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Abstract: On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new
method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from
multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the
linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different
polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment
(WCLSA), is formulated, including the mathematical model, the stochastic model and the parameter
estimation method. The WCLSA method can take full advantage of the redundant observations,
adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR)
assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate
the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to
E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown
that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE)
of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the
extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by
37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion
based on random volume over ground (RVoG) model.

Keywords: P-band polarimetric-interferometric radar (PolInSAR); forest vertical structure;
complex least squares; digital terrain model

1. Introduction

Polarimetric-interferometric radar (PolInSAR) provides a promising remote sensing technique
for estimating forest height and ground phase by its sensitivity to the forest vertical structure [1–4].
The complex interferometric coherence has been related to the vertical distribution of the forest
scatterers [2–4]. Consequently, PolInSAR presents the capacity to measure ground and volume
scattering contributions, which leads to the possibility of extracting the forest underlying digital
elevation model (FUDEM) and forest height [1–8]. Both of them are critical to the digital
forest management.

Generally, the inversions of FUDEM and forest height are performed with the random volume
over ground (RVoG) model, with the assumption that the vegetation layer is a vertical homogeneous
volume with a constant extinction [4]. This assumption is adapted to the forest height inversion at high
frequencies (e.g., X-, C- and L-band) since the main scatterers are leaves and twigs [8–10]. However,
at low frequencies (e.g., P-band), the radar wave interacts with the large-scale forest structural elements
(e.g., branches and trunks) in the whole forest height extent [11]. In this situation, the forest vertical
heterogeneity should be considered and integrated in the forest scattering models. To cope with this
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problem, Garestier et al. [11,12] proposed the Gaussian vertical backscatter (GVB) model, which can
depict the forest vertical heterogeneity by describing the predominant contribution of volume scattering
located in a finite height.

The GVB model is very complicated since it captures complex natural features of the forest,
which results in the impossibility to invert the forest parameters from single baseline (SB) PolInSAR
without using external data like forest underlying terrain and forest height or the vertical structure
information of the forest [11,12]. However, these external data are very difficult to collect in practice.
In addition, in order to obtain the pure volume scattering contribution, it should assume that there
is at least one polarization channel without ground scattering contribution (null GVR assumption)
as demonstrated in the three-stage method [13]. However, this is impossible at P band because the
volume and ground scattering contributions are always mixed in all the polarization channels due to
the large penetration depth [14,15]. Previous works [16–20] have demonstrated that the multi-baseline
(MB) increases observation space, which allows estimating forest height and ground phase from
the forest scattering model directly without external data or priori information. However, the MB
PolInSAR inversion framework usually presents a high complexity due to the nonlinear nature of the
scattering model. Hence, intelligent optimizations or multi-step methods are usually adopted to ease
the inversion. However, these methods on one hand have difficulties in taking full advantage of the
redundant observations which can enhance the robustness of the estimation, and on the other hand
are incapable to adjust the contributions of the interferometric coherence values perturbed by different
levels of noise to the solutions.

The aim of this work is to cope with such limitations and extract accurate forest height and
FUDEM from MB PolInSAR data. The GVB model is adopted since it can account for forest vertical
heterogeneity at P band. Next, a mathematical model on the basis of GVB is developed in order to
combine all available observations of the MB PolInSAR and accurately separate the pure ground
and volume scattering contributions from the total PolInSAR signal. Then, a stochastic model based
on the Cramer–Rao bound [1,21] on variance of coherence is proposed, aiming at describing the
contributions of the interferometric coherence values to the solutions. In addition, an inversion
algorithm, weighted complex least squares adjustment, integrating the above mentioned mathematical
function and stochastic model, is proposed in order to suppress the errors in the observations and
improve the accuracy of the solutions. Finally, the FUDEM and forest height can be respectively
extracted with the estimated pure ground and volume scattering contributions.

This paper is structured as follows. The principle of the GVB model is introduced and discussed in
Section 2. Section 3 presents the weighted complex least squares adjustment (WCLSA) methodology for
the GVB inversion, including the mathematical model, the stochastic model, the parameter estimation
and an extraction of the FUDEM and forest height. The retrievals of the FUDEM and forest height are
presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. Description of Forest Vertical Structure with GVB

2.1. GVB Model

The GVB describes the forest area as a two-layer model, the vegetation layer and the ground
layer [11,12]. The Gaussian function is employed to depict the vertical heterogeneity of the vegetation
layer given the fact that for most forest types the matter density is much higher at the lower part
than the top of the canopy [11,22]. In detail, the forest vertical structure function can be entirely
defined by three parameters: forest height hv and two Gaussian function parameters δ and χ. Then,
the interferometric coherence of volume layer can be expressed as [11]

