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Abstract: Derived from semi-supervised learning and active learning approaches, self-learning (SL)
was recently developed for the synergetic classification of hyperspectral (HS) and panchromatic
(PAN) images. Combining the image segmentation and active learning techniques, SL aims at
selecting and labeling the informative unlabeled samples automatically, thereby improving the
classification accuracy under the condition of small samples. This paper presents an improved
synergetic classification scheme based on the concept of self-learning for HS and PAN images.
The investigated scheme considers three basic rules, namely the identity rule, the uncertainty rule,
and the diversity rule. By integrating the diversity of samples into the SL scheme, a more stable
classifier is trained by using fewer samples. Experiments on three synthetic and real HS and PAN
images reveal that the diversity criterion can avoid the problem of bias sampling, and has a certain
advantage over the primary self-learning approach.
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1. Introduction

Among all the remote sensing techniques, hyperspectral (HS) imaging is probably the most
widely researched and applied one in earth observation, due to its powerful ability to recognize
diverse land-covers and allow for the accurate analyses of terrestrial features. Classification, as an
active area of research in HS data interpretation, has long attracted the attention of the remote sensing
community, since classification results are the basis for many environmental and socioeconomic
applications [1,2]. Conventional classification algorithms require a large number of labeled samples to
training a stable classifier. Unfortunately, non-availability of a sufficient number of labeled samples is a
general problem in pattern classification, and this is a more severe problem in remote sensing because
it is extremely difficult and expensive to identify and label the samples, and sometimes it is not even
feasible [3]. This observation has facilitated the idea of exploiting unlabeled samples to improve the
capability of the classifiers.

Two popular machine learning approaches have been developed to solve this problem:
semi-supervised learning (SSL) and active learning (AL) [4–6]. Semi-supervised algorithms incorporate
the unlabeled samples and labeled samples to find a classifier with better boundaries [7,8]. The area of
SSL has experienced a significant evolution in terms of the adopted models, which comprise complex
generative models [9,10], self-training models, multi-view learning models, transductive support
vector machines (TSVMs) [11], and graph-based methods [12]. A survey of SSL algorithms is available
in [13].
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Active learning, on the other hand, assumes that a few new samples can be labeled and added
to the original training set, which means the training set can be iteratively expanded according to an
interactive process that involves a supervisor who is able to assign the correct label to any queried
samples [14]. AL has demonstrated its effectiveness when applied to large datasets needing an
accurate selection of examples. The main challenge in AL is how to evaluate the information content
of the unlabeled pixels. Generally, the selection criteria of uncertain samples can be grouped into
three different families: (1) committee-based heuristics; (2) large margin–based heuristics [15,16];
(3) posterior probability–based heuristics [17]. An overview of the AL classification techniques can be
found in [18]. Recently, another family of AL heuristics, cluster-based, has been proposed [19].

Conventional AL requires the interaction between the supervisor and machine to label the
uncertain pixels. This is, however, sometimes difficult and time-consuming, especially for remote
sensing applications when there is a dense distribution of ground objects. The authors of [20]
proposed a semi-supervised self-learning (SL) algorithm which adopts standard AL approaches
into a self-learning scenario. In this case, no extra cost is required for labeling the selected samples.
In [21], a synergetic self-learning classification approach based on image segmentation and AL is
proposed for HS and panchromatic (PAN) images, in which the algorithm automatically determines
the labels of some unknown samples according to the classification result of the classifier and the
corresponding segmentation map of the high-resolution PAN image. Since the PAN images usually
have a higher resolution than HS images, a finer classification map can be obtained through this
strategy. The segmentation-based self-learning is effective when the supervised classifier is not able
to achieve a reliable result under the condition of small samples. In some cases, if the distribution of
unlabeled samples in the feature space is quite different from the labeled samples, the optimization
procedure is designed to keep its learning from fluctuation during the iterations. This may result in
a lack of diversity between the selected samples.

