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Abstract: This paper presents the methodology and results of two ecological-based net ecosystem
production (NEP) regression tree models capable of up scaling measurements made at various flux
tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression
tree models were trained using various remote sensing data and other biogeophysical data, along
with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland
model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S.
Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were
spatially summarized and statistically compared. The results of this study indicate that grassland
and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from
the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink
potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time
series reveals the C fluctuation through time and space for each land cover type.
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1. Introduction

The far reaching effects and evidence of climate change, driven by increases in atmospheric
greenhouse gas concentrations, motivated international mitigation focus at the 2015 United Nations
Framework Convention on Climate Change Fifteenth Session of the Conference of the Parties [1].
Regional syntheses of carbon flux tower data [2–4] provide geographically referenced estimates from
multiple flux towers and offer detailed summarization of carbon flux properties.

Throughout modern history, scientists have been developing models to formulate generalized
algorithms to expand geographically and temporally sparse field observations to a much larger
landscape means [2–4] or to make up-scaled maps of the measured field characteristics [5].
Understanding, mapping, and quantifying regional carbon flux magnitudes and variability of
terrestrial non-point carbon sinks (removal of atmospheric carbon) and sources (emission of carbon
to the atmosphere) is important in the promotion of ecosystem sustainability. Methodological

Remote Sens. 2016, 8, 944; doi:10.3390/rs8110944 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 944 2 of 28

and technological advances in the areas of remote sensing, environmental monitoring devices,
data management, and computer-aided analytics have led the way to more innovative modeling.
With these advancements, scientists have been able to apply these modeling methods to make estimates
about discrete environmental characteristics, such as, atmospheric composition and below ground
characteristics [6–9].

Remote sensing data [5,10,11], light use efficiency modeling [9,12], data mining
techniques [5,10,11,13,14], process-base modeling [15,16], and greenhouse gas inventories [17]
have enhanced regional understanding and monitoring capabilities. Mapping efforts are sometimes at
coarse resolutions, long time step intervals, have large (continental or global) study areas which may
miss local detail, and can have highly automated or general gap filling strategies for temporary flux
tower instrument failures.

Our analysis focused on two primary large ecosystem classes in the U.S. Great Plains, cropland
and grassland. We developed and applied our models at the 250 m spatial resolution and the weekly
temporal resolution to retain the detailed temporal dynamics of carbon fluxes in the output maps.
The primary objective of this study was to combine measurements acquired at flux towers with
applicable remote sensing, weather, and other biogeophysical data to develop separate grassland
and cropland ecologically-based net ecosystem production (NEP) models and derive mean daily
NEP maps at a weekly time step from 2000 to 2008 for the study area of interest, the U.S. Great
Plains (Figure 1). Although a flux tower measures only its surrounding vicinity, numerous studies
have shown that these recordings can be used in regional or land cover specific synthesis [3,4] or
up-scaled to much greater levels through analyses of geospatial data relationships using computer
modeling [9,13,18]. Of particular interest is the use of data mining regression tree algorithms for carbon
flux mapping [5,10,11,13,14,18]. An acute capability to address nonlinear relationships, deal with
complex high order interactions, easily interpret results, and utilize both categorical and continuous
variables, lends data mining regression tree [10], which contrasts with process-based modeling
approaches that are frequently heavily driven by precipitation, a difficult variable to map accurately,
particularly in rural regions where weather stations are sparse. A vulnerability of regression tree
approaches is a tendency of over fitting. However, this can be mitigated through cross validation [19]
and generalization of sequential dichotomous tests (trees) into generalized rules [20]. Regional
comparisons indicated a higher grassland carbon sink strength and a higher water use efficiency than
non-irrigated crops across rainfall gradients in the Great Plains.
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Figure 1. The map of the Great Plains with the National Land Cover Database (NLCD) 2006 as the
backdrop, along with grassland and cropland flux towers used in this study as green and yellow points.
Numbered flux tower labels refer to individual flux towers as designated in Table S1. Source: [21].
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In addition to model development and map production, a secondary objective of this study was to
perform a systematic comparative analysis of the grassland and cropland NEP results. Our hypothesis
was that cropland ecosystems, being highly managed to optimize productivity of usually annual
vegetation and often in a state of tilled (exposed) soil, vulnerable to respiration losses, would lean more
towards the C sources. Conversely, grasslands with perennial vegetation, generally subject to little
management and no tillage, would tend to perform as C equilibrium or sinks. Grassland and cropland
make up approximately 85% of the total surface area of the U.S. Great Plains (48% grasslands or shrubs
and 37% cultivated crops, pasture, or hay; Figure 1), signifying the importance of understanding
C fluxes in these two ecosystem classes. This spatial and temporal synthesis of Ameriflux, Agriflux,
and independent flux tower data was performed with attention to the stated goals of the North
American Carbon Program (NACP) [22].

2. Materials and Methods

2.1. Flux Tower Data

Dynamics of carbon dioxide (CO2) exchange and other ecosystem resource characteristics are
being measured by flux towers at observation sites throughout the world. For short stature vegetation
(crops, shrubs, and grasses), the flux tower fetch area is about 250 m. NEP flux data sets were at the
30 min time scale and subsequently aggregated to daily and weekly time steps. A flux tower utilizes
systems, such as eddy covariance and Bowen Ratio methods, to continuously measure the exchanges
of CO2, water vapor, and energy between terrestrial ecosystems and the atmosphere [23]. Globally,
there are over 500 active flux towers currently operating on a long-term and continual basis. These
flux towers are located in a diverse range of land cover types, such as, forests, croplands, grasslands,
shrublands, wetlands, and tundra. For this study, flux tower data sets from sites located in grassland
and cropland within or near the Great Plains and during the 2000–2008 time frame were identified,
acquired, and processed (Table S1). We used NEP at the 30 min time step from the flux towers to quality
control for possible instrument related outliers. The quality controlled carbon flux data sets were
partitioned into gross primary production (GPP) and ecosystem respiration (Re) components utilizing
light response and vapor pressure-based partitioning of carbon flux into GPP and Re components [2–4].
Partitioning the fluxes into GPP and Re facilitated a more functional filling of temporary flux tower
data gaps [24]. Partitioned and gap-filled GPP and Re and NEP used in this mapping effort were largely
from focused regional flux tower synthesis for grain crops [4], leguminous crops [3], and grasslands [2].
We selected the carbon flux light response and vapor pressure, or “non-rectangular hyperbolic method”
flux partitioning models [2–4] over Q10 and short-term exponential fit models (which model Re as
a function of temperature based on night-time data) and rectangular hyperbolic fit models (which use
the relationship between photosynthetic active radiation (PAR) and daytime NEP to model Re) because
it produces the most reasonable C flux estimates and data gap filling [25], particularly in non-forest,
low canopy height systems. NEP data from the flux towers were summarized into weekly periods
aligning with 7-day expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized
Difference Degetation Index (NDVI) composites [26]. The training of the grassland and cropland NEP
mapping models for weekly NEP was focused on records from 30 flux towers—15 measuring CO2

exchange (CFlux) in cropland sites and 15 measuring CFlux in grassland sites (Figure 1, Table S1).
The 30 flux towers represent a total of 76 site years of data (33 site years for grassland and 43 site years
for cropland).

