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Abstract: Particle size distribution (PSD) is an important parameter that is relevant to many aspects
of marine ecosystems, such as phytoplankton functional types, optical absorption and scattering
from particulates, sediment fluxes, and carbon export. However, only a handful of studies have
documented the PSD variability in different regions. Here, we investigate the PSD properties and
variability in two shallow and semi-enclosed seas (the Bohai Sea (BS) and Yellow Sea (YS)), using
in situ laser diffraction measurements (LISST-100X Type C) and other measurements at 79 stations
in November 2013. The results show large variability in particle concentrations (in both volume
and number concentrations), with volume concentrations varying by 57-fold. The median particle
diameter (Dv

50) from each of the water samples also covers a large range (22.4–307.0 µm) and has
an irregular statistical distribution, indicating complexity in the PSD. The PSD slopes (2.7–4.5),
estimated from a power-law model, cover nearly the entire range reported previously for natural
waters. Small mineral particles (with large PSD slopes) are characteristic of near-shore waters prone
to sediment resuspension by winds and tides, while large biological particles (with small PSD slopes)
dominate the total suspended particulates for waters away from the coast. For the BS and YS,
this study provides the first report on the properties and spatial variability of the PSD, which may
influence the optical properties of the ocean surface and remote sensing algorithms that are based on
estimations of particle concentrations and sizes.
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1. Introduction

Suspended particles in marine environments play an important role by affecting the marine
ecosystem, environment, and biogeochemistry, which may in turn be used to understand the natural
and anthropogenic influences on the Earth’s global systems [1,2]. One important parameter used to
describe suspended particles is the particle size distribution (PSD), which is a measure of the particle
concentrations (in either volume or number) at difference sizes. The PSD measure has been widely
used to characterize marine particles [3].

PSD provides important information about the structure and functioning of aquatic ecosystems
and is therefore of particular importance in many research fields of oceanography [4]. For instance,
phytoplankton functional types usually vary with size, a finding that has been incorporated into
global biogeochemical models and used to assess the ecological feedback to the ocean’s carbon
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cycle [5,6]. In ocean optics, PSD plays an important role in light propagation, light attenuation, and
light reflection, which modulate the remote sensing signals of satellite sensors [7–10]. Both absorption
and scattering of particles depend strongly on particle size and refractive index, although particle
concentration is usually regarded as a primary factor [11]. In addition, PSD also plays an important role
by affecting sediment fluxes, resuspension, aggregates, particle settling rates, and carbon export [12–14].
Therefore, it is of great interest and significance to document the properties and variability of the PSD
in marine environments.

The constituents of water in marine environments cover an extremely broad size range that spans
many orders of magnitude, from a molecular size on the order of 0.1 nm to large organisms that
are several meters long [15–18]. Ocean optics are concerned with a size range from 0.01 to 1000 µm,
encompassing viruses, bacteria, picoplankton, nanoplankton, microplankton, small meso-zooplankton,
and sediments [16,17]. These constituents are generally divided into dissolved and particulate parts
by using 0.2 µm as a threshold. The size of the distribution of the dissolved materials has rarely
been reported. The size of the structure of the particulate materials (often called suspended particles,
>0.2 µm in size) is of great interest to researchers. PSD measurements can resolve only a limited size
range, and no study has yet reported information over the entire optically relevant size range [2].
Due to technique limitations, it is still difficult to conduct PSD measurements in the submicron
range [19], while large particles with diameters above a few hundred microns are also hard to observe.
In these cases, camera-based systems may be used [20,21].

Current methods for PSD measurements, such as the Coulter Counter (1–120 µm) and FlowCAM
(5–100 µm), can provide information on particle sizes ranging from several microns to more than
a hundred microns [2]. Another example is the LISST (Laser In-Situ Scattering and Transmissometry;
Sequoia Scientific, Inc., hereafter referred to simply as LISST) instrument, which focuses on two size
ranges, 1.25–250 µm (Type B) and 2.5–500 µm (Type C). Such instruments have been successfully
applied in marine waters to explore particulate optical scattering [22], phytoplankton assemblages [23],
complex water type discrimination [24], suspended floc size and settling rates [14].

PSD in marine environments can be influenced by many physical and biogeochemical processes;
for instance, the dynamics of PSD in marine environments can be influenced by tidal current, waves
and turbulence [25–28]. Numerous approximations have been proposed to describe PSD shapes
in marine systems, such as power law models, Gaussian or lognormal distributions, variable-β
models, two-parted Pareto distributions, Weibull distributions, characteristic vectors, and the gamma
function [3,16,29–33]. Of these approximations, the power law model, also known as the “Junge
distribution”, is the most frequently used representation of PSD shapes [2,4,9–11,34]. Many processes
in marine systems follow the power law, for instance, sea spray, bubble concentrations, sediments and
organismal energetics [3,35,36]. Additionally, the theoretical justification for the applicability of the
power law to aquatic suspended particles has been examined in previous studies [37,38]. The power
law model has been considered a good first-order approximation for oceanic particles over several
orders of magnitude [34].