Actually, the diversity criterion has already been applied in SSL or AL with the goal of improving
the robustness of classifiers by using as few samples as possible [22,23], but it has never been
incorporated with such self-learning scenarios. Therefore, the main contribution of this paper is
to integrate diversity measures into the SL scheme to tackle this problem. Differing from most of those
published studies, in this work, the diversity measures are applied only within the unlabeled samples
rather than between the labeled and unlabeled samples. As an improved version, the presented SL
strategy considers three basic rules: (1) the identity rule, namely the necessary condition, determines
the candidate set in which the samples are allowed to be trained; (2) the uncertainty rule, namely the
standard AL process, determines the informative samples that are helpful to the classifier among the
candidate set; (3) the diversity rule, which refines the informative samples, aimed at enhancing the
stability of the classifier while using the fewest samples.

The remainder of this paper is organized as follows. Section 2 describes the experimental data sets
and gives a short review of the SL algorithm. Specifically, we focus on presenting three state-of-the-art
diversity criteria and illustrating our strategy of the incorporation. Section 3 reports classification
results using synthetic and real HS/PAN datasets. Finally, conclusions are given in Section 4.

2. Materials and Methodology

2.1. Data Sets

In this sub-section, we introduce three data sets, which are shown in Figure 1.
(1) Data set of San Diego. The first data set is a low-altitude AVIRIS HS image of a portion of the

North Island of the U.S. Naval Air Station in San Diego, CA, USA. This HS image consists of 126 bands
of size 400 × 400 pixels with a spatial resolution of 3.5 m per pixel. We use the average of bands
6–36 to synthesize a PAN image. Then the HS image is subsampled to a lower scale by a factor of 4
(i.e., a resolution of 14 m). The ground truth image has the same resolution as the original HS image
with eight classes inside.



Remote Sens. 2016, 8, 804 3 of 14

(2) Data set of Indian Pines. The second data set we used in our experiments is a well-known
scene taken in 1992 by the AVIRIS sensor over the Indian Pines region in Northwestern Indiana [3].
It has 144 × 144 pixels and 200 spectral bands with a pixel resolution of 20 m. Nine classes including
different categories of crops have been labeled in the ground truth image. Likewise, we simulate the
low-resolution HS and high-resolution PAN images by spatial and spectral degradation of the original
HS image.

(3) Data set of the University of Houston. The last data set includes an HS image provided by the
2013 IEEE GRSS Data Fusion Contest and a co-registered PAN image collected by the WorldView-II
satellite. The HS image is collected over the University of Houston campus and the neighboring
urban area, and consists of 144 bands with a spatial resolution of 2.5 m. For the sake of avoiding the
registration error caused by a different platform, a subset of size 640 × 320 is used and subsampled by
a factor of 4. The PAN image has a spatial resolution of 0.5 m, and is subsampled to the same scale as
the original HS image. A ground truth image including 12 classes is also available and has the same
size as the original HS image. All images have been radiometrically calibrated.
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Figure 1. Experimental data sets. (a) The AVIRIS HS image over San Diego; (b) The ground truth image
of San Diego; (c) The AVIRIS HS image over Indian Pines region; (d) The ground truth image of Indian
Pines region; (e) The University of Houston campus HS image; (f) The PAN image; (g) The ground
truth images of the University of Houston campus.
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2.2. Related Work