2.2. Input Spatial Data

To bring the flux tower data into proper context and permit upscaling to the U.S. Great Plains,
a wide range of input spatial data were selected and implemented in the regression tree model
training (Section 2.4 below). Model development and mapping application at the weekly time step
of NEP helped capture seasonal variations of NEP that are related to both weather and management
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activities. These input data sets provided the models with samples of how NEP behaves in accordance
with variability of various spatial and temporal environmental characteristics. The first group
of input spatial data used in model training included weekly eMODIS NDVI [26] and a simple
temporal dataset with values ranging from 1 to 52 for the week of the year. NDVI is derived from
visible and near-infrared (NIR) light reflectance measurements (Equation (1)) and correlates with the
photosynthetic potential of vegetation [27]. The eMODIS NDVI product [26] is processed using the
same data source and atmospheric correction algorithms as the standard MODIS collection 5 data
product [28]. However, the eMODIS process uses a compositing algorithm which is largely dependent
on maximum value-NDVI compositing, scan angle, and data quality flags to filter through input
reflectance with bad quality, negative values, clouds, snow cover, or low view angles. Additional
eMODIS NDVI quality measures were performed to reduce possible cloud contamination and
anomalous atmospheric effects by applying temporal smoothing using a moving window weighted
least-squares regression method [29]. While NDVI is a widely accepted vegetation index (VI) that has
numerous applications [11,14,30], some disadvantages have been noted, such as spectral signature
saturation in areas of high canopy density [31]. The weekly NDVI and temporal datasets were used to
train the models on how NEP corresponds to weekly vegetation vigor.

NDVI =
NIR − red
NIR + red

(1)

The second set of spatial input data was selected to allow the models to capture how NEP
responds to weekly meteorological-based characteristics. These included weekly total precipitation
(PCP), weekly mean minimum and maximum air temperature (TMIN and TMAX), and weekly mean
PAR acquired from the National Weather Service (NWS) National Centers for Environmental Prediction
(NCEP) [32]; 30-year normals for annual TMIN, TMAX, mean temperature (TMEAN), and PCP for the
1981 to 2010 time period were also incorporated into the model. These normals were acquired from
the PRISM Climate Group [33] and rescaled from 800 m to 250 m using bi-linear interpolation.

The third set of input spatial data used in model training included several annual vegetation
phenology metrics to train the models on how NEP fluctuates as a function of varying seasonality and
states of vegetation. Specifically, nine unique annual phenology metrics, derived using methodology
in accordance with Reed, et al. [34], were incorporated into the models. The phenology metrics
included Amplitude (AMP), Duration (DUR), End of Season NDVI (EOSN), End of Season Time
(EOST), Maximum NDVI (MAXN), Maximum NDVI Time (MAXT), Start of Season NDVI (SOSN),
Start of Season Time (SOST), and Time Integrated NDVI (TIN). All phenology metrics were acquired
from the U.S. Geological Survey (USGS) Remote Sensing Phenology (RSP) website [35].

The fourth group of input spatial data used in model training included four static soil variables,
derived from the Soil Survey Geographic (SSURGO) database (mostly mapped at the 1:24,000
scale), where available, with gaps filled from the State Soil Geographic (STATSGO) database.
These soil datasets were acquired from the U.S. Department of Agriculture (USDA), Natural Resources
Conservation Service (NRCS) [36]. The four soil variables were available water capacity (AWC),
clay percentage (CP), bulk density (BD), and soil organic carbon (SOC) within a 0–30 cm soil depth
zone. This set of static inputs was included to train the models on how NEP varies as a function of
soil characteristics.

Finally, the models were referenced to a specific land cover or vegetation type. For the grassland
NEP model, the land cover type was all grassland and the weekly grass NEP from Zhang, et al. [11]
was used. The cropland NEP model added annual crop information. These data were acquired from
the crop type maps (CTM) developed by Howard and Wylie [37]. Only crops for which flux tower
data were available were included (corn, soybeans, wheat, and alfalfa). General land cover/land use
datasets, such as, ecoregion (ECO) [38], major land resource areas (MLRA) [39], and irrigation in 2002,
2007, and 2012 (IRR) [40] were also used in constructing the model. Table 1 gives a complete list of the
input spatial data utilized in the training of grassland and cropland NEP regression tree models.
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Table 1. Input spatial datasets used in the development of the grassland and cropland NEP models.

Source Type Derived Dataset Acronym NEP Model Application Temporal Interval

MODIS Normalized Difference
Vegetation Index NDVI Grassland and Cropland Weekly

Meteorological
Characteristics Total Precipitation PCP Grassland and Cropland Weekly

Meteorological
Characteristics

Mean Minimum
Air Temperature TMIN Grassland and Cropland Weekly

Meteorological
Characteristics

Mean Maximum
Air Temperature TMAX Grassland and Cropland Weekly

Meteorological
Characteristics

Mean Photosynthetic
Active Radiation PAR Grassland Only Weekly

Temporal Variable Week/Day of Year Week/DOY Grassland and Cropland Weekly

MODIS-Based Phenology Amplitude AMP Cropland Only Annual

MODIS-Based Phenology Duration DUR Cropland Only Annual

MODIS-Based Phenology End of Season NDVI EOSN Cropland Only Annual

MODIS-Based Phenology End of Season Time EOST Cropland Only Annual

MODIS-Based Phenology Maximum NDVI MAXN Grassland and Cropland Annual

MODIS-Based Phenology Maximum NDVI Time MAXT Grassland and Cropland Annual

MODIS-Based Phenology Start of Season NDVI SOSN Grassland and Cropland Annual

MODIS-Based Phenology Start of Season Time SOST Grassland and Cropland Annual

MODIS-Based Phenology Time Integrated NDVI TIN Grassland and Cropland Annual

NRCS SSURGO Percent clay in soil CLAY Cropland Static

MODIS-Based
Crop Classifications Crop Type CTM Cropland Only Annual

30-year Normals Annual Precipitation C_PPT Cropland Only Static

30-year Normals Annual Mean Maximum
Air Temperature C_TMAX Cropland Only Static

30-year Normals Annual Mean Air
Temperature C_TMEAN Cropland Only Static

30-year Normals Annual Mean Minimum
Air Temperature C_TMIN Cropland Only Static

SSURGO/STATSGO-Based
Soil Properties

Available Water Capacity
(0–30 cm soil depth) AWC Grassland and Cropland Static

NRCS SSURGO Percent clay (0–30 cm) CLAY Cropland Static

SSURGO/STATSGO-Based
Soil Properties

Clay Percentage
(0–30 cm soil depth) CP Cropland Only Static

SSURGO/STATSGO-Based
Soil Properties

Bulk Density
(0–30 cm soil depth) BD Cropland Only Static

SSURGO/STATSGO-Based
Soil Properties

Soil Organic Carbon
(0–30 cm soil depth) SOC Cropland Only Static

Land Use/Cover
Classification Level 3 Ecoregion ECO Grassland and Cropland Static

Land Use/Cover
Classification

Major Land
Resource Areas MLRA Cropland Only Static

Land Use/Cover
Classification Irrigation IRR Cropland Only Static

2.3. Data Standardization

All source input spatial data were put through a series of data standardization procedures to
ensure spatial and temporal consistencies. Common geoprocessing techniques were employed to
resample and spatially align the input data to an Albers equal-area conic projection with a 250 m
pixel size and masked to the U.S. Great Plains boundary. Spatial inputs with a temporal element,
such as the meteorological data (generated from daily composites), were appropriately aggregated to
match the weekly time intervals of the eMODIS NDVI composite periods. Finally, model application
masks were developed according to the target land cover of each NEP model (cropland or grassland)
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based on NLCD classifications. The cropland mask was defined based on “Cultivated Crops”
and “Pasture/Hay” and the grassland mask was defined based on “Grassland/Herbaceous” and
“Pasture/Hay”. “Pasture/Hay” was included in the cropland mask because there was a potential of
alfalfa falling into this class. This masking configuration introduced an overlap between the two NEP
mapping results and was handled by averaging the two in the overlapping areas [41].

