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Abstract: A critical analysis of remote sensing image fusion methods based on the super-resolution
(SR) paradigm is presented in this paper. Very recent algorithms have been selected among the
pioneering studies adopting a new methodology and the most promising solutions. After introducing
the concept of super-resolution and modeling the approach as a constrained optimization problem,
different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically
discussed. Concerning pan-sharpening, the well-known, simple, yet effective, proportional additive
wavelet in the luminance component (AWLP) is adopted as a benchmark to assess the performance of
the new SR-based pan-sharpening methods. The widespread quality indexes computed at degraded
resolution, with the original multispectral image used as the reference, i.e., SAM (Spectral Angle
Mapper) and ERGAS (Erreur Relative Globale Adimensionnelle de Synthese), are finally presented.
Considering these results, sparse representation and Bayesian approaches seem far from being mature
to be adopted in operational pan-sharpening scenarios.
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1. Introduction

Recent trends in image fusion, including remote sensing applications, involve the super-resolution
(SR) paradigm and, more generally, apply constrained optimization algorithms to solve the ill-posed
problem of spectral-spatial (pan-sharpening) and spatio-temporal image resolution enhancement.
Specifically, pan-sharpening denotes the merging of a monochrome image acquired by a broadband
panchromatic (Pan) instrument with a multispectral (MS) image featuring a spectral diversity of bands
and acquired over the same area, with a spatial resolution greater for the former. This can be seen as a
particular problem of data fusion, in which the goal is to combine the spatial details resolved by the
Pan instrument, but not by the MS scanner, and the spectral diversity of the MS image, against the
single band of Pan, into a unique product. The most commonly-encountered case is when both the
MS and Pan datasets are available at the two dates. However, multitemporal pan-sharpening denotes
the process by which MS and Pan datasets that are used to perform the data fusion task are acquired
from the same platform, but at different times or from different platforms. In the latter case, we may
talk of multi-platform pan-sharpening. A typical application scenario is when either of the platforms
mounts only one of the MS and Pan instruments, for example CartoSat-1 (Pan geocoded at 2.5 m) and
RapidEye (MS geocoded at 5 m). In this case, pan-sharpening is multi-platform and is most likely to
be also multitemporal [1].

The majority of pan-sharpening methods may be labeled as spectral or spatial. In spectral methods,
geometric details are extracted from the Pan image by subtracting from it an intensity image obtained
by a spectral transformation of the MS bands. In spatial methods, geometric details are extracted
from the Pan image by subtracting from it a low-pass version of Pan obtained by means of linear
shift-invariant digital filters. Finally, for both approaches, the geometric details are injected into the
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MS bands interpolated at the scale of the panchromatic band. Spectral methods [2-10] are traditionally
known as component-substitution (CS), though explicit calculation of the spectral transform, and its
inverse may not be necessary. Spatial methods [11-18] may be contextualized within multiresolution
analysis (MRA), though in most cases, a unique low-pass filter is required [19]. This hard categorization
is brought back to previous studies [20,21], in which it is proven that there exists a duality between the
classes of spectral and spatial methods featuring complementary properties of robustness to spatial
and spectral impairments, respectively.

Super-resolution fusion methods form a new third class of spectral-spatial (pan-sharpening) and
spatio-temporal image resolution enhancement algorithms. Conventional approaches to generating an
SR image normally require inputting multiple spatial /spectral /temporal low-resolution images of the
same scene. The SR task is cast as the inverse problem of recovering the original high-resolution image
by fusing the low-resolution images, based on reasonable assumptions or prior knowledge about the
observation model that maps the high-resolution image into the low-resolution ones. The fundamental
reconstruction constraint for SR is that the recovered image, after applying the same generation
model, should reproduce the observed low-resolution images. However, SR image reconstruction is
generally a severely ill-posed problem because of the insufficient number of low-resolution images,
ill-conditioned registration and unknown blurring operators, and the solution from the reconstruction
constraint is not unique. Various regularization methods have been proposed to further stabilize the
inversion of this ill-posed problem [22].

A similar approach considers image fusion as a restoration problem. The aim is therefore to
reconstruct the original scene from a degraded observation, or, equivalently, to solve a classical
deconvolution problem [23,24]. As an example of possible application fields, these methods may solve
the classical strip-line degradation problem in satellite optical imagery, e.g., Landsat 7ZETM+, MODIS,
etc. [25]. Prior knowledge is required on the nature of the two-dimensional convolution that models
the band-dependent point spread function of the imaging system. There is a spectral model between
the Pan channel and the MS channels of the same sensor, notwithstanding that the corresponding
images feature different spatial resolutions, that is spatial frequency contents. Such a model is well
embodied by the plots of the spectral responsivities of the individual channels of the complete sensor
(MS and Pan instruments mounted on the same platform) or, in the most general case, the spectral
responses of different MS + Pan sensors. While individual narrowband channels (e.g., B, G, R and NIR)
approximately cover the same wavelength intervals, the bandwidth of Pan may significantly vary
from one instrument to another. Older instruments, like SPOT 1-3 and 5, featured narrowband Pan
(approximately spanning through 500-700 nm). Modern very high resolution (VHR) and extremely
high resolution (EHR) MS scanners are generally equipped with a broadband Pan instrument covering
the wavelengths from 450 nm-800 nm or even 900 nm [26].

Bayesian methods and variational methods have been also proposed in the last decade,
with different possible solutions that are based on specific assumptions that make the problem
mathematically tractable [27-31].

