology [86]. In this study, we observed that automated
estimations of benthic composition differed, on average, from the reference (human estimations)
by 25% (Bray-Curtis dissimilarity). However, large heterogeneity of benthic community assemblages
has been found in the GBR and CSCMR [83,87], where dissimilarity metrics of benthic assemblages
typically range from 40% to 60% [84], and concurs with these results as observed in the Bray-Curtis
dissimilarity of reference sites across the GBR and CSCMR (Figuew 3C). Therefore, while the method
described here provides advantages for broad-scale community assessments, restrictions may apply
to fine comparisons of benthic assemblages where automated annotation errors may obscure subtle
differences among communities.

4.2. Error in Detecting Change over Time

The automated annotator estimated the temporal change of benthic composition with similar
levels to the spatial error recorded (2%–12%, mean among labels). As with intra-year comparisons, the
noise added by the automated annotator for temporal change relative to community composition may
affect the interpretation of subtle changes, suggesting the applications of this approach as more suitable
for mid-range temporal scales (years or decades) as opposed to subtle inter-seasonal fluctuations.
As a reference, coral cover has decreased in the GBR by as much as 25%–30% over the past three
decades [6,50], while less representative coral species can fluctuate around 5% [83]. Our results
suggest the detection of subtle temporal variations of coral categories (<5%) may be hindered by the
noise of automated estimations. Nonetheless, this approach has the capacity to provide detailed and
broad-scale information on significant temporal changes (>2%–12%, depending on the categories) in
coral reef benthic communities, thus providing data required for assessing causes and consequences of
accelerated coral reef degradation over large extents [1].

4.3. Sources of Error

Errors introduced by the automated estimation of percentage cover of benthic groups across
the GBR and CSCMR (spatial and temporal errors) can be attributed to two methodological caveats:
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(a) image quality as a result of variability in reef appearance, underwater light irradiance and distance
of the camera to the substrate; and (b) complexity of the label set, where groups enclosing many
species with high morphological variation and phenotypic plasticity introduce a large variability due
to overlapping visual features that challenges classification [30]. Since the imaging technique does
not use artificial light, underwater light irradiance and reef light reflection pose imaging challenges.
To compensate for this, fish-eye lenses, high-dynamic range cameras, and flexibility to adjust the
camera ISO (International Standards Organization) settings on the fly, optimise the amount of light
captured by the camera [24]. An on-board altitude sensor records the distance from the camera to the
substrate, which enables the selection of only those images taken within a range from 0.5 to 2 m above
the substrate to maintain a fixed resolution for the imagery [24].

Taxonomic resolution and morphological plasticity within the label set can also affect the
capacity of automated and manual methods to accurately estimate composition and abundance [23,30].
Quantification of benthic composition from underwater images is limited by the level of taxonomic
identification that can be resolved [23,24,30], whereas high-taxonomic resolution (e.g., species level)
requires quantifying micro-scale morphology and internal structures of the reef organisms. In addition,
species and groups of species exhibiting large morphological variations [88] may have visual attributes
or features that overlap among groups, therefore hindering the capacity of automated classification
to accurately resolve these classes. Furthermore, depending on the taxonomic aims of the study,
taxonomically challenging categories are more prone to human errors, which are carried across to
machine estimations from training data sets [22,23,30]. Therefore, the classification reference or label
set needs to be designed in such a way that it conveys the taxonomic resolution which is functionally
relevant for the intended study while acknowledging the taxonomic limitations of underwater image
analysis, both manually and automatically [30,40].

4.4. Future Directions

While we acknowledge a higher taxonomic resolution can be achieved from underwater images [22,23,40],
here we used a conservative approach. In this study, we amplified the benthic categorization compared
to a previous study [24] whilst maintaining a relatively low number of taxonomic groups categorised
by their functional traits (Table 1) and ensuring minimal overlap of visual features among labels.
Further research is needed to evaluate the feasibility of expanding the resolution of taxonomic
identifications and the capacity of automated methods to discern among labels.