2.4. Regression Tree Model Development

The two regression tree mapping models in this study were developed using Cubist software [41]
based on the methodology as described by Zhang, et al. [11]. Cubist was used because
of its use of generalized rules and widespread successful applications in the remote sensing
field [5,10,11,14,18,42–51]. Each regression tree model consisted of the dependent variable to be
estimated and the set of independent variables. The dependent variable in this case was the weekly
NEP (grams (g) of C·m−2·week−1) from the study flux towers (Table S1). A potential drawback to
regression tree models is a tendency of overfitting (substantial differences between test and training
accuracy). These overfitting tendencies were assessed and minimized through nine model training
iterations with varying data set sizes. Each training data set size was replicated nine times with
different random seeds.

Analysis of the GNU General Public License of Cubist [41] revealed that the ruleset (stratification
for piecewise regressions and regression independent variable selection) cost function is the mean
absolute difference modified by the ratio of the number of cases and the number of parameters.
This weights the process towards having fewer parameters and trying to simplify the model as a whole
while countering against over fitting and mitigating outlier impacts. More classical least squares
approaches tend to be more sensitive to outliers than to absolute difference. The multiple regression
determination for each ruleset is a classical least squares approach excluding extreme residual outliers.

The models were designed to ingest a series of input spatial data and estimate the weekly mean
daily cropland and grassland NEP throughout the U.S. Great Plains for 2000 to 2008 at 250 m spatial
resolution. Under the ecological-based notation, NEP is defined as subtracting RE from GPP and
denotes the net exchange of carbon between terrestrial ecosystems and the atmosphere where the
ecosystem is the point of reference (Equation (2)). Therefore, any ecosystem that absorbs more carbon
(C) than it releases would yield a positive NEP value and would be considered a C sink. Conversely,
any ecosystem that releases more C than it absorbs would yield a negative NEP value and would be
considered a C source.

NEP = (GPP − RE) , (2)

The model training process (Figure S1) begins by first spatially and temporally linking the flux
tower data with the spatial datasets to create the training database for each model. To achieve this,
the flux tower data were converted into point shapefiles with the accompanying weekly NEP records.
Next, these points where spatially and temporally intersected with each of the input spatial datasets
to extract the full set of input values at each point. Through this procedure, the flux tower point and
accompanying NEP records were merged with the appropriate input spatial dataset values, creating
the final training databases. The training data base used for developing the cropland NEP regression
tree model contained 2225 samples of weekly NEP acquired from 15 flux tower locations over 13 years
with temporal coverage varying by flux tower. Likewise, the grassland NEP regression tree model was
trained on 1447 weekly samples acquired from 15 flux tower locations over 9 years.

These data bases were then ingested into RuleQuest Cubist v. 2.06 data mining software [41]
to construct the regression tree mapping models (Figure S1). Cubist ingests the training data bases,
analyzes them for patterns and relationships between the independent and the dependent variables,
and uses this information to create models consisting of numerous estimation rules in the form of
multiple ‘if-then-else’ conditional statements. The completed models are in turn implemented on
a pixel-by-pixel basis to estimate NEP, the dependent variable, based on the set of input spatial data,
outputting a weekly map.
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The validation and accuracy assessment of the Cubist regression tree NEP mapping models
quantified model training accuracy and model spatial and temporal accuracy through a series of
leave-one-out cross validation techniques. The cross validation method withholds a specific group
of flux data (data from a particular flux tower, year, or a random sample of weekly fluxes) from
model development as an independent test and the mapping model is developed from the remaining
flux dataset. The cross validation approach is widely accepted [52–55] and has been used in C flux
mapping [5,10,11,13,18] and biomass mapping [47,56], as well as to assess expected model performance
on unseen data, identify of influential flux towers and years, and to help optimize models to minimize
over fitting (using random cross validation) [19,57,58]. Cross validation approaches provide robust
accuracy assessments from many independent withheld “test” data, which helps to identify and
minimize over fitting or over generalization [59], and allows all of the limited flux towers to be utilized
in developing the final mapping models—maximizing mapping accuracy and robustness for crop and
grassland NEP.

Our experience with Cubist models for mapping has indicated the potential for a substantial
variation of test accuracies with different randomizations of test data or different sites or years being
withheld as test [11,51]. Cross validation techniques allow multiple independent test data sets to
estimate the expected accuracies of the population of pixels to be mapped and can better quantify
accuracy variability across multiple random test datasets than the classical single independent data
test dataset approach. To further quantify the robustness of our flux mapping algorithms, we utilized
an approach similar to the “bias/variance tradeoff” approach [59]. With this approach, the input
variables and the maximum allowed number of committee sub-models are held constant while the
various size combinations of test and training are assessed [60]. The training data size (or proportion
of the total weekly flux tower observations) in this experiment was increased in 10% increments from
10% to 90% with the test datasets decreasing inversely from 90% to 10%. At each level of training
dataset size, we performed nine different random seeds for test data selections (nine training dataset
sizes with nine different randomizations = 81 model runs). Across the nine randomizations at each
level of training dataset size, the mean absolute difference (MAD) was calculated to quantify training
and test accuracies, the standard deviation of MAD quantified model stability for training and test
datasets at each level of training dataset size, and the MAD difference between test and training
datasets quantified model over fitting. Relationships between test accuracy and training accuracies
were established as a function of training dataset size to extrapolate expected model tendencies when
trained on 100% of the flux tower data (which was used for map generation).

Under sampling by reference or training data relative to the space and time to be mapped is
an issue in both machine learning approaches and process-based mapping models used to map carbon
fluxes [5,9,51,61], but the area to be mapped to number of flux tower ratios were similar in this study
to other carbon flux mapping efforts [5,13,18].

2.5. NEP Map Production

The grassland and cropland NEP regression tree models were applied to the U.S. Great Plains
using the input spatial data applicable to each model and time period to produce weekly NEP maps.
For example, the cropland model was implemented for week 1 of 2000 by using all week 1 data from
2000 (NDVI, Week, PCP, TMIN, and TMAX), all annual data from 2000 (AMP, DUR, EOSN, EOST,
MAXN, MAXT, SOSN, SOST, TIN, and CTM), along with the static input datasets (30-year normal
data, AWC, CP, BD, and SOC). In this example, the cropland model would yield the week 1 NEP
cropland estimates for 2000. Through this model implementation process, 936 weekly, 250 m NEP
maps for grassland and cropland of the U.S. Great Plains for 2000–2008 were produced (468 grassland
NEP maps and 468 cropland NEP maps). Following the initial map development, a masking step
was performed to remove areas where the dominant crop, during the 2000–2008 time period, was
something other than corn, soybeans, winter wheat, or alfalfa (Figure S2).
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2.6. Grass versus Crop NEP Comparison

Rangeland (grass) biomass strata or “classes” were derived from STATSGO estimates for a “normal
year” from STATSGO estimates of rangeland production on a “normal” year [62] using an unsupervised
clustering approach. Eight rangeland biomass strata were produced that captured the productivity and
precipitation gradients of the central and western portions of the Great Plains (Figure 2). STATSGO
rangeland biomass estimates were not available for the states east of this extent.
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Figure 2. Rangeland productivity strata (above ground biomass) classes for a normal year.