γv (hv, δ, χ) =

∫ hv
0 e

− (z−δ)2

2χ2 +jkzz
dz∫ hv

0 e
− (z−δ)2

2χ2 dz

(1)
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where δ is the elevation of the strongest backscatter power. χ represents the corresponding standard
deviation (std). j is the imagery unit. z is the variable of integration which ranges from 0 to hv. kz is the
vertical wavenumber and can be expressed as [1]

kz =
4π

λsinθ
∆θ (2)

where θ is the incidence angle and ∆θ denotes the incidence angle difference between master and
slave images. Combined with the Gaussian error function erf, the integrals of Equation (1) can be
expressed as

γv (hv, δ, χ) = e−
χ2k2

z
2 +jδkz

er f
(

1√
2

(
jχkz +

δ
χ

))
− er f

(
1√
2

(
jχkz +

δ−hv
χ

))
er f
(

hv−δ√
2χ

)
+ er f

(
δ√
2χ

) (3)

Next, the volume layer is coupled with the ground layer and the GVB can be expressed as [11]

γ(ω) = eiϕ0
γv (hv, δ, χ) + µ(ω)

1 + µ(ω)
(4)

where γ(ω) is the complex interferometric coherence. ω is the polarization state vector. ϕ0 denotes the
ground phase which can be used to estimate the FUDEM. µ is the polarization-dependent GVR.

2.2. Coherence Locus of GVB

At P band, precious works have shown that the volume scattering contribution is
polarization-dependent since the orientation effect has been observed over forests [14,15,23].
As a result, this cannot meet the RVoG assumption and may induce biases of ground phase estimated
by the three-stage inversion procedure [23]. Nonetheless, the biases may be small and acceptable forest
height results have been successfully extracted using the RVoG assumption at P band over the tropical
and pine forests [24–27]. Hence, in this paper, the volume scattering contribution is still assumed to be
polarization-independent for the GVB model. In this way, the GVB is clearly linear with respect to
the GVR. Thus, coherences associated with different polarizations are located on a line in the complex
plane. However, they are not located on a line in practice due to the influence of noise as displayed
in Figure 1. Therefore, a line fitting technique can be used to reconstruct the coherence line from the
noisy coherences [13]. Then the ground phase can be identified from the intersections between the
coherence line and the complex unit circle in terms of rank order of the coherence values [13].
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2.3. Discussion of Null GVR Assumption

In order to measure the pure volume scattering contribution from SB PolInSAR data, a null GVR
is always done [11]. Thus, Equation (4) can be converted into

γ(ω) = eiϕ0 γv (hv, δ, χ) (5)

The assumption of null GVR gives rise to a ambiguity space when we calculate the pure volume
coherence (PVC), especially for low frequency PolInSAR data or high frequency PolInSAR data over
a sparse forest region, because volume and ground scattering contributions are mixed in all the
polarization channels.

To illustrate the sensitivity of forest height to the GVR in the complex plane, a simulated
experiment is conducted with Equation (4). Forest heights ranging from 0 to 30 m are combined
with δ of hv/4 and χ of hv/12. kz is set 0.209. The simulated interferometric coherences under the
null GVR condition are presented in the complex plane as the red line shown in Figure 2a. After that,
the GVR goes from −15 to 15 dB and the corresponding interferometric coherences are superposed
on the common complex plane as shown in the figure. The blue lines represent interferometric
coherences associated with the GVR that is smaller than −10 dB (the pink line) and the yellow lines
represent interferometric coherences corresponding to the GVR that is larger than −10 dB. We can see
the corresponding coherence sets shrink to the ground phase point gradually as the GVR increases,
and larger ambiguity space (the green dashed line) appears if the null GVR assumption is still done.
The shrinking of the coherence sets leads to the fluctuation of the PVC magnitude, but only decrease
of the PVC phase. Figure 2b is a quantitative analysis about the bias of the forest height under the
assumption of null GVR. Assuming δ and χ are known, the height is calculated with Equation (5).
Simulation results show that there is a 10% underestimation of the forest height when the GVR is less
than −10 dB. We also can observe that the bias significantly increases with the GVR. For example,
the bias can be up to about 50% when the GVR is up to 0 dB. Furthermore, the inversion of forest
height almost fails if the GVR is larger than 0 dB. Therefore, for estimating a height accuracy of 10%,
the GVR of one polarization should be smaller than −10 dB.
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3. Parameter Inversion Based on Weighted Complex Least Squares

In this section, we introduce a novel inversion framework for the GVB on the basis of the
WCLSA in the MB PolInSAR configuration, in order to design a robust methodology to estimate the
pure ground and volume scattering contributions without external data and null GVR assumption.
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Then, the FUDEM and forest height can be extracted with the obtained pure ground and volume
scattering contributions.