The paper reviews the concept of super-resolution in an image fusion framework, by resorting
to the theoretical interpretation of image super-resolution as a constrained optimization problem.
Different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically
discussed. The distinctive feature of the paper is the reviewed methodology, i.e., the super-resolution
paradigm, which includes constrained-optimization solutions, sparse representation methods and
Bayesian restoration approaches. The broad application field is remote sensing image fusion, while
specific applications, i.e. spatio-temporal fusion, fusion with missing data (destriping/denoising) and
pan-sharpening have been reviewed within the common framework of the adopted methodology.
Finally, pan-sharpening has been selected for objective assessment on SR-based methods with respect
to the simple, classical, widespread proportional additive wavelet in the luminance (AWLP) method,
which serves as a benchmark for clear and immediate comparisons.
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A different review philosophy, limited to pan-sharpening, but extended to several methodological
approaches, has been very recently proposed in [32]. The author deeply investigates the models
adopted by each reviewed method and makes comparisons starting from the physical consistency
of the adopted models for pan-sharpening. As previously stated, here, the main objective is to
review image fusion methods in different fusion application fields, but all adopting super-resolution
methodologies and to conclude from the study of the recent literature whether sparse representations
or Bayesian methods are mature for being extensively applied to solve operational remote sensing
image fusion tasks.

Finally, focusing on pan-sharpening, the well-known and simple, yet fast and effective,
proportional additive wavelet in the luminance component (AWLP) algorithm [33] is adopted
as a benchmark to assess the performance of the recently-proposed SR-based pan-sharpening
methods. Finally, experimental comparisons on true and simulated images are presented in terms of
computational time and quality indexes computed at the spatial resolution of the original multispectral
images, i.e., SAM (Spectral Angle Mapper) and ERGAS (Erreur Relative Globale Adimensionnelle de
Synthese, from its French acronym).

2. Restoration-Based Approaches

A class of recently-developed image fusion methods considers pan-sharpening as a restoration
problem. The aim of pan-sharpening is therefore to reconstruct the original scene from a degraded
observation, or, equivalently, to solve a classical deconvolution problem [23]. Following this approach,
each band of a multispectral image, neglecting additive noise, can be modeled as the two-dimensional
convolution of the corresponding band at a high-spatial resolution, with a linear shift-invariant blur,
that is the band-dependent point spread function of the imaging system.

We refer to M, as the original multispectral images M resampled to the scale of the panchromatic
band P (of size N, x N, pixels). A degradation model is introduced, for which M, can be obtained as
noisy blurred versions of the ideal multispectral images Mj,

Mk:Hk*Mk+Uk k=1,...,N, 1)

where Nj, is the number of bands, the symbol * denotes the 2D convolution operation, Hy is the point
spread function (PSF) operator for the k-th band and vy, k = 1, ..., N}, are additive zero-mean random
noise processes.

The high-resolution panchromatic image is modeled as a linear combination of the ideal
multispectral images plus the observation noise:

Ny
P = ZockMk—i-A—l—w, (2)
where A is an offset, wy, k =1, ..., N, are the weights that satisfy the condition 25\2’1 wr=1land wis
an additive zero-mean random noise [34].

The weights wy can be calculated from normalized spectral response curves of the multispectral
sensor [34] or by linear regression of the down-degraded panchromatic image P; and the original
multispectral bands My, [2]. The offset A is approximately calculated using the degraded panchromatic
image and the sensed low-resolution multispectral images through:

R2  N/RN/R Ny
Py(m,n) wiMi(m,n)|, 3
~ N <N mzl nz i ( k§1 kM (m, n) (3)

where R indicates the scale ratio between the original multispectral and panchromatic images. The
rationale of Equation (3) is the assumption of the approximate scale invariance of the offset A defined
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in the Pan-model in Equation (2); at least between the Pan scale in Equation (2) and the MS scale in
Equation (3).

The ideal high-resolution multispectral image can be estimated by solving a constrained
optimization problem. In Li and Leung [34], the restored image is obtained by applying a regularized
constrained least square (CLS) algorithm in the discrete sine transform (DST) domain to achieve sparse
matrix computation. The solution is calculated row by row by applying the regularized pseudoinverse
filter to the m-th row of the DST coefficients Mk and P of M and P, respectively:

M(m) = (FTF—l—/\I)_lFTF [E(m)T,M(m)T}T, m=1,...,Ny, )

where I is the identity matrix and F is an (N, + 1)N,; X (N, 4+ 1) N, sparse matrix that is computed
from the weights wy in Equation (2), the point spread function operators Hy in Equation (1) and the
DST transform matrix. Finally, A is the regularization parameter that controls the degree of smoothness
of the solution: when A — 0, Equation (4) reduces to the unconstrained least squares solution, and
when A — oo, Equation (4) becomes the ultra-smooth solution.

The main drawbacks of restoration-based methods are the inaccuracies of the observation models
Equation (1) and Equation (2): the PSF operators Hy are assumed to be known, but they often differ
from their nominal values. Furthermore, the optimal value of the regularization parameter A is
empirically calculated and can vary from sensor to sensor and even on the particular scenario.

The adoption of transformed coefficients in the CLS solution Equation (4) is required to obtain
sparse matrices and to reduce the computational complexity, thatis O (NP N,), with 2 < 8 < 3. On the
other hand, when working in a Fourier-related domain, for example, the DST, an intrinsically-smoothed
solution is obtained from Equation (4), and poorly-enhanced pan-sharpened images are often produced.

3. Sparse Representation

A new signal representation model has recently become very popular and has attracted the
attention of researchers working in the field of image fusion, as well as in several other areas. In fact,
natural images satisfy a sparse model, that is they can be seen as the linear combination of a few
elements of a dictionary or atoms. Sparse models are at the basis of compressed sensing [35], which is
the representation of signals with a number of samples at a sub-Nyquist rate. In mathematical terms,
the observed image is modeled as y = Ax + w, where A is the dictionary, x is a sparse vector, such
that ||x||p < K, with K < M, with M the dimension of x, and w is a noise term that does not satisfy a
sparse model. In this context, fusion translates into finding the sparsest vectors with the constraint
||y — Ax||3 < €, where € accounts for the noise variance. The problem is NP-hard, but it can be relaxed
into a convex optimization one by substituting the pseudo-norm || - ||o with || - [|1 [35].