The PSD slope, an important parameter describing the PSD, can be estimated by the power law
approximation. The slope parameter provides information on the contribution of particles of different
sizes to the total particles in a water sample. The greater the PSD slope, the higher proportion of small
particles [2,20,34]. However, little is known about spatial and temporal variations in PSDs because
of limited observations on either a macroscopic global or a microscopic regional scale. While global
characterization depends on satellite-borne platforms and accurate retrieval algorithms [1], regional
variations in PSD have been reported in several field-based investigations in locations, such as
Monterey Bay (California, USA) [2], the Eastern Mediterranean Sea [39], and Hudson Bay (Canada) [4].
In general, there is a need to measure, report, and understand the variations in PSD in different marine
environments. Additionally, the simple power-law model that describes the PSD slope needs to be
validated across the full range of particle sizes [2,11].
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In this study, we investigate the variability in PSD in two typically shallow and semi-enclosed
seas, the Bohai Sea (BS) and the Yellow Sea (YS), with the following two objectives: (1) to model the
PSD of the surface waters; and (2) to characterize the spatial variability and vertical distributions of
the PSD. The potential findings by this study are very significant for understanding and documenting
the particle size distributions in the BS and the YS, which have been regarded as important factors
influencing water inherent optical properties [11,40–43], and further changing water color remote
sensing signals [44].

2. Data and Methods

2.1. Study Area and Sampling

The cruise survey was conducted between 6 and 24 November 2013. The BS and the YS are typical
shallow, semi-enclosed seas with Case II waters (i.e., optical properties are dominated by the water
constituents, including non-algal particles, colored dissolved organic matter, and phytoplankton) as
defined by Morel and Prieur (1977) [45]. The BS is the largest inner sea of China, covering a total
area of approximately 77,000 km2. Its average water depth is 18 m, with the maximum depth of
approximately 70 m in the north of the Bohai Strait, the only passage to the YS [46]. The YS has an area
of approximately 380,000 km2 with average and maximum depths of approximately 44 and 140 m,
respectively [47,48]. It can be roughly divided into two parts, the North Yellow Sea (NYS) and the
South Yellow Sea (SYS).

The BS receives a large amount of suspended sediment loads from more than 17 rivers (e.g., the
Yellow River). This leads to high concentrations of total suspended sediment matter (TSM). In the
BS and YS, variations in the ocean hydrography, ocean circulation, sea surface temperature (SST),
ocean stratification, and ocean fronts show significant seasonal characteristics. During the winter, the
water is usually very turbid with a relatively high TSM, reaching approximately 100 g·m−3 for some
regions of the BS and the YS, while during the summer, the TSM ranges from 10 to 20 g·m−3 [49].
Seasonal winds, ocean stratification, and sea surface thermodynamics due to seasonal climate change,
as well as coastal bathymetry, seasonal phytoplankton blooms, and river discharges are the driving
factors of the variations in the TSM [50].

Over the past several decades, the rapid proliferation of surrounding industries, agriculture,
aquaculture and domestic sewage have made the BS a highly productive water region [46]. Similarly,
the YS is also influenced by industrial pollution, agricultural runoff, and domestic sewage [51].
Abundant nutrients and sediments from rivers and non-point sources exported to the YS, together
with the effects of winds and tides, lead to low water transparency in the region.

The data used in this study were collected from 79 stations during the winter 2013 shared
voyage of state funds of China in the Bohai Sea (BS) and the Yellow Sea (YS) (Figure 1). At each
station, a Sequoia LISST-100X was slowly lowered at a speed of approximately 0.15 m/s into the
water column, to a depth that was slightly higher than the bottom 2–3 m to prevent damage to the
instruments in the optical profiling package, and the sampling rate was 1 Hz (for more details, see
references [52–59]). The LISST instrument was used to measure the size spectra of particles up to 500 µm
in size. Observations made using the LISST instrument often suffer from light contamination and/or
schlieren, which can significantly disrupt the measurement results [52]. In our actual measurement,
LISST was fixed to a black iron rack horizontally to avoid man-made light. Due to the perturbations
of the water environment, only downcast measurements were deemed valid and were used in the
subsequent data analyses.
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Figure 1. The study area and stations in the Bohai Sea and the Yellow Sea during the winter 2013 
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significantly larger than the wavelength is assumed to be equivalent to the diffraction by an 
equal-sized aperture (Fraunhofer diffraction). Many studies have shown that LISST is capable of 
providing accurate estimates of PSD for various particle suspensions from inland lakes and marine 
waters [23,24,53–59]. 
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of the lower bin, and the width of the individual size classes varies from 0.45 to 76 μm. Scattered 
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based on Mie theory yields the particle volume concentration, V(D) (in μL/L), for the 32 size ranges 
[54]. For each size bin, there is an equivalent size, D (in μm), that is assumed to form a 
volume-equivalent sphere relative to the unknown particle shape. It is actually the geometric 
average of the upper and lower sizes of each size range. As noted in previous studies [11,62,63], 
LISST measurements at the smallest and largest size ranges may be not very steady due to the 
presence of particles outside of the measured size range. Thus, data of the smallest and largest size 
ranges were removed in the subsequent analysis. Prior to the LISST deployment, a background 
measurement was performed using MilliQ water for device calibration and subsequent data 
processing. The V(D) data were derived using the manufacturer-provided software LISST-SOP [61]. 
The particle number concentration, N(D) (in count/m3), could be derived by dividing the volume 
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Figure 1. The study area and stations in the Bohai Sea and the Yellow Sea during the winter 2013 cruise.
Bathymetric contours are color coded (n = 79, measured only once).