3.1. Estimations of Pure Ground and Volume Scattering Contributions with WCLSA

3.1.1. Mathematical Formulation

When considering a data-set constituted by m baselines PolInSAR data. We synthesize n
interferometric coherence values by varying the polarization ω [1,5]. Thus, each coherence can
be expressed as

γ(ωk
j ) = f (ϕk

0, hv, δ, χ, µk
j , kk

z) (6)

where k = 1, 2, 3, · · · , m and j = 1, 2, 3, · · · , n. f represents the scattering model as given in Equation (4).
Since the level of the temporal decorrelation is usually unknown, it is not possible to express all
the ground phase with a ground height and vertical wavenumber kk

z [16,18]. Therefore, the ground
phase ϕk

0 is estimated separately for every baseline in this paper. The GVR µk
j is assumed to be constant

between interferometric pairs in the same polarization. This is suitable for all interferometric pairs
performed at common band, with similar incidence angles and under similar weather condition [18].
Moreover, considering the high complexity of Equation (3), γv is parameterized by a + bi. Starting that
every baseline has a distinct pure volume coherence γv

(
ak, bk

)
caused by distinct kk

z. Then, Equation (6)
can be rewritten as

γ(ωk
j ) = f (ϕk

0, γk
v, µj, kk

z) (7)

Thus, before extracting the forest height and FUDEM, first we can separate the pure ground
and volume contributions by estimating ϕk

0 and γk
v. Note that, in this scheme, there are three forest

parameters (hv, δ, χ), which can only be inverted if at least two different PVCs are provided. In other
words, we must provide at least two different interferometric pairs to invert the forest parameters.

As to the choice of n polarizations, in order to ensure that NRO ≥ 0, at least two polarizations
(n ≥ 2) must be provided to obviate the rank defect of Equation (7). Furthermore, we suggest
that the selected n polarizations should have distinct GVRs. The reason is that polarizations with
distinct GVRs are helpful to form a well-conditioned inversion of Equation (7). For this purpose,
optimum states [1] can be selected to produce a sample set in a coherence region since they tend to find
the boundary revealing the shape of a coherence region [28]. As a result, compared to Pauli and linear
polarizations [1], a longer visible coherence line can be observed by optimum states, which enables
the estimation to be robust against the effect of coherence noise. Moreover, although increasing
the number of polarizations cannot provide more redundant observations to estimate the forest
parameters (hv, δ, χ), it can reduce the effect of gross error in some observation on the estimations and
allow us to enhance the reliability of ground phase and PVC.

3.1.2. Stochastic Model

Because the ground is strongly polarization-dependent, different polarimetric interferograms
may be perturbed by different levels of noise [1,2]. Moreover, different interferometric pairs are also
perturbed by different levels of noise caused by the wind-induced temporal decorrelation [29–31].

In order to model the contributions of observation errors to the estimations, empirical errors of
the observations [4] and the COMENT method [16] have been used to estimate the covariance matrix
of the observations. In this paper, the Cramer–Rao bound [1,21] is used to calculate variances of the
observations and a diagonal covariance matrix can be formulated with assuming the observation errors
are uncorrelated. The Cramer–Rao bound on variance of coherence magnitude can be approximately
related to the coherence as [1,21]

σ|γ(w)| ≈
1− |γ(w)|2√

2N
(8)
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where N is the number of independent samples used to estimate the coherence. Next, we adjust the
contributions of the different interferometric coherences through σ|γ(w)|. The higher the interferometric
coherence, the smaller the variance, and the larger the weight. The corresponding expression is

p(w) =
min(σ2

γ(w))

σ2
γ(w)

(9)

where p(w) is the weight associated with the interferometric coherence of ω.

3.1.3. Parameter Estimation

The complex least squares [32] can preserve many of the original attributes of the interferometric
coherences, while reducing the disturbance of the observation errors. This approach has been widely
used in model-based PolInSAR and SAR tomography inversion procedures [2,4,33–35]. Based on the
complex least squares, the inversion algorithm for Equation (7) can be formulated as

m

∑
j=1

n

∑
k=1

(
γ(ωk

j )− γ̂(ωk
j )
)H

pk
j

(
γ(ωk

j )− γ̂(ωk
j )
)
= Q (10)

where γ̂(ωk
j ) is the observation measured by PolInSAR. H represents the complex conjugate transpose.

pk
j represents the weight of observation γ̂(ωk

j ) and can be estimated by Equation (9). For estimation
scenario like Equation (10), non-linear least squares has been widely adopted to enumerate the
unknown parameters [2,17,18]. In fact, such problem can also be regarded as a surveying adjustment
problem, which has been widely discussed in geodesy and various theories and methods have
been developed to study the relationship between observation errors and unknown parameters [36].
However, the existing adjustment methods are mainly designed for real number. Therefore, in this
paper, we will introduce how to solve Equation (10) with an adjustment method.