Recently, some image fusion methods based on the compressed sensing paradigm and sparse
representations have appeared, either applied to pan-sharpening [36-39] or to spatio-temporal fusion
of multispectral images [40—42].

3.1. Sparse Image Fusion for Spatial-Spectral Fusion

The pioneering paper by Li and Yang [36] formulated the remote sensing imaging formation
model as a linear transform corresponding to the measurement matrix in the compressed sensing (CS)
theory [35]. In this context, the high-resolution panchromatic and low-resolution multispectral images
are referred to as measurements, and the high-resolution MS images can be recovered by applying
sparsity regularization.

Formally, it is assumed that any lexicographically-ordered spatial patch of the observed images,
namely yys and ypan, can be modeled as:

y=Mx+v 5)
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where y = (yy[fgfv ), M = (%; ), M; and M; indicate the decimation matrix and the panchromatic-
model matrix, respectively, x is the unknown high-resolution MS image and v is an additive Gaussian
noise term.

The goal of image fusion is to recover x from y. If the signal is compressible by a sparsity
transform, the CS theory ensures that the original signal can be accurately reconstructed from a small
set of incomplete measurements. Thus, the signal recovering problem Equation (5) can be formulated

as a minimization problem with sparsity constraints:
& = argmin ||a||o s.t. ||y — ®al|5 < e (6)

where ® = MD, D = (dq,d, ..., dg) is a dictionary and x = D&, which explains x as a linear
combination of columns from D. The vector & is very sparse. Finally, the estimated £ can be obtained
by £ = Da.

The resulting pan-sharpening scheme is illustrated in Figure 1. All of the patches of the
panchromatic and multispectral images are processed in raster-scan order, from left-top to right-bottom
with steps of four pixels in the PAN image and one pixel in the MS images (1/4 ratio is assumed
between PAN and MS spatial scales, as in several spaceborne sensors). First, the PAN patch ypsy is
combined with the MS patch y,s to generate the vector y. Then, the sparsity regularization Equation (6)
is resolved using the basis pursuit (BP) method [43] to get the sparse representation & of the fused MS
image patch. Finally, the fused MS image patch is obtained by £ = Da.

T
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Figure 1. Flowchart of a pan-sharpening algorithm based on compressed sensing [36].

The generation of the dictionary D is the key problem of all CS-based pan-sharpening approaches.
In Li and Yang [36], the dictionary was generated by randomly sampling raw patches from
high-resolution MS satellite images. Since such images are not available in practice, [36] reduces
to a theoretical investigation on the applicability of compressed sensing to pan-sharpening. More
recent papers have proposed different solutions to this problem, in order to deal with practical
remote sensing applications. In Li, Yin and Fang [37], the sparse coefficients of the PAN image and
low-resolution MS image are obtained by the orthogonal matching pursuit algorithm. Then, the
fused high-resolution MS image is calculated by combining the obtained sparse coefficients and the
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dictionary for the high-resolution MS image. The main assumption is that the dictionaries D}**, DP™"
and D}" have the relationships:

DF" = M,D;", (7)
Dy = M\D}", ®)

First, DP*" and Dj* are computed from randomly-selected samples of the available Panand
MS data by applying the K-SVD method [44]. The dictionary D} is estimated by applying an
iterative gradient descent method to solve a minimization problem based on the MS dictionary model
Equation (8).

Obviously, the computational complexity of the method is huge, while the improvement with
respect to effective classical pan-sharpening algorithms is negligible. As an example, the algorithm
proposed in Li, Yin and Fang [37] requires about 15 min on a very small (64 x 64) MS image, while, by
considering the same hardware and programming software configurations, pan-sharpening methods
based on multiresolution analysis (MRA) [11] or component substitution [9] provide pan-sharpened
images with the same quality (measured by QNR, Quality with No Reference, Q4, the unique quality
index for 4-band images, and ERGAS score indexes) in one or a few seconds.

An interesting solution to the problem of the high computational complexity has been very
recently proposed in [45]. Conversely to the previous sparse approaches to pan-sharpening, in which
the SR theory was employed for generating the whole pan-sharpened image, [45] proposes to use
sparse representation only to reconstruct the high-resolution details. This choice better meets the
consideration that the key assumption of sparsity is more appropriate for image parts showing
high variance (regions with high spatial frequency components). The algorithm is referred to as
SR-based details injection (SR-D). In particular, the input multispectral image is tiled in M (overlapped
by L pixels) patches of size NR x NR, where R is the resolution ratio between the low-resolution
multispectral image and the panchromatic image (R = 4 for most cases), and N is a scalar coefficient
tuned by the user. The values of N and L have been empirically set to N = 100 and L = 10. The choice
of applying sparse representation to the spatial details only does reduce the computational time with
respect to previous SR-based methods. However, the algorithm performances are comparable to those
of optimized classical pan-sharpening methods, as will be shown in Section 6.

3.1.1. The SparseFI Family for Pan-Sharpening

Different from Li, Yin and Fang [37], the method proposed in Zhu and Bamler [38], named sparse
fusion of images (SparseFI), explores the sparse representation of multispectral image patches in a
dictionary trained only from the panchromatic image at hand. Furthermore, it does not assume any
spectral composition model of the panchromatic image, that is it does not adopt a composition model
similar to Equation (2), which implies a relationship between the dictionaries for PAN and MS, as in
Equation (7). The method is described synthetically by the scheme reported in Figure 2.

P is a matrix that extracts the region of overlap between the current target patch and
previously-reconstructed ones, while w; contains the pixel values of the previously-reconstructed
HR multispectral image patch on the overlap region. Parameter j is a weighting factor that gives a
trade-off between the goodness of fit of the LR input and the consistency of reconstructed adjacent HR
patches in the overlapping area. The algorithm performances are not outstanding [38], since it provides
pan-sharpened images with similar quality of adaptive Intensity-Hue-Saturation (IHS) fused products.