To assess normality (a requirement for the application of classical statistics) in regional NEP
distributions several approaches were applied: visual inspection of NEP regional frequency plots
and the differences between mean and median regional NEP indicated skewness. These normality
assessments were applied to annual NEP, 2000–2008 combined NEP, and other spatial subsets (grass
and specific crop types and eight rangeland productivity strata (classes) which captured productivity
gradients across the Great Plains. Where non-normal NEP regional or sub-regional frequency
distributions (crop, grass, productivity classes) were observed, we used median, MAD, and quartiles,
otherwise classical statistics were applied (means and Root Means Square Error (RMSE)).

Mean and median annual NEP maps were derived from the 2000–2008 weekly grassland and
cropland NEP regression tree output maps and were studied to gain an understanding of how Cflux
corresponds to the Great Plains moisture and productivity gradients and potentially reveal conditions
where grassland or cropland had greater carbon sink strength. This effort focused only on grass and
non-irrigated cropland, as determined by Brown and Pervez [63], to exclude the substantial production
advantages that come with irrigation.
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The 2000–2008 mean and median NEP for grass and non-irrigated cropland was averaged across
eight rangeland production classes derived from unsupervised clusters using STATSGO rangeland
production estimates. Then, the eight rangeland productivity class median NEP for grasslands was
regressed on median NEP for non-irrigated croplands. The intercept term from this relationship
tested the significance (p < 0.05) of potential grass NEP differences when non-irrigated crops are at the
2000–2008 equilibrium. The slope coefficient will reveal potential variations of grass and non-irrigated
crop NEP across the Great Plains production and moisture gradients. Similarly, 30-year gridded climate
data [33] precipitation was averaged for each of the productivity classes and regressed on production
class median grassland NEP and on production class median non-irrigated crop NEP. The intercept
coefficients quantify precipitation levels where grass and non-irrigated crops can be expected to be in
near 2000–2008 equilibrium. A similar analysis using biomass from each of the production classes can
identify expected rangeland productivity levels where grass and non-irrigated crops would be near
2000–2008 equilibrium.

3. Results

3.1. Regression Tree Model

Model training accuracies for the crop and grass weekly NEP mapping algorithms are summarized
in Table 2. The cropland NEP model training accuracy achieved a correlation coefficient (r) of 0.94,
a RMSE of 1.01 g C·m−2·day−1 a MAD of 0.60 g C·m−2·day−1. The grass model training accuracy had
an r of 0.88, RMSE of 0.62 g C·m−2·day−1, and a MAD of 0.45 g C·m−2·day−1. Given the large datasets
(sample sizes of 1445–2277) used to develop the grass and crop regression trees. Autocorrelation effects
are expected to be minor because the ordinary least squares estimators associated with the regression
models are consistent under general conditions [64] and provide unbiased estimates [65]. The NEP
regression tree mapping models for crops and grass are presented in Tables S2 and S3. All map legends
and statistics were conformed to a common unit and are presented as NEP as g C·m−2·day−1 or
g C·m−2·year−1.

Table 2. Summary of prediction accuracies of NEP (g C·m−2·day−1) from model development
(training), site cross validation, year cross validation, and a random test hypothetical projection.

Intercept Slope p r RMSE MAD

Croplands

Training 0.018 0.018 b <0.01 0.94 1.01 0.60
Site cross validation −0.098 0.675 b <0.01 0.76 1.62 1.14
Year cross validation 0.127 a 1.101 b <0.01 0.8 1.79 1.02

Hypothetical random test na na na na na 0.71

Grassland

Training −0.042 a 1.180 b <0.0001 0.88 0.62 0.45
Site cross validation 0.033 0.339 b <0.0001 0.48 1.14 0.81
Year cross validation 0.226 a 0.389 b <0.0001 0.49 1.16 0.81

Hypothetical random test na na na na na 0.53
a Significantly different from 0; b significantly different from 1; na, Not applicable.

The regression tree mapping rules and prediction regressions are completely transparent and
quantify the multiple sequential models (committee models) from which a mean prediction is made.
The crop model had 3 committee models that had between 17 and 21 different prediction strata or
rules, while the grass model had 5 committee models with 10 to 31 different rules (Tables S2 and S3).
Each rule has stratification criteria (“conditions”) as well as an associated multiple regression model
(“prediction”), which is applied within a respective rule’s strata. The usage of independent variables in
the model development data base with the respective multiple regression models are for deriving the
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model “predictions”. The number of weekly NEP flux tower observations in the model development
data base that meet each rule’s stratification criteria is quantified (the number of weekly NEP flux
tower observations or cases in Tables S2 and S3), and the percentage utilization of the spatial data
inputs for stratification (“conditions”) can be quantified for each regression tree mapping model (see
Attribute usage “condition”, or “model” at the end of Tables S2 and S3). An overall utilization for each
spatial input was estimated by the mean utilization across attribute condition and use in the regression
model (Tables 3 and 4). The weekly eMODIS NDVI (proxy for photosynthetic potential of vegetation)
was the most utilized spatial input variable in the crop model and PAR (primarily driven by day length
and cloud cover) was the most utilized spatial variable in the grass model (Table S5). Time of year
variables (Week in crop model and Day of Year (DOY) in grass model) were either the second or third
most utilized spatial variables in both mapping models. Phenological variables (SOSN, SOST, AMP,
MAXN, TMIN, and EOST) were much more important in the crop model (Table S4) than in the grass
model and maybe implying that crop fluxes are more closely tied to phenology than grass or that crop
phenological metrics are more accurately mapped from NDVI time series than grasslands. Precipitation
was more influential in the grass model than in the crop model largely because precipitation was not
used in the stratification of the crop model and it may be related to the higher probability of irrigation
in croplands than in grasslands. AWC was the most important soil characteristic (better than SOC,
BD, and CLAY) and was much more important in the grass model than in the crop model (32 versus
18 percent, respectively).

Table 3. Utilization in percentage of the total weekly NEP fluxes for the spatial inputs used in mapping
crop NEP.

Spatial Inputs Attribute Conditions Prediction Mean Utilization

NDVI 81% 83% 82%
Week 78% 0% 39%
SOSN 10% 65% 38%
SOST 2% 73% 38%
AMP 4% 70% 37%

MAXN 0% 69% 35%
TMIN 15% 51% 33%
EOST 1% 61% 31%
DEM 0% 62% 31%

TMAX 4% 52% 28%
DUR 0% 54% 27%
TIN 4% 47% 26%

EOSN 2% 48% 25%
BD 6% 40% 23%

PCP 0% 41% 21%
MAXT 0% 40% 20%

SLP 0% 38% 19%
AWS 0% 36% 18%

C_PPT 0% 34% 17%
SOC 2% 24% 13%

CLAY 7% 17% 12%
C_TMAX 12% 10% 11%
Crop Type 21% 0% 11%
C_TMIN 0% 18% 9%
MLRA 8% 0% 4%

C_TMEAN 0% 5% 3%
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Table 4. Utilization in percentage of the total weekly NEP fluxes for the spatial inputs used in mapping
grass NEP.