For non-linear inversion of Equation (10), one widely used approach is the linearized strategy
based on the Taylor series which is adopted to expand the nonlinear function as an approximate linear
function [36]. Although this expansion is valid for complex function, we should keep in mind that γv in
Equation (7) is a complex and we should make a discussion about the stringent mathematical condition
imposed on the complex differentiation [32]. In order to overcome this limitation, an alternative
way to avoid complex derivative is the complex γv can be regarded as being composed of two real
parameters a and b. In such way, f can be reconstructed with two real functions to express the real and
imagery parts. Lastly, Equation (7) can be rewritten as vRe

k
j =

∂Re( f )
∂ϕk dϕk + ∂Re( f )

∂ak dak + ∂Re( f )
∂bk dbk + ∂Re( f )

∂u(ωj)
du(ωj) + lRe

k
j

vIm
k
j =

∂Im( f )
∂ϕk dϕk + ∂Im( f )

∂ak dak + ∂Im( f )
∂bk dbk + ∂Im( f )

∂u(ωj)
du(ωj) + lImk

j
(11)

where ∂ represents the derivative operation and dϕk, dak, dbk, and du(ωj) are the corrections of
the approximations of unknown parameters. lRe

k
j and lImk

j are the differences of the real and
imaginary parts between observations and model predicted values. Matrix notation is used to express
Equation (11) as follows[

VRe

VIm

]
=

[
BRe

BIm

]
X−

[
LRe

LIm

]
s.t.

[
VRe

VIm

]T [
P

P

] [
VRe

VIm

]
= min (12)

Actually, from Equation (12), we can conclude that Equation (10) is equal to a combined adjustment
of complex real and imaginary parts. In addition, the weight pk

j in Equation (10) accounts for the
noise contribution of a complex coherence, which is equal to set the common weight for the real and
imaginary parts in Equation (12). In such way, the complex least squares in Equation (10) is converted
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to a least squares of real case and we can extend the surveying adjustment method into such inversion.
The WCLS solution can be obtained directly from Equation (12) [36]

X =
(

BTWB
)−1

BTWL with W =

[
P

P

]
(13)

However, we find matrix B in Equation (13) is sparse and ill-conditioned, which results in
an unstable estimation of X. The Butterworth singular value decomposition (B-SVD) [37] is applied
to estimate X in order to overcome the above-mentioned limitation. By B-SVD, the X can be
estimated with

X = B+
1 L1with

{
B1 = D−1B
L1 = D−1L

(14)

where B+
1 is the Moore–Penrose inverse of B1 and D is the Cholesky decomposition of W−1.

We recommend using iterative WCLS to calculate the unknown parameters because the start values
are just initial guesses. To provide the start value as accurate as possible, a simple but well-defined
approach described by Equations (8.47–8.50) in [1] is recommend to calculate the initial values. If we
have other reliable constraint conditions about the domain of the unknown parameters, these can also
be easily embedded into Equation (12a) to enhance the inversion procedure [36,38]. Thus, we complete
the GVB model inversion procedure with the WCLSA method.

3.2. Extraction of Forest Height and Underlying DEM

The ground phases and PVCs can be estimated using Equation (13). In this section, we will
introduce the extraction of FUDEM and forest height with the estimated ground phases and PVCs.

3.2.1. Forest Underlying DEM Reconstruction

m ground phases can be generated with Equation (13) from the m baselines PolInSAR data.
After ground interferometric phase filtering [39], phase unwrapping [40], removing the residual
flat-earth phase [41,42] and phase to height conversion [43–46], m ground phases can be used to
generate m FUDEMs. In order to reduce the residual random errors in the original FUDEMs, a baseline
length weighting [7,47] is utilized to fuse these FUDEMs.

3.2.2. Forest Height Inversion

Using the estimated pure volume coherence, the forest height inversion can be transformed to the
following nonlinear complex least squares problem

m

∑
k=1

∣∣∣γk
v − γ̂k

v

∣∣∣2 = min (15)