An improved version of [38] has been very recently proposed by the same authors [46]. It exploits
the mutual correlation among multispectral channels by introducing the concept of the joint sparsity
model (JSM). The new Jointly Sparse Fusion of Images, J-SparseFl, algorithm can be seen as the
result of three main improvements: the adoption of an enhanced SparseFI algorithm, the definition
of a JSM and the introduction of a sensor spectral response analysis followed by a channel mutual
correlation analysis.
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Figure 2. Block diagram of the sparse fusion of images (SparseFI) pan-sharpening method proposed
in [38].

The original SparseFI algorithm has been fully parallelized, with patch processing performed
independently and hence distributed to multiple threads without requiring cross communication.
This improvement has been introduced for all processing steps: dictionary learning, sparse coefficient
estimation and HR multispectral image reconstruction. The joint sparsity model is founded on the
distributed compressive sensing theory to constrain the solution of an underdetermined system by
considering an ensemble of signals being jointly sparse.

The third improvement of J-SparseFI with respect to SparseFI can be explained starting from the
analysis of the World View-2 spectral responses and, in particular, the channel mutual correlation of the
multispectral and panchromatic sensors. Channels 1-5, 7 and 8 are identified as blocks, i.e., each group
is composed of adjacent bands with mutual correlation higher than 0.9. Among them, Channels 2-5
(blue, green, yellow and red) have a wavelength range well covered by the panchromatic image and,
therefore, are identified as the primary group of joint channels. After excluding the primary group of
joint channels, the remaining block, i.e., Channels 7 and 8 (NIR-1 and NIR-2), can be identified as the
secondary group of joint channels. Finally, the remaining Channel 1 (coastal) and Channel 6 (red edge)
are identified as individual channels.
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Primary groups of joint channels, individual channels and secondary groups of joint channels
are then sharpened in a sequential manner. First, the HR version of the group of joint channels (blue,
green, yellow and red) is reconstructed by JSM using the coupled dictionary pair built up from the
HR Pan image and its downsampled version. Then, the coastal channel is reconstructed by modified
SparseFI using an updated coupled dictionary pair built-up, instead of using the Pan image, using
the previously-reconstructed HR blue channel and its downsampled version, because, among the Pan
or the sharpened primary group of joint channels, i.e., Channels 2-5, the blue channel correlates the
most with Channel 1. The red edge channel is reconstructed by modified SparseFI using a dictionary
pair trained from the HR Pan image and its downsampled image. Finally, the NIR-1 and NIR-2
channels are jointly reconstructed by JSM using a dictionary pair of the previously-reconstructed HR
red edge channel and its downsampled version, because of its relatively highest correlation to the
target joint channels.

3.1.2. Hybrid SR-Based Approaches for Pan-Sharpening

In Cheng, Wang and Li [39], a method is proposed to generate the high-resolution multispectral
(HRM) dictionary from HRP (high resolution panchromatic) and LRM (low resolution multispectral)
images. The method includes two steps. The first step is AWLP pan-sharpening to obtain
preliminary HRM (high resolution multispectral) images. The AWLP algorithm [33] is a well-known
pan-sharpening method in which first a spectral transformation of the MS bands provides an intensity
component, then a multiresolution transform (the a-trous wavelet, specifically), i.e., a spatial transform,
is applied to spatially enhance the intensity component. The second step performs dictionary training
using patches sampled from the results of the first step. Asin Li, Yin and Fang [37], a dictionary training
scheme is designed based on the well-known K-SVD method. The training process incorporates
information from the HRP image, which improves the ability of the dictionary to describe spatial
details. Since the method includes both classical (in this case AWLP) and sparse representation-based
strategies, it can be categorized as a hybrid SR-based approach. While better quality score indexes are
obtained with respect to the boosting pan-sharpening method AWLP, no remarkable improvements are
introduced by this method with respect to fast and robust classical component substitution methods,
such as Gram-Schmidt Adaptive - Context Adaptive (GSA-CA) [8], as reported in Cheng, Wang and
Li [39].

In Huang et al. [42], a spatial and spectral fusion model based on sparse matrix factorization is
proposed and tested on Landsat 7 and MODIS acquisitions at the same date. The model combines
the spatial information from sensors with high-spatial resolution, with the spectral information from
sensors with high-spectral resolution. A two-stage algorithm is introduced to combine these two
categories of remote sensing data. In the first stage, an optimal spectral dictionary is obtained from
data with low-spatial and high-spectral resolution to represent the spectral signatures of various
materials in the scene. Given the simple observation that there are probably only a few land surface
materials contributing to each pixel in this kind of images, the problem is formalized as a sparse
matrix factorization problem. In the second stage, by using the spectral dictionary developed
in the first stage, together with data with high-spatial and low-spectral resolution, the spectrum
of each pixel is reconstructed to produce a high-spatial and high-spectral resolution image via a
sparse coding technique.

In synthesis, a clustering- or vector-quantization-based method is adopted to optimize a dictionary
on a set of image patches by first grouping patterns, such that their distance to a given atom is minimal,
and then updating the atom, such that the overall distance in the group of patterns is minimal.
This process assumes that each image patch can be represented by a single atom in the dictionary,
and this reduces the learning procedure to a K-means clustering. A generalization of this method for
dictionary learning is the K-singular value decomposition (K-SVD) algorithm [44], which represents
each patch by using multiple atoms with different weights. In this algorithm, the coefficient matrix
and basis matrix are updated alternatively.
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3.2. Sparse Image Fusion for Spatio-Temporal Fusion

Most instruments with fine spatial resolution (e.g., SPOT and Landsat TM with a 10-m and
30-m spatial resolution) can only revisit the same location on Earth at intervals of half to one month,
while other instruments with coarse spatial resolution (e.g., MODIS and SPOT VEGETATION with
a 250-1000-m spatial resolution) can make repeated observations in one day. As a result, there is
so far still no sensor that can provide both high spatial resolution (HSR) and frequent temporal
coverage. One possible cost-effective solution is to explore data integration methods that can blend the
two types of images from different sensors to generate high-resolution synthetic data in both space
and time, thereby enhancing the capability of remote sensing for monitoring land surface dynamics,
particularly in rapidly changing areas. In the example in Figure 3, the goal is to predict the unavailable
high-spatial-resolution Landsat image at date f; from the Landsat images at dates ¢; and ¢3 and the
low-spatial-resolution MODIS acquisitions at dates ¢y, ¢, t3.

t t3

Figure 3. Predicting the Landsat image at date ¢, from Landsat images at dates ¢; and t3 and MODIS
images at all dates.