Spatial Inputs Attribute Conditions Prediction Mean Utilization

PAR 76% 60% 68%
NDVI 50% 44% 47%
DOY 46% 47% 47%
PPT 8% 57% 33%

MAXN 19% 45% 32%
AWS 28% 35% 32%
TIN 21% 39% 30%

SOSN 10% 45% 28%
TMIN 3% 45% 24%
TMAX 5% 40% 23%
MAXT 12% 31% 22%
SOST 12% 17% 15%

3.2. Validation

Leave one site out cross validation was conducted to assess crop and grass flux prediction
consistency on unseen data and also to identify influential flux towers (Table 5). Leave one site out
cross validation is a pessimistic error estimation particularly for influential flux towers. The crop mean
MAD was 1.10 g C·m−2·day−1, and ranged from 0.70 to 1.71 g C·m−2·day−1. The most influential
flux tower was Lamont ARM Main which represents a low yield dryland cropping system; this tower
was the southern-most crop site, and one of two winter wheat sites. Mandan was the second most
influential flux tower, which may be related to the crop type with Mandan being one of only two alfalfa
flux towers. Additional cropland flux towers located in poorly represented crops would improve
model confidence and robustness. Flux-tower known weekly NEP was regressed on predicted weekly
NEP when each respective flux tower location was withheld as a test in the cross validation by site
analysis. An overall, highly significant (p < 0.01) regression model had an coefficient of determinations
(R2) of 0.57, an RMSE of 1.62 g C·m−2·day−1, and a MAD of 1.14 g C·m−2·day−1 (Table 2)—which
was quite similar to the table means of the leave-one-out flux tower site (Table 5). Similar NEP
mapping accuracies were reported by [13] but, at a global scale, it had a much coarser spatial resolution
(0.5 degree) and a longer mapping time step.

The grassland leave one site out cross validation (also shown in Table 5) analysis indicated
slightly lower NEP error terms than the cropland model with a mean RMSE of 1.12 g C·m−2·day−1

(ranging from 0.9 to 1.61 g C·m−2·day−1); and a mean MAD of 0.83 g C·m−2·day−1 (ranging from
0.62 to 1.09 g C·m−2·day−1). Fort Peck was the most influential grassland flux tower because it
captured an extreme drought year (2002). Rannells Ranch was the second most influential flux tower
of the grassland model. An overall regression of withheld weekly grassland NEP had similar error
magnitudes (Table 2) as the leave one site cross validation means (Table 5). The lower NEP error
terms that were observed for grass relative to crops persisted in the weekly regression of withheld
grass predictions with a RMSE of 1.14 g C·m−2·day−1 and a MAD of 0.81 g C·m−2·day−1 (Table 2).
These lower grass leave-one-out cross validation error terms may be related to the diverse crop types
(the monoculture nature of crop stands resulted in abrupt vegetation differences) and the intensive
management of crops. Grassland communities are typically more diverse mixtures of forbs and C3

and C4 grasses, often have gradual transitions in species compositions, and management impacts are
not as intensive as croplands.

Leave-one-out cross validation quantified the robustness of mapping models through time
(Table 6). The cropland mean RMSE and the mean MAD from the leave-one-year-out analysis
had similar magnitudes as the leave-one-site-out analysis. Interestingly, we see 2001 was the most
influential year—the year the Lamont winter wheat flux tower recorded very low crop yields.
Similarly, the leave-one-year-out cross validation had similar across-year mean RMSE and MAD
as the leave-one-out site across site mean values. This demonstrates a consistency in the crop and
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grass NEP mapping models for both cross validation techniques (through time and space). The most
influential year in the grass NEP model was 2002, a drought year [66].

Table 5. Leave-one-out flux tower site cross validation for crops and grasslands (g C·m−2·day−1).

Site Site ID Mean of
Flux Tower

Std. Dev. of
Flux Tower

Mean of
Estimated

Std. Dev. of
Estimated RMSE MAD Influence

Rank

Cropland

Lamont ARM Main 1 0.11 1.73 −0.33 2.63 2.58 1.71 1
Bondville 2 na na na na na na
Batavia 3 na na na na na na

Brooks Field-10 4 0.15 2.85 0.22 2.73 1.81 1.00 6
Curtis Ranch 5 −0.03 0.64 −0.80 0.90 1.41 1.00 7

Fermi Agricultural 6 na na na na na na
Haller 7 na na na na na na

Kellogg Biological Station 8 na na na na na na
Lennox 9 0.41 2.95 0.59 2.93 1.21 0.85 9
Mandan 10 0.69 2.00 0.13 1.36 1.79 1.39 2

Mead Irrigated Continuous 11 0.37 3.66 0.16 2.43 1.73 1.01 5
Mead Rainfed 12 1.13 4.51 0.61 2.97 2.46 1.22 3

Mead Irrigated Rotation 13 −0.08 1.99 −0.15 2.12 1.07 0.70 10
Rosemount Conventional 14 0.42 2.98 0.41 2.03 1.62 1.00 8

Rosemount G19 15 0.19 1.97 −0.21 1.13 1.95 1.14 4

Mean 1.76 1.10

Grassland

Batavia 16 0.7 2.33 na na na na
Lethbridge 17 0.3 1.36 na na na na
Fort Peck 18 −0.21 1.12 0.26 1.05 1.61 1.08 1
Mandan 19 0.25 0.89 0.1 0.74 1.06 0.77 7

Miles City 20 −0.21 0.77 −0.51 0.41 0.9 0.67 13
Brookings 21 0.08 1.3 0.36 0.97 1.2 0.9 4

Cottonwood 22 −0.08 0.91 0.14 0.97 0.98 0.62 9
Gudmundsen Ranch 23 −0.07 0.99 −0.04 0.44 0.92 0.7 12

CPER 24 0.18 1.13 0.33 0.68 0.96 0.7 10
CRP ungrazed 25 −0.43 0.81 −0.45 0.57 0.94 0.7 11
Rannells Ranch 26 0.45 1.88 0.17 0.88 1.47 1 2
Walnut River 27 0.14 1.15 0.01 0.76 0.99 0.73 8
Woodward 28 0.24 1.15 0.01 1.12 1.1 0.89 6
Fort Reno 29 0.16 1.63 0.62 1.08 1.14 0.91 5

Freeman Ranch 30 0.14 0.93 −0.9 0.78 1.35 1.09 3

Mean 1.12 0.83

na, Not applicable (flux tower outside the Great Plains).

The robustness and over fitting tendencies for the cropland flux mapping regression tree models
documented higher randomized test MAD for the crop model than the training MAD at all levels of
training data size (over fitting), but over fitting tendencies (difference between training and test MAD)
declined to acceptable levels (<0.20 g C·m−2·day−1) with low MAD test and training differences [7,10]
with larger training data sizes (Figure 3). Training MAD was relatively constant across the training
data size variations, which indicates an increase in the cropland NEP mapping model robustness
to unseen data with increasing training data size. Crop NEP MAD regressed on training data size
(R2 = 0.82) estimated a hypothetical training MAD of 0.71 g C·m−2·day−1 when all the flux tower data
were used as training.

The grassland NEP models demonstrated that smaller random test sizes had larger error
components (MAD) for both model training and testing (Figure 4). This was especially true of
the lowest training sample size’s associated test MAD, which also had a MAD standard deviation
nearly double the other test MAD estimates. This result indicated an unstable model at this low
training sample size and was considered an outlier. The continuing decline of both the test and training
MAD for the grassland NEP mapping model would imply that additional flux tower observations
would continue to improve both the accuracy and robustness of the mapping model. The test MAD
declined dramatically with increasing training size (R2 = 0.98) indicating a rapid decrease in over fitting
tendencies. The test MAD regression (excluding the outlier test MAD at the low training sample size)
estimated a hypothetical test MAD of 0.50 g C·m−2·day−1 when all the grass weekly NEP observations
were used in model development.
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Table 6. Year leave-one-out cross validation of weekly NEP (g C·m−2·day−1).