where γ̂k
v denotes the estimation of γk

v which is described in Equation (3). Considering the high
complexity of Equation (3), the Nelder–Mead simplex method [48], a derivative-free method, is used
for this optimization problem. In order to avoid obtaining non-physical or local solutions from
Equation (15), the corresponding starting values and constraints should be carefully considered.
In this paper, for the starting values, the three-stage method is adopted to roughly calculate the forest
height hv0 with SB PoInSAR data. The other two starting values of Gaussian parameters (δ0 and χ0)
can be respectively calculated with two empirical models designed for pine forest as presented in [11].
Then, the constraint of forest height is set by 0.5hv0 ≤ hv0 ≤ 1.5h0 since the forest height derived by
the three-stage method is usually higher than the half of the forest and lower than the top of the forest.
Finally, the constraints of the two Gaussian parameters can also be set according to the empirical
models in [11] and the constraint of forest height. As a result, for each pixel of the PolInSAR image,
starting values and constraints can be set adaptively.
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Finally, we summarize the overall process of the WCLSA method into a three-step flowchart shown
in Figure 3. The first step is the PolInSAR process [1] as shown in the red box, including coregistration,
range spectral filtering, interferometry, flat earth removal and coherence estimation. Then, we construct
the parameter retrieval framework to estimate the pure ground and volume contributions as presented
in the blue box. Finally, the extraction of FUDEM and height is estimated through the process listed in
the green box.
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3.3. Simulated Experiment

3.3.1. Simulated Data

To evaluate the performance of the WCLSA method in estimating the ground and volume
scattering contributions, a simulated experiment is conducted in the following scenario. Seven forest
heights ranging from 5 to 35 m in combination with an elevation of the strongest backscatter power
δ = hv/4 and a standard deviation χ = hv/12 are set for simulating the forest scenario. A GVR
spectrum with 0.2, 0.4, 0.6, 0.8 and 1 is used to depict the polarization diversity. A kz spectrum
with 0.05, 0.075 and 0.10 is applied to simulate a three-baseline PolInSAR configuration. Using the
scattering model in Equation (4), we calculate the expected interferometric coherences for the seven
different forest heights. Then the three groups of interferometric coherences are, respectively, perturbed
with a magnitude standard derivation (std) of 5%, 10% and 15%, and a phase std is calculated with
the Cramer–Rao bound using 121 independent statistics looks [2]. Thus, an inversion framework
characterized by 14 unknowns and 16 residual observations is completed.

Five hundred times of simulation experiments have been carried out with a random number
generator. For comparison, we also adopt the three-stage method to independently estimate the
ground phase and PVC for every baseline [13]. The coherence characterized by GVR of 0.2 is regarded
as the volume dominated coherence and utilized to estimate the PVC by the three-stage method. Then,
the FUDEM and forest height have been estimated following the process demonstrated in the green
box of Figure 3.

3.3.2. Results and Analysis

Figure 4 shows the root mean square errors (RMSEs) of the ground phases (Figure 4a–c),
the PVC phases (Figure 4d–f) and the PVC amplitudes (Figure 4g–i). It can be observed that the
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WCLSA solutions have significant improvements on RMSEs in the ground phase and PVC aspects.
This demonstrates that the WCLSA is superior to the three-stage method in estimating the pure ground
and volume contributions. Furthermore, it can be noted that in Figure 4a–i the RMSEs of the three-stage
solutions increase with the stds of the coherence magnitudes. However, the amplifications are smaller
for the WCLSA solutions, which indicates that the proposed stochastic model is very helpful to scale
the contributions of different coherences contaminated by different level noises. Moreover, when using
the three-stage method to estimate PVC, the GVR should be assumed to be 0, which is unnecessary
for the WCLSA. The GVR estimates and their RMSEs (error bars) of this simulated experiment are
displayed in Figure 4j. The estimates range from 0.20 to 0.23, which is a prerequisite to secure the
accuracy of the PVC estimation. Finally, following the process presented in the green box of Figure 3,
the FUDEMs and forest heights are estimated. The RMSEs of FUDEMs and forest heights are displayed
in Figure 4k,l, respectively. Obviously, a considerable improvement has been acquired by the WCLSA,
attributing to its distinguishing capacity of estimating the ground and volume scattering contributions.
Quantitatively, the RMSE of FUDEM and forest height are improved by 87% and 64%, respectively.
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and (k,l) RMSEs of the forest underlying digital elevation model (FUDEM) and forest height.

4. Validation with E-SAR P-Band SAR Data

4.1. Study Area and Experimental Data

The proposed WCLSA method is also applied to the airborne P-band SAR data acquired by the
German Aerospace Center (DLR)’s E-SAR sensor. The data acquisition took place in the frame of the
BioSAR2008 campaign. The test site, the Krycklan Catchment, located in Northern Sweden, is mainly
covered by mixed boreal forests. The topography elevation ranges from about 150 to 380 m above
the sea level. In the look direction (South West), the terrain slope ranges from −10 to 10 degrees.
Positive slopes are tilted towards the radar and negative slopes are titled away from the radar. The fully
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polarimetric SAR data set was acquired in the repeat-pass configuration. The corresponding Pauli
RGB composition image is shown in Figure 5. The ground truth data of 26 forest stands (outlined
in red in Figure 5) are available, including tree species, stems, average age, and biomass. In this
paper, four tracks as shown in Table 1 are selected for constituting three baselines: 1–2, 1–3, and 1–4.
In addition, as a part of the BioSAR2008 campaign, light detection and ranging (LiDAR) measurements
were performed by the Swedish Defense Research Agency (FOI). The derived FUDEM and forest
height will be regarded as the reference in the following sections.