Looking forward, our results indicate that there is room for improvement and the errors reported
here can be further reduced by two orthogonal developments. The first involves recent development
in the field of automated image analysis using deep Convolutional Neural Networks (CNNs) which
have dramatically increased the classification accuracy for a wide range of images [89,90]. The second
involves the opportunity to complement the RGB camera used here with multi-spectral or fluorescence
cameras [91]. In this case, collecting additional spectral information could improve the ability to detect
additional spectral signals, thereby improving precision and accuracy when distinguishing visually
overlapping categories.

5. Conclusions

Overall, automated quantification of the relative abundance of coral reef functional groups, over
time and space in the GBR and CSCMR, resulted in a relatively low error (2%–12% among labels) when
compared to the human variability of benthic abundance estimations by multiple human annotators
(1%–7% among labels). While limitations apply to the interpretation of this semi-automatically
generated data, overall spatio-temporal changes in benthic community structure can be captured
by this technology. Acknowledging the limitations previously discussed, this approach allows the
scaling up of coral reef assessments by capturing underwater-water observations over large extensions
(2 km transects) and processing such observations (images) at much faster rates than manual image
analysis (about 170 image¨ h´1). Data generated in this way can also contribute to more geographically
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comprehensive and integrative approaches (e.g., [27,92]) to improve assessment of the functionality
and temporal variability for reef systems at regional scales (10–10,000 km) and provide important and
informed management advice [93].
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Appendix

Defining Sampling Units by Structure Functions

Spatial autocorrelation is a common phenomenon in ecosystems and underlines the first law of
geography: “Everything is related to everything else, but near things are more related than distant
things” [94]. The structure function defined by this spatial correlation results from both environmental
(induced) processes and biotic (inherent) processes interacting on the community [95,96]. Here we
described the relation between the spatial structure of each transect and the inter-image distance
by means of structure functions [93,94] where autocorrelation is quantified by the Mantel statistic
Equation (A1) [95]:

Z “

n
ÿ

i“1Ni‰j

n
ÿ

j“1Nj‰i

wijxij (A1)

where Zm is the mantel statistic; wij is Euclidean distance (geographic) matrix among n images
per transect; and xij is Hellinger distance (community) matrix among images. Hellinger distance
was calculated as the Euclidean distance of Hellinger transformed benthic coverage per image [97].
To compute a Mantel correlogram, the matrix wij was converted to a connectivity distance class matrix.
A spline correlogram was then used to describe the structure function of the Mantel index as a function
of continuous distance, allowing (1) a continuous estimate of the spatial covariance function instead
of a discretised approximation like correlograms; and (2) a confidence envelope calculated around
the spline using a bootstrap algorithm [98]. Large-scale spatial trends on the data were minimised, or
de-trended, by identifying significant spatial trends associated with environmental gradients using
polynomial regressions of all variables (benthic cover of 19 categories) on the X-Y coordinates [99].
For the de-trending of data, residuals from selected polynomial regression models (step-wise selection)
were used to construct the correlograms. The structure of spatial autocorrelation was calculated
individually for each surveyed transect, and the x-intercept of the spline and bootstrap confidence
interval envelop was used to estimate the spatial range of benthic communities.

On average, the scale of patterns of benthic assemblages in the GBR and CSMR varied between
30 and 170 m along each transect (Figure A1). Within this range, the spatial autocorrelation was
the highest and community composition was more homogeneous, therefore representing an ideal
sampling size to better describe the attributes of community assembly. Here we use the upper limit
of the confidence interval around the mean across 107 transects (70 m) as the size threshold of the
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sampling size for evaluating the performance of automated annotations in describing the benthic
structure of coral reefs in the GBR and the Coral Sea (Figure A2).
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Figure A1. Examples of multivariate spatial autocorrelation of benthic communities in the GBR
and CSCMR. These correlograms show the spatial autocorrelation structure of two transects as
an example of the spatial structure of reef benthic assemblages with (A) large and (B) small spatial range.
Autocorrelation is calculated by Mantel correlation index of spatially de-trended data as a function of
linear distance between sample points. The line represents the fitted spline after 1000 permutations of
the data and the shaded polygon shows the standard deviation of these permutations. Vertical dotted
lines represent the range of the standard deviation where the splines intercept the x axis, or the range
of distance between sampling points from where spatial autocorrelation is minimal (spatial range).
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