In this sub-section, a brief review of the SL approach is presented. Unlike conventional
multi-source classification techniques based on the feature level or decision level [24], SL can be
considered as a new framework of synergetic processing for HS and high-resolution PAN images.
It consists of two prevalent techniques, namely high-resolution image segmentation and active learning.
The segmentation processing is applied on the high-resolution PAN image, which can be realized
through any existing algorithms that consider spatial-spectral information [25–28]. Then for a given
labeled sample, the pixels that locate in the same object can be labeled with high confidence as
belonging to the same class (here we call it the object label) as this labeled sample [21]. Meanwhile,
a spectral-based classification is conducted on the HS image to obtain the predicted labels for these
pixels. Hence, those pixels that have identical object labels and predicted labels comprise the candidate
set. Afterwards a typical AL method (e.g., margin sampling [15], etc.) is adopted to select informative
samples. The main framework of the presented self-learning algorithm is shown in Figure 2. Obviously,
the segmentation scale is quite crucial to the final result, and an over-segmentation would be preferred
since it is necessary to ensure that the given samples with different class labels should not locate in
a single object.
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In order to avoid introducing mislabeled samples, and keep the iterations from fluctuation,
an optimization processing of the candidate set can be appended to attain a steady result by involving
a distance measure between the unknown samples and the training samples. See details in [21].
However, the determination of the distance threshold remains problematic. Meanwhile, a sub-optimal
value will lead to a lack of diversity in the selected samples, as the isolated samples sometimes will
also be helpful to the determination of the decision boundary. Thus, we can imagine that incorporating
the diversity of samples should benefit the learning procedure, and enhance the classification result
with fewer iterations.

The main idea of integrating diversity into AL is to select a batch of unknown samples that have
low confidence (i.e., the most uncertain ones) and are diverse from each other simultaneously, hence
finding more precise decision rules by using as few samples as possible [29]. In [30], the diversity
of candidates is enforced by constraining the margin sampling (MS) solution to pixels associated
with different closest support vectors. The authors of [22] proposed the kernel cosine angular as the
similarity measure between samples in the kernel space. The authors of [31] proposed to integrate
k-means clustering into the binary support vector machine (SVM) AL technique. The diversity
criterion can also work in spatial domain, e.g., [32] formulated the spatial and spectral diversity as a
multi-objective optimization problem, [33] proposed a region-based query-by-committee AL combined
with two spatial diversity criteria, etc. In this paper, we take account of three state-of-the-art diversity
criteria: (1) spatial Euclidean distance; (2) kernel cosine angle (KCA) [34]; and (3) kernel k-means
clustering (KKM) [35]. Spatial Euclidean distance computes the Euclidean distance between the
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two-dimensional (2-D) coordinates of two candidates in the spatial domain of the image. In particular,
the negative value is adopted to convert the maximization problem into a minimization one. KCA is
a similarity measure in the spectral domain. Unlike the spectral angle mapping (SAM), KCA is the
cosine angle distance defined in the kernel space,

KCA =
∅ (xi) ·∅

(
xj
)

‖ ∅ (xi) ‖ · ‖ ∅
(
xj
)
‖
=

k
(
xi, xj

)√
k (xi, xi) ·k

(
xj, xj

) (1)

where xi and xj represent two samples, ∅ (·) is a nonlinear mapping function and k (·, ·) is the kernel
function. The angle between two samples is small if they are close to each other and vice versa.

Cluster-based techniques evaluate the distribution of the samples in a feature space and group
the similar samples into the same cluster. The samples within the same cluster are usually correlated
and provide similar information, so a representative sample is selected from each cluster. KKM works
also in the kernel space. It starts with several initial clusters. Since the cluster centers in the kernel
space cannot be expressed explicitly, several pseudocenters will be selected, and then the distance
between each sample ∅ (xi) and cluster center ∅ (µv), (µv is the vth pseudocenter) in the kernel space
can be computed [36]:
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where m is the amount of samples, δ
(
∅
(
xj
)

, Cv
)
= 1, if xj is assigned to Cv (Cv denotes the vth

cluster); otherwise, δ
(
∅
(

xj
)

, Cv
)
= 0. The algorithm is iterated until convergence as standard

k-means clustering.

2.3. Implementation of Diversity Criteria within SL

In this paper, each diversity criterion is combined solely with SL procedure. Instead of considering
the similarity between the unlabeled samples and training samples in [6] or [30], in this work, we take
account of the similarity only within the unlabeled samples. Two different algorithms are presented
here by taking the SVM algorithm, for example. First let us review the SVM algorithm [37,38] briefly.
For a simple purpose, we first consider a binary classification problem.