One critical problem that should be addressed by a spatio-temporal reflectance fusion model is
the detection of the temporal change of reflectance over different pixels during an observation period.
In general, such a change encompasses both phenology change (e.g., seasonal change of vegetation)
and type change (e.g., conversion of bare soil to concrete surface), and it is considered more challenging
to capture the latter than the former in a fusion model.

In Huang and Song [40], a data fusion model, called the sparse-representation-based spatio-
temporal reflectance fusion model (SPSTFM), is proposed, which accounts for all of the reflectance
changes during an observation period, whether type or phenology change, in a unified way by
sparse representation. It allows for learning the structure primitives of signals via an overcomplete
dictionary and reconstructing signals through sparse coding. SPSTFM learns the differences between
two HSR images and their corresponding LSR acquisitions from a different instrument via sparse
signal representation. It can predict the high-resolution difference image (HRDI) more accurately
than searching similar neighbors for every pixel, because it considers the structural similarity (SSIM),
particularly for land-cover type changes. Rather than supposing a linear change of reflectance as in
previous methods, sparse representation can obtain the change prediction in an intrinsic nonlinear form
because sparse coding is a nonlinear reconstruction process through selecting the optimal combination
of signal primitives.
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Formally, the Landsat image and the MODIS image are denoted as L; and M; on the {; date,
respectively, where the MODIS images are extended to have the same size as Landsat via bilinear
interpolation. Let Y;; and X;; represent the HRDI and LRDI between ¢; and ¢;, respectively, and
their corresponding patches are y; ; and x; j, which are formed by putting patches into column vectors.
The relationship diagram for these variables is reported in Figure 4. L, can then be predicted as follows:

Ly = Wy x (L1 + Ya1) + Ws x (L3 — Ya2), ©)

where W; and W3 are the weighting parameters for the predicted image on t; using the Landsat
reference image on t1 and f3, respectively.

Time >
t1 to t3

k
Landsat Ly |y | Yo1 || L2 | +| Y32 [ | Ls Y32
image
MODIS zk
; My | + X211 |—| My | + X3s | = M3 32
image

Figure 4. Block diagram of the spatio-temporal fusion proposed in Huang and Song [40].

In order to estimate Y5 and Ya; in Equation (9), the dictionary pair D; and D,, must be formulated.
The two dictionaries D; and D, are trained using the HRDI and LRDI patches between t; and f3,
respectively, according to the following optimization:

(D}, D, A} = arg min {[[Y = DAIS+ X~ Dyl + A AlL |, (10)
where Y and X are the column combination of lexicographically stacking image patches, sampled
randomly from Y73 and X3, respectively. Similarly, A is the column combination of representation
coefficients corresponding to every column in Y and X.

A different approach has been proposed in Song and Huang [41], which adopts a two-step
procedure to avoid large prediction errors due to the large spatial resolution difference between
MODIS and Landsat 7 data. First, it improves the spatial resolution of MODIS data, and then, it fuses
the MODIS with an improved spatial resolution and the original Landsat data.

Denote the MODIS image, the Landsat image and the predicted transition image on t; as M;, L;
and T;, respectively. The spatial enhancement of MODIS data by means of the Landsat images contains
two steps: the dictionary-pair training on known M; and L; and the transition image prediction. For
training a dictionary pair, the high-resolution image features and low-resolution image features are
extracted from the difference image space of L; — M; and the gradient feature space of M; in patch
form (e.g., 5 x 5), respectively. Stacking these feature patches into columns forms the training sample
matrices Y and X, where Y and X stand for high-resolution samples and low-resolution samples,



Remote Sens. 2016, 8, 797 11 of 20

respectively, and their columns are in correspondence. First, the low-resolution dictionary D; is derived
by applying the K-SVD [19] training procedure on X via optimizing the following objective function:

{Df, A"} = argmin {|I X~ DAlF} st ¥i,llaillo < Ko, (1)
Dy,A

where A is a column combination of representation coefficients corresponding to every column in X.

To establish a correspondence between high-resolution and low-resolution training samples, the
high-resolution dictionary is constructed by minimizing the approximation error on Y with the same
sparse representation coefficients A* in Equation (11), that is,

D; = argmin ||Y — D, A" H%, (12)
Dy,

The solution of this problem can be directly derived from the following pseudoinverse expression

(given that A* has full row rank):
D, = Y(A*)" = YA T (A*AT) (13)

To predict the transition image T, from Mj, the same gradient features X, are extracted from M
as in the training process. Denote the i-th column of X, as xy;; then, its sparse coefficient «; with respect
to dictionary D; can be obtained by employing the sparse coding technique called orthogonal matching
pursuit (OMP). Because the corresponding high-resolution sample and low-resolution sample are
enforced and represented by the same sparse coefficients with respect to Dy, and D), respectively,
the corresponding i-th middle-resolution patch column yy; can be predicted by y; = Dj x a;.
The other middle-resolution patch columns can be predicted by this same process. After transforming
all columns y5; into a patch form, the difference image Y, between T, and M; is predicted. Thus, T, is
reconstructed by T, = Y, 4+ Mj. For the fusion procedure in the next stage, the transition image Tj is
also predicted in the same procedure. Here, the transition images T and T, have the same size and
extent as that of Ly and L,.

Finally, Landsat 7 and transition images are fused via high pass modulation (HPM):

Ly=T,+ (?) (L1 — T, (14)
1

This fusion is in accordance with a linear temporal change model between T; and T5.