Remote Sens. 2016, 8, 820 10 of 18 

 

mainly covered by mixed boreal forests. The topography elevation ranges from about 150 to 380 m 
above the sea level. In the look direction (South West), the terrain slope ranges from −10 to 10 
degrees. Positive slopes are tilted towards the radar and negative slopes are titled away from the 
radar. The fully polarimetric SAR data set was acquired in the repeat-pass configuration. The 
corresponding Pauli RGB composition image is shown in Figure 5. The ground truth data of 26 
forest stands (outlined in red in Figure 5) are available, including tree species, stems, average age, 
and biomass. In this paper, four tracks as shown in Table 1 are selected for constituting three 
baselines: 1–2, 1–3, and 1–4. In addition, as a part of the BioSAR2008 campaign, light detection and 
ranging (LiDAR) measurements were performed by the Swedish Defense Research Agency (FOI). 
The derived FUDEM and forest height will be regarded as the reference in the following sections. 

 
Figure 5. Test site Krycklan Catchment: P-band RGB composite intensity image in the Pauli-basis, 
including 26 forest stands marked by red polygons. 

Table 1. Parameters of airborne interferometric pairs. 

Track Temporal Baseline (min) Baseline (m) kz Range 

1 master  master 
2 32 16 0.012–0.073 
3 53 24 0.024–0.135 
4 70 32 0.051–0.181 

4.2. Results 

Following the steps presented in the red box of Figure 3, the PolInSAR process is carried out 
respectively to the three baselines as introduced in Table 1. As multiplicative factors of the ground 
and volume scattering contributions, temporal decorrelation cannot be eliminated by WCLSA since 
the complex least squares adjustment can only reduce the random error. In order to reduce the effect 
of temporal decorrelation on the interferometric coherence and to provide observations as accurate 
as possible, Phase diversity (PD) [49] and magnitude diversity [2] optimization methods are adopted 
to estimate the canopy-dominated and ground-dominated coherences. However, if the temporal 
decorrelation can be well modeled or compensated with a priori knowledge, the Pauli and linear 
polarizations can also be selected. Thus, for every baseline, five polarimetric vectors can be used to 
calculate the complex interferometric coherences. Then, the inversion framework can be organized 
by constructing 30 equations, composed of 14 unknown parameters and NRO of 16 for each 
resolution cell. 

4.2.1. FUDEM Estimations 

In this paper, the ground-dominated coherences estimated by the magnitude diversity 
approach [2] are used in phase filtering and phase unwrapping for each baseline. After phase 

Figure 5. Test site Krycklan Catchment: P-band RGB composite intensity image in the Pauli-basis,
including 26 forest stands marked by red polygons.

Table 1. Parameters of airborne interferometric pairs.

Track Temporal Baseline (min) Baseline (m) kz Range

1 master master
2 32 16 0.012–0.073
3 53 24 0.024–0.135
4 70 32 0.051–0.181

4.2. Results

Following the steps presented in the red box of Figure 3, the PolInSAR process is carried out
respectively to the three baselines as introduced in Table 1. As multiplicative factors of the ground
and volume scattering contributions, temporal decorrelation cannot be eliminated by WCLSA since
the complex least squares adjustment can only reduce the random error. In order to reduce the effect
of temporal decorrelation on the interferometric coherence and to provide observations as accurate
as possible, Phase diversity (PD) [49] and magnitude diversity [2] optimization methods are adopted
to estimate the canopy-dominated and ground-dominated coherences. However, if the temporal
decorrelation can be well modeled or compensated with a priori knowledge, the Pauli and linear
polarizations can also be selected. Thus, for every baseline, five polarimetric vectors can be used to
calculate the complex interferometric coherences. Then, the inversion framework can be organized by
constructing 30 equations, composed of 14 unknown parameters and NRO of 16 for each resolution cell.