Given a training set made up of n labeled samples, XL = {
(
xL

i , yi
)
}n

i=1, in which yi ∈ {+1,−1}
denotes the associated labels. Then the goal of a binary SVM is to find out an optimal hyperplane that
separates the feature space into two classes as w·x + b ≥ +1, (yi = +1) and w·x + b ≤ −1, (yi = −1).
The points lying on the two hyperplanes, which are defined by w·x + b = ±1, are so-called support
vectors (SV). The SVM approach is equal to solve the optimization problem that maximizes the distance
between the closest training samples (the SVs) and the separating hyperplane.

In practical applications, the training data in two classes are not often completely separable.
In this case, a hyperplane that maximizes the margin while minimizing the errors is desirable.
Therefore, a slack variable ξ ≥ 0 may be introduced to allow for misclassification. Nonetheless,
a more general situation is that the training data is nonlinearly separable. Then an effective way
to improve the separation is to project the data onto another higher-dimensional space through
a positive definite kernel, which is defined as K (xi, x) = (Φ (xi) , Φ (x)). A kernel that can be
used to construct an SVM must meet Mercer’s condition, e.g., radial basis function, sigmoid kernel,
polynomial kernel [39]. The binary SVM can be easily extended for multiple-class classification
scenarios through two approaches, i.e., “one-against-all” and “one-against-one” [40,41]. Generally,
we use the “one-against-one” approach in this paper.
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Assume that a training set XTrain =
{(

xTrain
k , yk

)∣∣k ∈ {1, 2, . . . , n} , yk ∈ {1, 2, . . . , C}
}

including
n labeled samples is available, in which each sample xTrain

k belongs to an individual object Ok that is
obtained by image segmentation, C is the number of classes. OU

k denotes the set of unlabeled samples
inside Ok. Then the identity rule aims at collecting those samples that satisfy

{
xU

i

∣∣xU
i ∈ OU

k ∩ ỹi = yk
}

,
where ỹi denotes the prediction labels of the spectral-based classifier. Therefore, the candidate set
XCand is made up of the unlabeled samples that have identical predicted labels with object labels.
In addition, the informative sample set X I is made up of the samples selected by standard AL strategy.
Assume that for each iteration, N samples (denoted as XL) will be picked out and appended to the
training set, then we generalize the implementation of similarity measure-based diversity criteria, e.g.,
spatial Euclidean distance, KCA and as such, as follows (Algorithm 1, The source codes of proposed
algorithms are provided as supplementary materials.):

Algorithm 1. AL combined with similarity measure–based diversity criterion

Input: Candidate set XCand, number of classes C, number of selected samples N;
Output: Totally N samples included in XL = ∩C

c=1XL
c ;

1. Select most informative samples via AL strategy, denoted as X I ;
For c = 1 to C
2. Select the samples of cth class from X I , denoted as X I

c ;
3. XL

c = ∅;
4. If the number of samples in X I

c is less than N/C, then put them into XL
c ,

Otherwise:
5. Pick out the most uncertain sample from X I

c , and put it into XL
c ;

6. For each sample
{

xi
∣∣xi ∈ X I

c ∩ xi /∈ XL
c
}

, compute the mean value of distance (negative value
of spatial distance or the KCA value) with the samples in XL

c ;
7. Pick out the sample that has minimum mean value, and put it into XL

c ;
8. Repeat steps 6 and 7 until XL

c has N/C samples;
End for

whereas the cluster-based diversity criterion can be implemented via Algorithm 2.

Algorithm 2. AL combined with cluster-based diversity criterion

Input: Candidate set XCand, number of classes C, number of selected samples N;
Output: Total N samples included in XL = ∩C

c=1XL
c ;

1. Select most informative samples via AL strategy, denoted as X I ;
For c = 1 to C
2. Select the samples of the cth class from X I , denoted as X I

c ;
3. XL

c = ∅;
4. If the number of samples in X I

c is less than N/C, then put them into XL
c ,

Otherwise:
5. Apply kernel k-means clustering to X I

c , the cluster number is N/C;
6. Select the most uncertain sample of each cluster, and put it into XL

c , until XL
c has N/C samples;