In general, experiments show that spatio-temporal fusion based on sparse representation performs
better on phenology change than type change. This can be interpreted in terms of sparsity theory, that
is more representation errors usually arise when there are more complex signals to be represented.
Further work is also needed to reduce the computational complexity of spatio-temporal fusion
approaches based on sparse representation.

4. Bayesian Approaches

In its most general formulation [27], the problem of Bayesian image fusion can be described as the
fusion of a HyperSpectral (HS) image (Y) with low-spatial resolution and high-spectral resolution and
an MS image (X) with high-spatial resolution and low-spectral resolution. Ideally, the fused result Z
has the spatial resolution of X and the spectral resolution of Y. It is assumed that all images are equally
spatially sampled at a grid of N pixels, which is sufficiently fine to reveal the spatial resolution of X.
The HS image has N, spectral bands, and the MS image has Nj, (N, < N;) bands, with Nj, = 1 in the
case of a panchromatic band (pan-sharpening case).



Remote Sens. 2016, 8, 797 12 of 20

By denoting images column-wise lexicographically ordered for matrix notation convenience, as
in the case of Z = [Z],Z],...,Z1]T, where Z; denotes the column vector representing the i-th pixel of
Z, the imaging model between Z and Y can be written as:

Y=WZ+N, (15)

where W is a potentially wavelength-dependent spatially-varying system point spread function (PSF),
which performs blurring on Z. N is modeled as multivariate Gaussian-distributed additive noise with
zero mean and covariance matrix Cy, independent of X and Z. Between Z and X, a jointly normal
model is generally assumed.

The approach to the pan-sharpening problem within a Bayesian framework relies on the statistical
relationships between the various spectral bands and the panchromatic band. In a Bayesian framework,
an estimation of Z is obtained as:

7 = arg max p(Z|Y,X) = arg max p(Y|Z)p(Z|X), (16)

Generally, the first probability density function p(Y|Z) of the product in Equation (16) is obtained
from an observation model Equation (15) where the PSF W reflects the spatial blurring of the
observation Y and N reflects the additive Gaussian white noise with covariance matrix Cy. The second
pdf p(Z|X) in Equation (16) is obtained from the assumption that Z and X are jointly normally
distributed. This leads to a multivariate normal density for p(Z|X).

Different solutions have been proposed, which are based on specific assumptions that make the
problem mathematically tractable.

In Fasbender, Radoux and Bogaert [28], a simplified model is assumed first, Y = Z 4+ N, not
accounting for the modulation transfer function of the imaging system; then, a linear-regression model
that links the multispectral pixels to the panchromatic ones is considered, and finally, a non-informative
prior pdf is adopted for the image Z to be estimated.

In Zhang, De Backer and Scheunders [27], the estimation problem is approached in the domain
of the a-trous wavelet coefficients. Since the applied a-trous transformation is a linear operation, the
same model in Equation (15) holds for each of the obtained detail images, and the same estimation
in Equation (16) can be adopted for the transformed coefficients at each scale. The advantage of
the application of both models in the wavelet domain is that they are applied at each orientation
and resolution level, with a separate estimation of the covariances for each level. This allows for
a resolution- and orientation-specific adaptation of the models to the image information, which is
advantageous for the fusion process.

In Zhang, Duijster and Scheunders [29], a Bayesian restoration approach is proposed.
The restoration is based on an expectation maximization (EM) algorithm, which applies a deblurring
step and a denoising step iteratively. The Bayesian framework allows for the inclusion of spatial
information from the high-spatial resolution image (multispectral or panchromatic) and accounts for
the joint statistics with the low-spatial resolution image (possibly a hyperspectral image).

The key concept in the EM-based restoration procedure is that the observation model in
Equation (15) is inverted by performing the deblurring and denoising in two separate steps.
To accomplish this, the observation model is decomposed as:

Y = WX+ N’ (17)
X=Z+N/, (18)

In this way, the noise is decomposed into two independent parts N’ and N”, with
WN + N” = N.

Choosing N’ to be white facilitates the denoising problem Equation (18). However, W colors the
noise, so that N” becomes colored.
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Equation (17) and Equation (18) are iteratively solved using the EM algorithm. An estimation of
Z is obtained from a restoration of the observation Y combined with a fusion with the observation X.

Bayesian approaches to pan-sharpening suffer from modeling errors due to simplifications
that are intentionally introduced to reduce the computational complexity as in Fasbender, Radoux
and Bogaert [28], where the Modulation Transfer Functions (MTFs) of the imaging sensors are
not considered.

Furthermore, iterative processing and numerical instability make Bayesian approaches more
complex and less reliable for practical remote sensing image fusion applications on true image data
than multiresolution-based or component substitution fusion algorithms.

5. Variational Approaches

Pan-sharpening is in general an ill-posed problem that needs regularization for optimal results.
The approach proposed in Palsson, Sveinsson and Ulfarsson [30] uses total variation (TV) regularization
to obtain a solution that is essentially free of noise while preserving the fine detail of the PAN image.
The algorithm uses the majorization-minimization (MM) techniques to obtain the solution in an
iterative manner.

Formally, the dataset consists of a high-spatial resolution panchromatic image yp,, and the
low-spatial resolution multispectral image y,,5. The PAN image has dimensions four-times larger
than the MS image; thus, the ratio in pixels is one to 16. The MS image contains four bands, RGB and
near-infrared (NIR). The PAN image is of dimension N, x N, and the MS image is of dimension m X #,
where m = N, /4and n = N_./4.

There are two assumptions that define the model. The first is that the low-spatial resolution
MS image can be described as a degradation (decimation) of the pan-sharpened image x. In matrix
notation, y,, = M1x + €, where:

1 T T
My = 721s @ ((In ®14q) @ (I @ 1459)), (19)
is a decimation matrix of size 4mn x 4N, N, 14 is an identity matrix of size 4 x 4, ® is the Kronecker
product and e is zero-mean Gaussian noise.