4.2.1. FUDEM Estimations

In this paper, the ground-dominated coherences estimated by the magnitude diversity
approach [2] are used in phase filtering and phase unwrapping for each baseline. After phase
unwrapping and residual flat-earth removal [41,42], the processed ground phases derived by the
three-stage and WCLSA method are individually applied to estimate the FUDEMs. For this dataset,
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a two-order Rational Polynomial Coefficient model [46] is selected for a phase to height conversion.
One hundred ground control points uniformly covering the range of image are extracted from the
LiDAR FUDEM for calculating the RPC model. Therefore, every ground control point grid is composed
of 300 × 300 pixels. Lastly, the FUDEMs are extracted as shown in Figure 6. In order to validate
them, the LiDAR FUDEM is selected as the reference. The histograms of the differences between the
two FUDEMs and LiDAR FUDEM are displayed in Figure 7. Compared with the LiDAR FUDEM,
the two estimated FUDEMs show visible errors varying in the range of ±20 m. It can be observed
that the difference relative to the three-stage FUDEM is larger than those of the WCLSA FUDEM.
The RMSE for the three-stage FUDEM is 4.48 m. For the WCLSA FUDEM, it is 3.45 m, which improves
the respective results by 23.0% compared with the three-stage inversion.
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4.2.2. Forest Height Estimations

According to Equation (15), we estimate the forest height derived by the three-stage and WCLSA
method with the RVoG model (Figure 8a,b) and the GVB model (Figure 8c,d). All results follow
a similar spatial trend, but significant differences appear in the lowest forests. Thirty-eight forest stands
(including the 26 above), characterized by nearly uniform tree heights, are selected from the LiDAR
forest height. We only take the estimated forest height average for every stand. The corresponding
validated stand-level plots are displayed in Figure 9. The RMSE and correlation coefficient R2 are
adopted to validate their performance in deriving forest height. In the RVoG-based case, the validated
plots of the three-stage and WCLSA method are characterized by correlation coefficient R2 values
of 0.49 and 0.70, whose RMSEs are 3.26 and 2.47 m, respectively. For the GVB-based inversion,
the correlation coefficient R2 values are 0.81 and 0.88, whose RMSEs are 2.16 and 1.45 m, respectively.
Obviously, the accuracy of GVB-based inversion is higher than that of the RVoG-based inversion.
Therefore it is possible to state the following: the GVB-based forest inversion is more suitable to model
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the forest vertical structure in this test site. In the WCLSA inversion algorithm, the differences of
PolInSAR forest heights and LiDAR forest heights have been reduced by 21.8% and 29.2%, respectively,
for RVoG and GVB with an average improvement of 26.0% compared to the three-stage inversion
framework. This result confirms that the WCLSA is superior to the three-stage method in case of forest
height inversion.
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5. Discussions

5.1. Difference of Ground Interferometric Phase

Figure 10a shows the maps of ground phases derived by the three-stage (left) and the WCLSA
(right) respectively. Both of the two kinds of ground phases present similar phase patterns caused by
topography. Visual comparison of ground phase maps shows that the WCLSA ground phases have
clearer fringes. In order to visualize the difference, the histograms of the ground phases’ differences
are shown in Figure 10b. Quantitatively, the global mean values for the three baselines are −0.02 rad
(with one std = 0.30 rad), 0.30 rad (with one std = 0.34 rad) and 0.18 rad (with one std = 0.36 rad).
It can be found that the difference increases with baseline and temporal baseline. The reason is
that larger baselines and temporal baselines lead to more significant volume decorrelation and
temporal decorrelation, respectively. Consequently, this induces lower coherence and noisier phase.
As demonstrated in the simulated experiment, the nosier the observation is, the noisier the estimation
is, and the WCLSA makes it possible to overcome this limitation.
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5.2. Interpretation of GVR Based on Terrain Slope and Forest Density

The GVR of PDHigh polarization (volume dominated polarization) [49] reported in the histogram
of Figure 11a ranges from−15 to 0 dB and is characterized by a global mean of−7.6 dB. For the selected
26 forest stands outlined in Figure 5, the maximal mean of GVRs is up to −4.5 dB, almost three times
higher than the minimal mean of GVRs (−9 dB). Even though the coherence optimization methods
have been adopted to estimate the ground and the volume scattering contribution, it is still hard to
ensure that the GVR is less than −10 dB. On the other hand, it also implies that P band data present
good visibility of the ground over boreal forests.

As discussed in RVoG assumption [1,2], the ground scattering contribution is mainly induced by
the odd-bounce scattering and the double-bounce scattering. Both of the scattering mechanisms are
significantly affected by the range terrain slope [50]. In particular, odd-bounce scattering intensity
increases with positive range slope and decreases with negative range slope, while double-bounce
scattering intensity decreases with range slope since the range slope distorts the geometry of the
double-bounce scattering at the base of trees. However, in this experiment, we have not observed that
GVR significantly increases with the positive range slope. Conversely, Figure 11b shows that the GVR
decreases with the absolute range slope and the correlation coefficient R2 is about 0.30. In particular,
the correlation coefficient R2 (0.27) is smaller than 0.30 when the range slope is smaller than 2.5 degree,
which means that the ground scattering contribution is affected less by the range slope smaller than
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2.5 degree for this test site. However, when the range slope is larger than 2.5 degree, the ground
scattering contribution decreases significantly. It may suggest that the ground scattering contribution
is mainly attributed to double-bounce scattering and the phase centers of odd-bounce scattering may
not locate at the underlying ground. The method proposed in [51] may help identifying the phase
centers of the forest scattering mechanisms and gasp an advanced understanding of the relationship
between the GVR and the slope. In addition, azimuth slope also has influence on the forest scattering
mechanisms [50], but no definitive conclusions about the relationships between GVR and azimuth
slope could be drawn in this paper.