End for

For the SVM classifier, only the samples inside the margins will be considered. In addition, for
other probabilistic classifiers, a number of samples with lowest confidence will be considered. Figure 3
shows how the diversity criterion works. Figure 3a shows the primary hyperplane obtained by the
training set (the labeled samples). Figure 3b shows the retrained hyperplane without considering the
diversity rule. Two candidates per class are selected by the uncertainty rule. It can be seen that the AL
heuristics only concentrate on the samples lying on the boundaries of different classes. Obviously, it is
unsatisfactory as some samples have been misclassified. Figure 3c shows the retrained hyperplane
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with similarity measures. The first sample is selected according to its confidence, while the subsequent
ones are selected according to their distance to the previous ones. Figure 3d shows the retrained
hyperplane with sample clustering. The selected samples are picked from each cluster. By contrast,
the diversity-based ALs not only focuses on the uncertainty, but also considers the similarity between
the selected samples. Therefore, the selected samples scatter around the classes and can overcome the
problem of bias sampling.
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3. Experimental Results and Analyses

This section reports the experimental results and analyses conducted on the three data sets that
are shown in Figure 1. To demonstrate the performance of our algorithms, we use very small labeled
training sets, i.e., only 5, 10, and 15 samples per class will be selected randomly from the ground
truth images at most. In addition, the remaining labeled samples are used for testing purposes.
A segmentation operation based on edge detection and the full λ-schedule (FLS) algorithm [28] is
first applied on high-resolution PAN images, and the probabilistic SVM with the Gaussian radial
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basis function (RBF) kernel [42] is used as the spectral-based classifier. The segmentation parameters
contain a scale level and a merge level, which decide the edge intensity and merge cost, respectively.
The parameters of the SVM model, i.e., the penalty factor and σ (the spread of the RBF kernel),
are chosen by five-fold cross-validation and will be updated at each iteration of the AL procedure.
The RBF kernel is also used in KCA and KKM with the same σ as is used in SVM. The classical
modified breaking ties (MBT) and modified margin sampling (MMS) [21] methods will be used as
AL strategies to test the algorithms. In all cases, we conduct 10 independent Monte Carlo runs with
respect to the labeled training set from the ground truth images. All the graphics display the average
values of 10 experiments. The maximum iteration is 20, and the within-class variance is used as the
stop criterion of the learning procedure.

3.1. Experimental Results on Simulated Data Set

To better test our presented approaches, we first conduct experiments on the synthetic data sets of
San Diego and the Indian Pines region. We compare the diversity-based SL methods with the primary
SL method (i.e., segmentation-based self-learning, SBSL [21]) as well as neighbor-based self-learning
(NBSL) [20]. As we have mentioned above, defining the optimal scale of image segmentation remains
problematic. An over-segmentation would be preferable. Here, for the first data set, the segmentation
parameters are set as 35.00 and 65.00, manually corresponding to the scale level and merge level,
respectively. For the second data set, the scales are set as 20.00 and 65.00, respectively. Figures 4 and 5
show the overall accuracies (OAs) with respect to the iterations. The experiments are conducted
under different amounts of labeled (5, 10, and 15) and unlabeled samples. The first point on each
curve represents the OA obtained by using the SVM algorithm alone, i.e., randomly using 5, 10, and
15 samples per class for training. The SBSL-SPA stands for the spatial Euclidean distance–based
diversity criterion, and SBSL-KCA/SBSL-KKM stand for kernel cosine angle and kernel k-means
clustering, respectively. Apart from the advantage of exploiting unlabeled samples as is shown by all
of these SL approaches, the OAs increase as the number of training samples increases, and incline to
converge after a small number of iterations. This deserves special attention since these samples are
generated in a relatively lower-cost, easier, and, more importantly, self-learning fashion, i.e., no extra
cost of human labeling or determination is required during the learning procedure.