Year Mean of
Flux Tower

Std. Dev. of
Flux Tower

Mean of
Estimated

Std. Dev. of
Estimated r RMSE MAD Influence

Rank

Cropland

2000 −0.22 2.45 1.19 3.43 0.93 2.02 1.42 3
2001 1.08 4.13 0.26 2.64 0.85 2.50 1.43 1
2002 0.20 2.85 0.27 2.40 0.86 1.44 1.00 7
2003 0.75 3.85 0.64 2.47 0.82 2.32 1.36 2
2004 0.08 2.29 0.08 1.62 0.83 1.32 0.79 9
2005 0.46 2.63 0.13 1.40 0.82 1.72 0.96 6
2006 0.29 2.56 −0.05 1.48 0.74 1.81 0.99 5
2007 0.48 3.18 0.22 2.43 0.81 1.91 1.06 4
2008 0.09 2.22 0.03 1.95 0.78 1.40 0.79 8

Mean 0.83 1.82 1.09

Grassland

2000 0.12 1.19 0.34 0.93 0.61 0.99 0.68 6
2001 0.13 0.96 0.08 0.79 0.63 0.77 0.54 8
2002 0.07 1.29 0.38 0.96 0.15 1.52 1.03 1
2003 0.25 1.38 −0.06 0.77 0.48 1.25 0.92 3
2004 0.04 1.05 0.79 1.20 0.55 1.31 0.95 2
2005 0.26 1.53 0.31 1.04 0.65 1.17 0.88 5
2006 0.04 1.30 0.44 1.15 0.59 1.18 0.88 4
2007 −0.22 0.93 0.04 0.92 0.50 0.96 0.70 7
2008 na na na na na na na

Mean 0.52 1.14 0.82

na, Not applicable (no flux tower used from 2008).
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3.3. NEP Maps

The NEP maps were combined into merged cropland and grassland products and summarized
to quantify NEP in the U.S. Great Plains at weekly, seasonal, and annual time steps. Specifically,
four groups of maps were produced from the merged weekly grassland and cropland NEP maps:
(1) mean weekly NEP; (2) annual NEP; (3) mean seasonal NEP; and (4) mean annual NEP. Each of these
maps represented the cumulative NEP (in g C·m−2 specified time·period−1) using ecological-based
notation [3,10,11], where negative values indicate areas with higher RE than GPP (C source) and
positive values indicate areas with higher GPP than RE (C sink). The annual maps (Figure 5) showed
the level of variability of cumulative NEP from one year to the next [67], while the mean seasonal
(Figure 6) and weekly NEP maps captured the intra-annual dynamics of NEP. The mean annual
2000–2008 map (Figure 7) proved useful in identifying the prevalent NEP condition during 2000–2008.

To quantify the spatial variation of multiple year NEP uncertainty, a regression tree model was
developed to estimate leave one site out cross validation accuracies from vegetation type (crop or
grass), soil organic carbon, 30-year mean annual precipitation, and mean annual NEP. This three
member committee Cubist model (two rules for each committee model) predicted the leave-one-out
site RMSE with a training MAD of 0.18 g C·m−2·day−1 (r = 0.91) and a random 10-fold cross validation
MAD of 0.22 g C·m−2·day−1 (r = 0.87). The similarity between the training and cross validation MADs
implies minimal over fitting tendencies. The resultant RMSE map (Figure 8) was masked by crop and
grassland areas and stratified (see legend) by the percentage the three input variables exceeded the
data values observed at the flux tower locations (extrapolation index). RMSE tends to be higher in
cropland areas and lower in grassland areas similar to the results shown in Table 5, but also reflects
grassland domination in drier western portions of the Great Plains. Also, western agriculture is often
dominated by irrigation, which results in higher production, NEP, and RMSE.

These maps present an important NEP archive of a large portion of the U.S. Great
Plains for the 2000–2008 time period and, when coupled with the following statistical analysis
quantifying and comparing NEP behavior in the U.S. Great Plains, could be utilized for various
carbon-cycle-based analyses.
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exceed the 75% quartile of grass in 2002 and 2006, both major drought years. 

Figure 6. Cumulative seasonal NEP of the U.S. Great Plains for 2000–2008.

3.4. Comparisons between Grassland and Cropland across the Great Plains

Crop and grass NEP across the Great Plains indicated drops in grassland NEP in 2002 and 2006,
which where years with high incidences of drought [69], particularly in July [66], in western grassland
areas. The yearly overlap of the 25th and 75th quartiles for grass and crops is substantial resulting in
the multiple year medians for crops and grass being quite similar (Figure 9).

Crop type differences in median Great Plains NEP show that carbon sink potential is the greatest
with alfalfa and corn (Figure 10). The 25% quartiles of alfalfa exceed the 75% quartile of grass in 2004,
2005, 2007, and 2008, indicating minimal overlap. Similarly, the corn 25% quartiles exceed the 75%
quartile of grass in 2002 and 2006, both major drought years.
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Figure 7. Mean annual NEP map (2000–2008) with overlaid Level 3 Ecoregions. The spatial mean of
cropland NEP for the U.S. Great Plains was calculated to be 30.63 g C·m−2·year−1 and the spatial mean
of grassland NEP was calculated to be 45.37 g C·m−2·year−1.

More detailed, weekly-iterated statistics revealed even greater detail about the annual dynamics
of NEP in grassland and cropland ecosystems (Figures 6 and 11, and Table S4). Both ecosystems
averaged out to have minor C source tendencies during the winter weeks when vegetation is typically
in a dormant state and GPP and RE are minimal. Grassland generally exhibited the earlier increase
and peak to NEP in the spring, which is likely related to perennial C3 grasses and forbs. Conversely,
cropland maintained higher RE rates than GPP throughout the spring, a time when fields are being
prepared, seeds planted, and initial emergence takes place. In the summer, grasslands tended to level
off and start on a decreasing NEP trend throughout the remainder of the year, while cropland GPP
spikes and increases to a maximum NEP in mid-summer. Around harvest time, in the fall, cropland
generally declined to C source levels similar to those observed in the spring.
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3.5. Great Plains Productivity Gradient Comparisons between Grassland and Non-Irrigated Cropland

Given large productivity gains associated with the irrigation of croplands in arid systems relative
to non-irrigated grasslands, a more reasonable comparison would be between non-irrigated crops and
grasslands across the east to west productivity and moisture gradient of the Great Plains. Extreme
eastern portions of the Great Plains were excluded from this analysis because biomass strata from
Tieszen, et al. [62] exclude the extreme eastern portions of the Great Plains, particularly most of the
Corn Belt (Figures 1 and 2), but do capture the moisture and productivity gradient for the central and
western portions of the Great Plains.

Grassland median NEP was regressed on non-irrigated crop median NEP using the rangeland
productivity strata (Figure 12). The intercept term, 139 g C·m−2·year−1, is significantly different
from zero (p < 0.001) and estimates the added grass carbon sink magnitude when non-irrigated crops
would be near the 2000 to 2008 NEP equilibrium. The slope coefficient’s (p = 0.004) 95% confidence
interval ranged from 0.4 g C·m−2·year−1 to 1.3 g C·m−2·year−1 indicating a moderately strong
tendency (p < 0.06) for the difference between non-irrigated crop and grass NEP being smaller in more
productive systems and larger in drier systems.
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To assess water use efficiency, long-term climate annual precipitation was regressed on grass
and non-irrigated NEP medians from the rangeland biomass strata (Table 7). The intercept terms
represent annual precipitation (mm) where grass (373 mm) and non-irrigated crop (629 mm) would
be near the 2000–2008 NEP equilibrium and are significantly different (p < 0.001). The difference
between the two intercepts gives an estimated 257 mm of additional annual precipitation needed by
non-irrigated crop to achieve 2000–2008 NEP equilibrium. From Figure 12 we estimated an additional
139 g C·m−2·year−1 of grass NEP when non-irrigated crop is at the 2000–2008 equilibrium, which
would result in an additional 0.5 g C·m−2·year−1·mm−1 of rain from grass over non-irrigated crop
when non-irrigated crop is at the 2000–2008 equilibrium.