It can be seen in Figure 11c that the GVR decreases with the increasing forest density.
Compared with dense forest, more important ground scattering (e.g., double-bounce scattering)
occurs in the sparse forest since the electromagnetic wave undergoes a decrease of attenuation when it
propagates into the forest layer. However, we note that the correlation coefficient R2 between GVR
and forest density is just 0.14, which illustrates that the GVR is not highly correlated with the forest
density for this test site. It can be explained by the fact that the forest density used in this paper
may not well reflect the number of trucks, which has a strong correlation with the attenuation of
an electromagnetic wave [27,52]. This may be suitable for managed forests with similar ages where the
number of trucks increases with the forest density. Moreover, for P band PolInSAR data, while the
main scattering elements are large-scale trucks whose lengths change with the ages, the forest age is
another important factor should be considered. Hence, more prior knowledge about forest structure is
required which may help to convert forest density to trunk density is needed in order to find a better
fitting relationship.

The two above findings are tentative and needed further research. However, these findings
may important to grasp a better understanding of forest scattering mechanisms and refine the
model-based inversion.
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5.3. Effect of GVR Compensation on PVC

As mentioned in Section 2, the WCLSA method can estimate the PVC without a null GVR
assumption. To visualize the effect of the GVR compensation, the PVC estimates of the 26 stands are
selected for analysis. Figure 12 shows the average PVC phase height (Figure 12a) and PVC magnitude
(Figure 12b) estimation of the 26 forest stands produced by the three-stage and WCLSA method.
As a reference, the stand-level forest heights derived from LiDAR surveys are also provided (the blue
dashed line) to evaluate the phase of PVC. The WCLSA PVC magnitudes occasionally increase or
decrease compared with those of the three-stage method. However, it is impossible to access the
PVC magnitudes since true reference values are unavailable in practice. In the phase aspect, for most
stands in the three baselines, the WCLSA phase heights are higher and closer to the LiDAR forest
heights, which denote that the WCLSA phase heights are closer to the LiDAR forest height except for
the stands 10, 15 and 20. The reason may be that the GVR have been assumed to be constant within
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each interferometric pair, which may be insufficient for modeling the variation of the GVR. Thus,
the non-modeled GVR error could influence the accuracy of the PVC.Remote Sens. 2016, 8, 820 15 of 18 
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5.4. Limitations of WCLSA

Three problems are still worth a discussing. Firstly, the constant GVR assumption may be
insufficient for modeling the changes of the scattering mechanisms. The application of the WCLSA
method proposed in this paper is recommended to fuse MB PolInSAR data collected with short
temporal intervals. A more precise temporal GVR model is needed in the case of longer repeat-pass
intervals. Secondly, the WCLSA method does not take into account the temporal decorrelation
when forest parameters are estimated from repeat-pass PolInSAR data. Therefore, it is necessary to
develop a temporal decorrelation model to remove the temporal decorrelation in the interferometric
coherence. Finally, only the magnitude of the interferometric coherence has been adopted to
commonly scale the corresponding reliability of the real and imaginary parts, which seems to be
low sensitive to the distinction of the reliability of the real and imaginary parts associated with the
interferometric coherence. More adaptive weighting strategy [36,38] is needed to scale the contributions
of different polarizations.

6. Conclusions

We have proposed the WCLSA method based on the GVB model to invert the forest height and
FUDEM using P band MB PolInSAR data. Different from the RVoG model, a Gaussian function has
been adopted to depict the vertical distribution of the canopy elements in the GVB model, which is used
for forest height inversion firstly. Moreover, the WCLSA method fusing the MB PolInSAR data and
considering the contributions of the decorrelations to the solutions is derived for the GVB inversion.
For our experiment with simulated data, we have shown that different from the three-stage method,
the WCLSA method can reduce the dependence of the solutions on the decorrelations and improve the
accuracy of the solutions significantly. This is also well validated with the airborne E-SAR P-band SAR
data over mixed boreal forest. A FUDEM with a RMSE of 3.45 m is obtained. We have also found that
the GVB is more suitable to model the scattering process of pine forest with an improvement of forest
height accuracy on RMSE by 37.5%. In addition to the FUDEM and forest height, the ground phase,
the ground to volume ratio and the pure volume coherence are also estimated and discussed. In order
to better understand the scattering process, we should pay more attentions to the terrain slope and
forest density. This will be studied in the future works.
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