For a clearer comparison, Table 1 lists the final OAs and Kappa coefficients of each technique
attained after 20 iterations. The first line in each cell is the average of 10 runs, while the second
run represents the standard deviation (SD), which gives a brief comparison of the stability of these
methods. From the table it can be seen that even though the supervised classification has terrible
results sometimes (e.g., five labeled samples per class in Indian Pines data set), the SL has the ability
to exploit the inherent information existing in the abundant unlabeled samples, thereby achieving
a relatively satisfactory result. In most cases, the diversity-based SL approaches can attain higher
accuracies. Besides, different AL heuristics show little discrimination of the final result. It can be seen
that MBT generally performs a little better than MMS.
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Figure 5. Overall accuracies (as a function of AL iteration) obtained for the data set of the Indian
Pines region. (a) 5 labeled samples, MBT; (b) 10 labeled samples, MBT; (c) 15 labeled samples, MBT;
(d) 5 labeled samples, MMS; (e) 10 labeled samples, MMS; (f) 15 labeled samples, MMS. The three
figures in each line show the OAs using different amounts of training samples, i.e., 5 labeled samples
per class with 27 selected samples per iteration, 10 labeled samples per class with 36 selected samples
per iteration, 15 labeled samples per class with 45 selected samples per iteration.
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Table 1. Overall accuracies of San Diego and the Indian Pines region data sets (%).

San
Diego

5 Labeled Samples per Class, 40 Unlabeled Samples per Iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 79.64 ± 4.59 89.13 ± 2.97 89.44 ± 2.59 91.24 ± 2.91 90.89 ± 2.06 91.72 ± 2.34 91.68 ± 2.60 90.74 ± 2.32 91.57 ± 2.23 91.89 ± 2.38 91.78 ± 2.95

Kappa 0.7591 ± 0.0528 0.8708 ± 0.0349 0.8743 ± 0.0305 0.8956 ± 0.0343 0.8914 ± 0.0244 0.9010 ± 0.0279 0.9006 ± 0.0310 0.8897 ± 0.0274 0.8995 ± 0.0263 0.9032 ± 0.0284 0.9019 ± 0.0351

10 labeled samples per class, 64 unlabeled samples per iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 88.03 ± 1.70 92.24 ± 1.89 90.39 ± 2.02 92.47 ± 1.93 92.86 ± 2.73 93.36 ± 1.88 93.66 ± 2.03 92.81 ± 1.60 92.92 ± 2.70 93.95 ± 1.85 93.76 ± 2.24

Kappa 0.8575 ± 0.0202 0.9076 ± 0.0224 0.8850 ± 0.0240 0.9105 ± 0.0228 0.9150 ± 0.0322 0.9208 ± 0.0223 0.9243 ± 0.0240 0.9144 ± 0.0189 0.9158 ± 0.0318 0.9278 ± 0.0218 0.9256 ± 0.0265

15 labeled samples per class, 80 unlabeled samples per iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 91.00 ± 1.70 93.48 ± 1.01 93.05 ± 1.60 94.38 ± 1.58 93.85 ± 2.45 94.35 ± 0.41 94.71 ± 0.97 93.73 ± 1.69 93.54 ± 1.16 95.29 ± 0.41 95.03 ± 0.83

Kappa 0.8927 ± 0.0200 0.9222 ± 0.0119 0.9172 ± 0.0189 0.9328 ± 0.0186 0.9265 ± 0.0287 0.9325 ± 0.0049 0.9369 ± 0.0115 0.9253 ± 0.0201 0.9230 ± 0.0137 0.9437 ± 0.0050 0.9406 ± 0.0099

Indian
Pines

5 labeled samples per class, 27 unlabeled samples per iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 51.85 ± 8.92 69.07 ± 5.39 66.78 ± 3.69 75.90 ± 4.71 77.14 ± 3.86 78.12 ± 4.57 77.47 ± 4.29 76.84 ± 5.08 77.46 ± 6.41 78.64 ± 4.72 78.17 ± 6.10

Kappa 0.4454 ± 0.0974 0.6410 ± 0.0604 0.6146 ± 0.0.415 0.7190 ± 0.0531 0.7322 ± 0.0445 0.7432 ± 0.0531 0.7361 ± 0.0494 0.7284 ± 0.0578 0.7359 ± 0.0733 0.7497 ± 0.0549 0.7446 ± 0.0697