The second assumption is that the PAN image is a linear combination of the bands of the
pan-sharpened image with some additive Gaussian noise. This can be written in the matrix notation as
Ypan = Mox + €, where € is zero-mean Gaussian noise and:

M; = [wiIpn, w2y, w3lmn, walmn], (20)

where wy, ..., wy are constants that sum to one. These constants determine the weight of each band in
the PAN image.

Now, M1 and M> have the same number of columns, and thus, the expressions for y,,s and yp, 5
can be combined into a single equation, producing the classical observational model:

Yy = Mx+e, (21)

T T
where y = [yTisyhuy] " and M = [MTMI]".
One can define the TV of the MS image as:

TV(x) = H V(D22 + (D22, 22)

1

where x is the vectorized four-band MS image, Dy = (I4 ® Dy), Dy = (I4 ® Dy) and the matrices
Dy and Dy are defined such that when multiplied by a vectorized image, they give the first-order



Remote Sens. 2016, 8, 797 14 of 20
differences in the horizontal direction and vertical direction, respectively. The cost function of the TV
regularized problem can be formulated as:

J(x) = lly = Mx|; + ATV (), (23)

Minimizing this cost function is difficult because the TV functional is not differentiable. However,
MM techniques can be used to replace this difficult problem with a sequence of easier ones:

X1 =arg min Q(x,xy), (24)

where x; is the current iterate and Q(x, x¢) is a function that maximizes the cost function J(x). This
means that Q(x,xx) > J(x) for x # x; and Q(x,x,) = J(x) for x = x4. By iteratively solving

Equation (24), x; will converge to the global minimum of J(x).
A majorizer for the TV term can be written using the matrix notation as:

Qrv(x,x;) = x'DTADx +¢c, (25)

where:

-1
Ay = diag(wy, wy) with wy = (2\/(Dka)2 + (Dvxk)2> , (26)

and the matrix D is defined as D = [DIEDE] T
By defining:
Qor(x, %) = (x — x) " (al = M"M)(x — x), 27)

the function to minimize becomes:

Q(x, %) = |ly — Mx||3 + Qor(x, x;) + AQry (%, xp). (28)

It should be noted that all of the matrix multiplications involving the operators D, DT, M and
MT can be implemented as simple operations on multispectral images. However, the multiplication
with MT corresponds to the nearest neighbor interpolation of an MS image, which is required by
the problem formulation, but it provides inferior results with respect to bilinear interpolation, both
according to quality metrics and visual inspection.

In general, variational methods are very sensitive to the unavoidable inaccuracies of the
adopted observational model. The experimental results on true spaceborne multispectral and
panchromatic images show the limitations of this class of pan-sharpening methods. As an example,
the algorithm [30] described in this section provides fused images from QuickBird data characterized
by spectral and spatial distortions [47], which are slightly lower than those obtained by a very simple
(and low-performance) multiresolution-based pan-sharpening method, that is a trivial coefficient
substitution method in the undecimated wavelet transform (UDWT) domain: D, = 0.042 and
Dg = 0.027 for [30] instead of D) = 0.048 and Dg = 0.055 for the UDWT method.

6. Performance Comparisons

Four SR-based pan-sharpening methods have been selected for performance assessment:
SparseFI [38], J-SparseFI [46], SR-D [45] and the method proposed in [37]. The AWLP algorithm [33]
has been chosen as a benchmark to compare the new SR-based pan-sharpening methods to a simple,
effective and widely-adopted classical pan-sharpening method.

The quality of the fused products is measured by applying the synthesis property of Wald’s
protocol [48]. The synthesis property may not generally be directly verified, since the ideal MS image
at the highest spatial resolution is not available. Therefore, synthesis is usually checked at degraded
spatial scales. Spatial degradation is achieved by means of proper low-pass filtering followed by
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decimation by a factor equal to the scale ratio of Pan to MS datasets. Pan is degraded to the resolution
of the multispectral image and the original MS image to a lower resolution depending on the scale ratio
for which the fusion is assessed (four for IKONOS, QuickBird and WorldView-2 data, as an example).
The fusion method is applied to these two sets of images, resulting into a set of fused images at the
resolution of the original MS image. The MS image serves now as reference, and the synthesis property
can be tested.

Among possible distortion indexes, SAM and ERGAS have been selected for algorithm
comparisons. SAM computes the absolute value of the spectral angle between the two vectors
representing the fused MS image (starting from spatially degraded data) and the original MS image.
SAM is usually expressed in degrees and is equal to zero when the two MS images are spectrally
identical. The ERGAS is another global error index based on the average mean squared error computed
on each band.

Objective comparisons are reported from experiments published in [37,38,45,46] and performed
on simulated images produced from sensed airborne HySpex images and on true IKONOS and
WorldView-2 images.

Visual results are reported in Figures 5 and 6 for the true WorldView-II and simulated HySpex
datasets, respectively.

Figure 5. WorldView-II image results: (a) true-color composition of the original 4-m multispectral
(MS) image, i.e., the reference data; (b) input 4-m Pan image; (c) input 16-m MS image; (b,c) are
obtained by degrading the original Pan/MS resolutions by a factor of four; (d) AWLP; (e) Li algorithm;
(f) super-resolution-based details injection (SR-D) [45].

The input WorldView-II images in Figure 5 are the 4-m Pan image (b) and the 16-m MS image (c).
These image data have been obtained by degrading by a scale factor of four the original Pan at 1-m
resolution and the original MS at 4-m resolution, according to Wald’s quality assessment protocol
(synthesis property). In this way, the original MS image in Figure 5a can be used as the reference image
for pan-sharpening.