Table 7. Spatially averaged per grassland biomass strata (n = 8, Figure 12) 30 year annual precipitation
(mm) regressed on grass and non-irrigated crop 2000–2008 mean NEP (g C·m−2·day−1).

Dependent Variable (Y) Independent Variable (X) R2 Equation

Annual Precipitation Grass NEP 0.69 Y = 1.935X + 372.6
Annual Precipitation Crop NEP 0.90 Y = 1.617X + 629.13

4. Discussion

The most influential spatial variables in the NEP maps were typically those that were dynamic at
the weekly time step (for example, NDVI, PAR, Week, and DOY). Precipitation (PCP), a major driver
in many process-based models, had only moderate utilization in NEP modeling of 33% and 21% for
grass and crop, respectively. The reduced usage or precipitation in the regression tree models may be
related to the difficulty of extrapolating precipitation away from weather stations as regression tree
models will only employ spatial inputs when and where they contribute to explaining the spatial or
temporal variability of weekly NEP. Temperature inputs are much more reliably extrapolated away
from weather stations but temperature inputs were more utilized in the crop model than the grass
model. Incorporation of PAR and its high utilization in the grass model may have reduced the impact
of the phenological variables (SOSN, SOST, AMP, MAXN, and EOST) relative to the crop model.

East to west moisture and productivity gradients were observed in annual and multiple year
summaries (Figures 5 and 7), agreeing with the general flux trends in other studies [5,11,70].
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These mapping approaches provide logical and useful means to reliably extend flux tower data across
space and time. Currently, available flux towers grossly under sample the Great Plains ecosystems in
both time and space relative to the mapped population (area × years) of this study. The 76 site years of
flux tower data used to develop the NEP mapping models represented only 0.00003% of the space
for time population that was mapped (28,817,873 pixels at 250 m resolution × 9 years). Particularly,
limited flux tower representation occurs in cropland areas in the extreme northern, southern, and
western portions of the U.S. Great Plains (Figure 1), where high RMSE values were observed (Figure 8).
Crop flux towers are primarily located in either corn or soybean fields, with little or no data available
for other crops, such as cotton, spring wheat, and sorghum. Grassland areas along the southwestern
edge of the Great Plains are also deficient in flux tower representation [70]. A focused expansion to
the current flux tower network would improve the spatial mapping accuracies and help to ensure
that extreme weather and environmental conditions are captured. Capturing extreme weather and
environmental conditions with additional flux towers would result in more robust modeling results to
better inform the carbon cycle science communities.

Referencing Figures 5 and 7, areas with persistent high carbon sinks (>300 g C·m−2·year−1)
mapped in this study aligned with: (1) the grassland-dominated Flint Hill ecoregion (9.4.4) primarily in
eastern Kansas where shallow rocky soils have allowed native tallgrass prairie systems to persist; (2) the
northwestern Central Great Plains ecoregion (9.4.2) which is a mix of grassland and cropland; and
(3) the eastern portions of the Northwestern Glaciated Plains ecoregion (9.3.1), a grassland-dominated
region with some cropland. Another notable high carbon sink region is the edges for the Prairie Coteau
in northeastern South Dakota, where steep slopes have precluded crop expansion in these grasslands
which are considered by many as tallgrass systems [71].

Carbon source areas are generally aligned with the drier western edge of the Great Plains with
small grain cropping in the central and western Northwestern Glaciated Plains ecoregion (9.3.1),
primarily dry grasslands in the Southwestern Tablelands (9.43) and grassland and shrubland in the
High Plains (9.41) ecoregion. Extreme carbon source areas (<−300 g C·m−2·year−1) tended to be in
warmer southern croplands of the Great Plains in the southeastern High Plains (9.4.1), southwestern
Central Great Plains (9.4.2), and southern croplands of the Western Gulf Coastal Plain (9.51) ecoregions.
These extreme flux regions are distant from the nearest crop non-wheat flux tower (Figure 1, Table S1)
and may have moderate to high flux mapping uncertainties (Figure 8).

Corn production dominates the Western Corn Belt Plains ecoregion (9.2.3) transitioning from
moderate carbon sinks (200 to 100 g C·m−2·year−1) in northern and central parts of this ecoregion to
moderate sources (−200 to −100 g C·m−2·year−1) in the southern and eastern part of this ecoregion
where pasture land use becomes more common in erodible soils and landscapes.

The productivity gradient analysis used regression intercept terms to quantify carbon sink
advantages of grass over non-irrigated crop (Figure 12), but equilibrium NEP discussed here is
from 2000 to 2008, not a long-term NEP. Given that the long-term spatial and temporal weather
variations and weather extremes (very wet to strong drought years) are high in the Great Plains [72],
2000–2008 equilibrium NEP are expected to vary from the 30-year climate record (1981–2010 used in
this study) and to future conditions. However, NEP productivity relationships with 30-year climate
precipitation (Table 7) can help quantify expected ecosystem service benefits and consequences related
to grass and non-irrigated land cover changes. Extending the carbon flux mapping period forward in
time and adding more dryland crop flux tower datasets would further improve these estimates.

Regional Great Plains NEP means and minimum to maximum years for each majority land cover
(Figure S2) through the study period agreed well with published flux tower estimates with most crop
types and grass estimates, with the possible exception of alfalfa (Figure 13). Generally, individual
flux tower site and year variability in NEP tended to be greater than the inter-annual variability
in regional mean NEP through regional averaging and generalized fitting of the NEP mapping
models for crops and grass not capturing all of the occasional flux variations. Corn-dominated
regional flux means (218–385 g C·m−2·year−1), which likely included some soybean years in the
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crop rotations, encompassed the mean annual corn NEP from flux towers from Gilmanov et al. [4]
of 333 g C·m−2·year−1 (Figure 13). The range of corn flux tower annual NEP observations was
121–548 g C·m−2·year−1. Soybean-dominated areas had a long-term NEP of −56 g C·m−2·year−1 and
ranged from −137 to −12 g C·m−2·year−1. Soybean flux tower estimates from Gilmanov, et al. [4]
agreed closely with a mean NEP of −77 and a data range of −220–208 g C·m−2·year−1. Similarly,
winter wheat mean NEP was consistent (27 and 13 g C·m−2·year−1) for regional and flux tower means,
respectively. The range of annual flux estimates from regional yearly means and flux towers were
comparable (−64–102 and −193–128 g C·m−2·year−1, respectively). Grassland flux tower mean NEP
was greater than the regional inter-annual mean (189 versus 75 g C·m−2·year−1). The high variation
in grass flux tower NEP is probably related to the inclusion of international grassland flux towers
and because the maximum, minimum, and mean NEPs were estimated from a NEP frequency graph
(Figure 11A in Gilmanov et al. [2]). Regional grassland annual means averaged across moisture
and latitudinal gradients in the Great Plains tended to minimize inter-annual regional variations
relative to flux tower estimates. Only alfalfa regional means and inter-annual NEP data ranges were
higher than the flux tower site-year observations (Figure 13). The regional distributions of long-term
alfalfa cropping are more prevalent along the drier western edge of the Great Plains and appear to
be irrigation dependent due to proximities to major river systems (Arkansas, Platte, Yellowstone,
and Milk Rivers, Figure S2). Flux tower alfalfa NEP estimates (5 site years) included towers east of
Mandan, ND and towers in moist ecosystems (Michigan, Pennsylvania, and Italy) [3]. Recall also
that alfalfa-mapped NEP was the average of the grass and crop NEP predictions (Section 2.3), which
could add uncertainty. The lowest alfalfa regional annual means were in 2000 and 2002, both drier
than normal years (Figure 5). Flux tower data on irrigated alfalfa in arid and semiarid ecosystems
would be useful in quantifying alfalfa flux uncertainty and improving mapped NEP accuracy in these
alfalfa-dominant areas.
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Utilizing spatial, temporal, synoptic, remotely sensed, and ancillary digital map products to
interpolate carbon fluxes through space and time is a strong approach. Our regression tree approach
of using mapped versions of all input spatial variables in model development ensures that input
variables are used only if prediction utility persists despite any mapping errors in the input drivers.
Improved mapping of NEP fluxes would be realized with improved resolution and spatial accuracy
of weather, climate, and soils information. Another limiting factor is the low density of carbon flux
tower observations relative to the spatial and temporal area mapped. In particular, extreme events
(droughts, wet years, early and late freezes, etc.) need to be captured to make the regression tree
mapping model robust to expected and witnessed increased weather variability. Representation of
major crops by flux towers is weak, particularly in non-irrigated dry environments. Regression tree
mapping models should be assessed for possible over fitting or over fitting tendencies to help ensure
better final map products.