10 labeled samples per class, 36 unlabeled samples per iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 71.05 ± 4.42 80.17 ± 3.52 77.56 ± 2.89 85.07 ± 4.06 85.60 ± 3.22 84.75 ± 3.17 85.51 ± 3.08 87.83 ± 2.36 87.58 ± 2.41 87.09 ± 1.81 87.00 ± 3.02

Kappa 0.6644 ± 0.0457 0.7685 ± 0.0399 0.7387 ± 0.0325 0.8251 ± 0.0467 0.8311 ± 0.0370 0.8211 ± 0.0362 0.8301 ± 0.0353 0.8568 ± 0.0274 0.8538 ± 0.0280 0.8483 ± 0.0206 0.8473 ± 0.0348

15 labeled samples per class, 45 unlabeled samples per iteration

SVM
NBSL SBSL SBSL-SPA SBSL-KCA SBSL-KKM

MBT MMS MBT MMS MBT MMS MBT MMS MBT MMS

OA 80.49 ± 2.80 84.09 ± 3.04 83.14 ± 3.24 89.00 ± 4.54 90.97 ± 1.90 91.15 ± 1.77 90.92 ± 1.54 91.45 ± 2.32 91.65 ± 2.40 91.53 ± 1.77 91.80 ± 1.73

Kappa 0.77150.0324 0.8132 ± 0.0353 0.8019 ± 0.0205 0.8705 ± 0.0525 0.8933 ± 0.0223 0.8954 ± 0.0208 0.8924 ± 0.0181 0.8987 ± 0.0271 0.9011 ± 0.0281 0.9015 ± 0.0209 0.9028 ± 0.0205
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3.2. Experimental Results on Real Data Set

The experiment on the real data set is described in this part. This data set consists of
a low-resolution airborne HS image and a high-resolution satellite PAN image. The number of labeled
samples per class is also set to {5, 10, 15}. The segmentation scales are set as 35.00 and 70.00, respectively.
Likewise, Figure 6 shows the comparison of OAs under different amounts of labeled and unlabeled
samples. Furthermore, as a matter of fact, due to the complex and dense distribution of ground objects
for urban areas, the segments on PAN images usually turn to be small and scattered. In such cases,
the SL approaches seem to converge in much fewer iterations; for instance, KKM and KCA converge
within only five iterations. This is quite meaningful since it takes a smaller computation cost.
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of Houston. (a) 5 labeled samples, MBT; (b) 10 labeled samples, MBT; (c) 15 labeled samples, MBT;
(d) 5 labeled samples, MMS; (e) 10 labeled samples, MMS; (f) 15 labeled samples, MMS. The three
figures in each line show the OAs using different amounts of training samples, i.e., 5 labeled samples
per class with 36 selected samples per iteration, 10 labeled samples per class with 60 selected samples
per iteration, 15 labeled samples per class with 72 selected samples per iteration.

4. Discussion

As we can see from these experiments, the accuracy of supervised classifiers (SVM algorithm) is
only determined by the initial labeled samples, which can be easily observed from Table 1 (79.64%,
88.03%, and 91.00% corresponding to 5, 10, and 15 samples for the San Diego data set respectively,
51.85%, 71.05%, and 80.49% for the Indian Pines data set, respectively), while the unlabeled samples
can provide useful information to construct stable classification rules during the learning procedure
(for instance, the OA increases in Figure 4a and finally reaches 91.89% at most for the first group of
experiments), and more importantly, since they exist in the local neighborhood of the labeled samples,
their labels can be determined in an automatic and low-cost fashion.

Obviously, with the increment of initial labeled samples, the number of available unlabeled
samples (namely the candidates) increases in the meantime theoretically for both NBSL and SBSL
strategies, resulting in a continuous improvement of the final accuracy, which can also be observed
from Table 1 (91.24%, 92.47%, and 94.38%, respectively, for the first data set, and 75.90%, 85.07%, and
89.00% for the second one using SBSL with MBT). It is also worth noting that the final classification
accuracy after reaching convergence is more likely to be affected by the labeled samples rather than
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the unlabeled samples, since the quality and quantity of unlabeled samples are strongly related to the
distribution of the labeled samples. A similar conclusion can also be observed from the third data set.