Figure 6 shows the World View-2-like images simulated from the airborne visible to near-infrared
(VNIR) HySpex data acquired over Munich, Germany, in 2012 by the German Space Agency (DLR).
Starting from the input 0.75-m HySpex hyperspectral data cube, whose true-color composition is
illustrated in Figure 6a, a 3-m synthetic multispectral image in Figure 6a and a 0.75-m Pan image
that match the specifications of the WorldView-2 imager in terms of the spectral properties have
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been simulated [46]. Therefore, the original 0.75-m data can be used as the reference image for the
pan-sharpened products. It is evident that the visual performances of the simple AWLP method are
comparable to those provided by the SR-based pan-sharpening methods, both in terms of spectral
preservation and spatial detail injection. Locally, a slightly better spectral fidelity in the J-SparseFI
result may be noticed in Figure 6f with respect to AWLP in Figure 6d, for example in the red structure
at the bottom-right corner of the image.

@ () | (9

Figure 6. HySpex image results: (a) true-color composition of the reference 0.75-m MS image;
(b) input 0.75-m Pan; (c) input 1.5-m MS; (d) AWLP output; (e) SparseFl output; (f) J-SparseFI
output [46].

For each selected method, Table 1 reports the measured improvements (in percentage) over
AWLP, if any, on SAM, ERGAS and the quality index for images with 2" bands (Q2n, i.e., Q8 for
WorldView-II, Q4 for IKONOS) values, i.e., Agrgas, Asam, Aqen, respectively, after averaging values
on the considered datasets. Q2n is a unique quality index taking into account both spatial and spectral
quality, ranging from zero, very low quality, to one, which indicates a perfect matching to the reference
image with 2" bands [49]. A positive value for Agrgas and Agay and a negative value for Agp,, which
indicate a performance loss with respect to AWLP, are shown in red color. This experimental protocol
has been adopted to objectively assess the performances of different algorithms in a comparative way,
also when a common benchmarking dataset is not available. This is the current situation within the
remote sensing image fusion community. The AWLP algorithm is assumed as a standard widespread
pan-sharpening method; hence, the resulting comparative analysis is straightforward and clear.
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Table 1. Performance comparison on IKONOS and WorldView-II data of recent SR-based
pan-sharpening methods with respect to AWLP [33]. The computation time for the J-SparseFI refers to
an implementation on a 128-core computer [46].

AWLP [33] SparseFI[38] ]J-SparseFI[46] Lietal.[37] SR-D [45]
Agrgas (%) 0% —1.3% —5.2% +4.6% +13.6%
Asam () 0% —7.7% —11.3% —20.6% ~1.7%
Agon (%) 0% +0.9% +2.4% ~5.1% —0.8%
Atime (8) 0 ~+3000 +2500 +3000 +8

The increase of computational time with respect to the fast AWLP method is also shown in Table 1.

SparseFl and J-SparseFI are the only methods that provide confident quality improvement
over AWLP. However, this improvement can be quantified in a few percent, at the expense of a
huge computational complexity. It is worth noting that the J-SparseFI computing time refers to an
implementation on a 128-core computer [46]. The application of the pioneering method by Li et al. [37]
to operational pan-sharpening is impractical, as well. The SR-D [45], even if not highly performant,
is promising for its reduced computational complexity due to the application of sparse coding to the
high spatial resolution details only.

Finally, Table 2 reports a synoptic view of different SR-based methods for different application
fields in remote sensing image fusion. By considering both the declared computational complexity and
the objective assessment of the algorithms, it is evident that, for the most common application fields
in the broad domain of remote sensing image fusion, the algorithms based on the super-resolution
paradigm are not yet mature for solving fusion processing tasks in operational remote sensing system.

Table 2. A synoptic view of recent remote sensing image fusion algorithms based on the super-
resolution paradigm (FE: Filter Estimation; BDF: Bayesian Data Fusion; ASE: Adaptive Structuring
Element; SPSTEM: sparse-representation-based spatio-temporal reflectance fusion model. SASFM:
Spatial And Spectral Fusion Model).

Performances with Respect

Reference Application Field Complexity to Classical Methods
SparseFI [38] Pan-sharpening Huge Comparable
J-SparseFI [46] Pan-sharpening Huge Slightly better
Lietal [37] Pan-sharpening Huge Comparable
SR-D [45] Pan-sharpening Low Comparable
FE [24] Pan-sharpening Very Low Slightly better
BDF [28] Pan-sharpening Medium/High Comparable
Palsson et al. [30] Pan-sharpening Low Comparable
ASE [25] Destriping Low Slightly better
Zhang et al. [27] MS /HSFusion High Comparable
Zhang et al. [29] MS/HS Fusion High Slightly better
SPSTFM [40] Spatio-temporal Fusion ~Medium/High Comparable
Song et al. [41] Spatio-temporal Fusion High Slightly better
SASFM [42] Spatio-temporal Fusion High Slightly better

7. Conclusions

Super-resolution, compressed sensing, Bayesian estimation and variational theory are methodologies
that have been recently applied to spectral-spatial and spatio-temporal image resolution enhancement
for remote sensing applications. Specific assumptions on the image formation process and model
simplifications to make the problem mathematically tractable are normally required to solve the
ill-posed problems that are usually encountered through constrained optimization algorithms.

When prior knowledge about the observation model is not sufficiently verified on true image
data, due to uncertainty on the band-dependent point spread function of the imaging system or when
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the image reconstruction constraint is mathematically convenient, but not physically consistent for the
current remote sensing systems, the quality of the fusion products may decrease significantly.

Another drawback of these new approaches to remote sensing image fusion is their extremely
high computational complexity. In most cases, a negligible increase in the quality of the fusion products
is attained with respect to standard state-of-the-art methods at the cost of a significant increment (three
orders of magnitude) of the computing time. As a matter of fact, these methods are currently far
from being competitive with classical approaches based on multiresolution analysis or component
substitution for operational, large-scale spatial/spectral /temporal enhancement of remote sensing
image data.

In conclusion, most methods based on these new approaches, although promising, suffer, on the
one hand, from modeling inaccuracies, and on the other hand, on high computational complexity that,
in their current development level, limits their aptness in facing practical remote sensing applications.
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