Our experience has been that regression trees can be quite site specific as they are tuned to
optimize prediction for a specific study area. Therefore, we do not recommend applying the Great
Plains NEP mapping models in this manuscript (Tables S2 and S3) to other areas. However, we have
successfully applied regression trees to subsequent (newer) years with reasonable success.

Future plans include mapping of the partitioned carbon fluxes associated with GPP and RE,
which allow more functional prediction of carbon fluxes through time and space [2–4] than the direct
mapping of the somewhat functionally confounded NEP. Further GPP and RE spatial and temporal
maps would improve understanding of the causes of carbon sinks and sources. The authors intend
to apply the GPP and Re mapping approach to grass and croplands across the conterminous U.S. by
adding additional flux tower site years.

5. Conclusions

In this study, regression tree models were developed to estimate weekly mean daily NEP for
grassland and cropland of the U.S. Great Plains for the period 2000–2008. In collecting applicable,
supporting flux tower data for the study area and time frame, the final sample for mapping NEP
across select grassland and cropland in the U.S. Great Plains consisted of 76 site years of flux tower
data. The modeling methodology used in this study exhibited the capability for quantifying NEP
at the regional level. However, a more robust flux tower network for model sampling would have
been ideal for this study and several areas were identified as possible candidates for future flux tower
development to better serve environmental model developers and the carbon cycle science community.

The models were applied to create weekly NEP maps at 250 m resolution for much of the cropland
and grassland ecosystems in the U.S. Great Plains. Heavily used spatial inputs in the mapping models
were weekly NDVI, weekly PAR, and time of year inputs (Week or DOY). The resulting map products
were scaled and summarized at various temporal and spatial units and the two different land cover
types were considered in a statistical, comparative analysis. Grass and cropland NEP magnitudes were
similar when comparing inter-annual values. Corn and alfalfa had the strongest C stock of all the crops
in this study. Grasslands showed stronger C sink tendencies (139 g·m−2·year−1) more at the 2000–2008
NEP equilibrium than non-irrigated croplands across the moisture and productivity gradients of the
Great Plains. Grassland 2000–2008 equilibrium NEP was expected to occur near 373 mm of annual
precipitation from the 30-year climate record. Non-irrigated crop 2000–2008 equilibrium NEP was
expected at an annual 30-year climate precipitation of 629 mm. Typically, grasslands are subject to
minimal management and the soil is generally left alone, apart from occasional weed control, animal
grazing, and cutting. Croplands, meanwhile, are commonly managed to control pests and weeds
from the time the seed is drilled into the soil until harvest, followed by tilling, and applications of
fertilizer. Higher spring and fall C retention levels in cropland soils might be observed if a cover crop
was introduced to minimize soil exposure and erosion.

The maps and statistics presented in this study provide a framework and basic overview of C
fluctuations in the U.S. Great Plains throughout the 2000–2008 time frame. This effort is expected to be
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continued and to be expanded to include cropland and grassland for the entire conterminous U.S. and
possibly include NEP estimates for additional years and/or other land cover types, such as forests and
shrublands. Understanding and being able to visualize the carbon cycling as a function of land cover
and land use will help drive decision making in the area of land management and promote natural
resource sustainability.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/11/944/s1,
Table S1: A complete list of the grassland and cropland flux towers used in the development of the NEP
models. Table S2: Regression tree mapping model for crop NEP. Table S3: Regression tree mapping model for
grass NEP. Table S4: Crop type and grass mean weekly NEP (data for Figure 11). Figure S1: A flow chart of the
NEP regression tree model development. Starting in the upper left, (A) the flux tower NEP records (dependent
variable) and the input spatial data (independent variables) are spatially linked to associate each flux tower site
with the input values at each point. This information is stored in a data base (B) for ingestion into model training.
The fully developed model is then applied on a pixel-by-pixel basis to estimate NEP by reading in the full set
of spatial independent variables and following the model rules (C). The results are the weekly NEP maps (D).
Figure S2: Majority land cover of the U.S. Great Plains during 2000–2008. These were used as zones in the spatial
statistical calculations of this study.
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Abbreviations

The following abbreviations are used in this manuscript:

AMP Amplitude (NDVI versus time)
AWC available water capacity
BD bulk density
C_PCP Climate PCP
C_TMAX Climate TMAX
C_TMEAN Climate mean temperature
C_TMIN Climate CTMIN
CDL Cropland Data Layer
CFlux Carbon Flux
CP clay percentage
CTM crop type maps
DEM digital elevation model
DOY day of year
DUR Duration (NDVI versus time)
eMODIS expedited Moderate-Resolution Imaging Spectroradiometer
EOSN End of Season NDVI
EOST End of Season Time
GPP gross primary production
MAD Mean absolute difference
MAXN Maximum NDVI
MAXT Maximum NDVI Time
MRLA Major Land Resource Area NRCS Soils
NACP North American Carbon Program
NASS National Agricultural Statistics Service
NCEP National Centers for Environmental Prediction
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NDVI Normalized Difference Vegetation Index
NEP Net Ecosystem Exchange
NLCD National Land Cover Data base
NRCS Natural Resources Conservation Service
NWS National Weather Service
PAR photosynthetic active radiation
PCP precipitation
RE ecosystem respiration
RMSE root mean square error sqrt((x − y)2/n)
RSP Remote Sensing Phenology
SLP slope in degrees
SOC soil organic carbon
SOSN Start of Season NDVI
SOST Start of Season Time
SSURGO Soil Survey Geographic data base
STATSGO State Soil Geographic data base
TIN Time Integrated NDVI
TMAX maximum air temperature
TMIN minimum air temperature
USDA U.S. Department of Agriculture
USGS U.S. Geological Survey
VI vegetation index
Week week of year
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