By comparing the five strategies in these figures, we can see that the SBSL approach is superior to
NBSL. This is because compared with NBSL, SBSL aims at selecting those most informative samples in a
single object (usually having a lower spectral similarity with the known sample), while NBSL selects
the uncertain samples locating in the neighborhood of the labeled samples (generally having greater
spectral similarity). Additionally, the diversity criteria have a further beneficial effect on the SL approach
(91.89%, 93.95%, and 95.29% for the first data set, respectively, and 78.64%, 87.09%, and 91.53% for the
second one using KKM with MBT, much higher than the corresponding results of NBSL and SBSL).
Nevertheless, different diversity measures, as is shown in Figures 4 and 5, usually lead to discrepant
results for various data sets. For instance, the SPA-based SBSL performs well on the San Diego data
set (91.68%, 93.66%, and 94.71% for the MMS strategy under different numbers of samples), but it is
not satisfactory on the Indian Pines data set since it has little enhancement compared with the SBSL
approach. On the contrary, the KCA-based approach performs better on the second and third data
sets compared to the first one. This is possibly because the two approaches cannot balance the relation
between the uncertainty and similarity of those selected samples. It seems that the cluster-based diversity
criterion (SBSL-KKM) is an effective strategy for considering the redundancy between samples of a local
region, i.e., it achieves higher accuracies for the same number of samples (or the same accuracy with less
samples), and more importantly, achieves convergence in fewer iterations than the other techniques in
most cases. The KCA-based approach also seems to be acceptable in a manner.

Apart from the accuracies observed in these figures, since the results are the average of 10 runs, the
standard deviation also gives a brief comparison of the stability of these methods. Due to the random
sampling of the initial training samples, the supervised algorithm has relatively higher standard
deviations, which also leads to non-zero standard deviations for the self-learning results. Nevertheless,
as is shown in Table 1, they are much lower than the initial SDs. This indicates the stability of these
self-learning methods.

5. Conclusions

In this paper, the diversity problem between unlabeled samples is addressed in the framework
of the self-learning strategy, which is developed for the synergetic classification of hyperspectral
and panchromatic images, to further enhance the classification accuracy and stability. The presented
self-learning strategy considers three criteria, namely the identity rule, the uncertainty rule, and the
diversity rule. The identity rule considers the consistency between the object labels, which is obtained
through the segmentation process, and the predicted labels, thereby improving the classification result
by expanding the training set automatically. The uncertainty rule, namely the standard active learning
algorithm, is applied to select the informative samples that are helpful to the classifier, hence greatly
reducing the computation cost. In particular, the goal of the integration of diversity within SL is to
require as little cost as possible to train a stable classifier and achieve a better classification result at the
same time. Three state-of-the-art diversity criteria have been discussed and applied to three groups of
synthetic and real remote sensing data sets. Theoretical analyses and experiments have demonstrated
that an appropriate diversity criterion is beneficial to the SL algorithm at a limited increment of
computation cost. Results show that the cluster-based diversity criterion significantly improves the
performance of the SL algorithm, and surpasses the other state-of-the-art diversity approaches. It is
also worth noting that the presented strategy does not need any additional parameters, except for the
initial segmentation scales and the number of samples, and thus can be implemented in a much easier
and automatic fashion. In future work, we will focus on the determination of the optimal segmentation
scales as well as the number of samples.

Supplementary Materials: The source code of our proposed SL algorithm is available online at www.mdpi.com/
2072-4292/8/10/804/s1. The implementation of this package can be seen in the README.TXT file. We have also
provided the data set of San Diego with for a simple testing of our algorithm.

www.mdpi.com/2072-4292/8/10/804/s1
www.mdpi.com/2072-4292/8/10/804/s1
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