2.2. LISST Measurement

The PSD measurements were performed by using an LISST-100X Type-C particle size analyzer.
The LISST is a commercially available instrument that measures the light scattering of a particle
suspension at small forward angles and utilizes this information to estimate the PSD [54].
The theoretical foundation is that the optical diffraction by spherical particles whose diameters are
significantly larger than the wavelength is assumed to be equivalent to the diffraction by an equal-sized
aperture (Fraunhofer diffraction). Many studies have shown that LISST is capable of providing accurate
estimates of PSD for various particle suspensions from inland lakes and marine waters [23,24,53–59].

The LISST instrument has 32 size ranges that are logarithmically distributed across a continuous
size spectrum from 2.5 to 500 µm [51,60,61]. The upper size in each bin is 1.18 times that of the lower
bin, and the width of the individual size classes varies from 0.45 to 76 µm. Scattered light in the near
forward angles is measured on concentric detector rings, and inversion modeling based on Mie theory
yields the particle volume concentration, V(D) (in µL/L), for the 32 size ranges [54]. For each size bin,
there is an equivalent size, D (in µm), that is assumed to form a volume-equivalent sphere relative to
the unknown particle shape. It is actually the geometric average of the upper and lower sizes of each
size range. As noted in previous studies [11,62,63], LISST measurements at the smallest and largest size
ranges may be not very steady due to the presence of particles outside of the measured size range. Thus,
data of the smallest and largest size ranges were removed in the subsequent analysis. Prior to the LISST
deployment, a background measurement was performed using MilliQ water for device calibration and
subsequent data processing. The V(D) data were derived using the manufacturer-provided software
LISST-SOP [61]. The particle number concentration, N(D) (in count/m3), could be derived by dividing
the volume concentration measured for each size bin by the volume of a sphere of the same diameter
to obtain numbers of equivalent spherical diameter for each size bin. The inversion equation was
as below

N(D) = 6V(D)/πD3 (1)

The PSD, expressed as N’(D) (in count m−3 µm−1), can be defined as the average number of
particles within a given size class of width ∆D for a unit volume of suspension [2,4,16]

N′(D) = N(D)/∆D (2)
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The PSD is thus different from the particle number concentration. When changing the given
width of a particle size class, the PSD would vary accordingly, even for the same sample, whereas the
particle number concentrations do not vary for the given particle sizes.

In addition to the near-forward scattering of a laser beam measured with a series of 32 annular
detectors that spanned the approximate angular range of 0.08◦–13.5◦ in the water over a path length of
5 cm (which is inverted to provide particle size information), an additional photodiode detector placed
behind a centered hole was used to measure the transmitted light, from which the beam attenuation
coefficient of particles (cp, in m−1) at 670 nm was calculated.

2.3. Methods to Characterize PSDs

In this study, the power law function was used to describe the PSD slope. Because one function
form sometimes cannot capture the full complexity of the PSD [2,4,11,29,34], two power-law models,
without and with correction of the parameters (see Equations (3) and (4)), were combined to describe
the PSD in the study region:

N′(D) = N′(D0)

(
D
D0

)−ξ
(3)

N′(D) = ωN′(D0)

(
D
D0

)−ξ
(4)

where D0 is a reference diameter (in µm) and was determined as 38.4 µm, the midpoint of the
logarithmic size range. N’(D0) is the differential number concentration at D0 (units of m−3 µm−1).
The non-dimensional ξ is the PSD slope, or Junge exponent, and ω is a correction parameter
(dimensionless) of the power-law model that varies among different stations. Calculations were
done using the least-squares minimization on the log-transformed data of each sample, as performed
in previous studies [2,34]. Then, the two PSD slopes (ξ) and the correction parameter (ω) were derived.
The spatial variability of these parameters for the surface waters of the study region was analyzed
in this study. An important point to mention is that we defined surface waters as the average value
of the layer between 0 and 2 m because in practice, it was difficult to observe the water information
just beneath the surface (i.e., 0−) due to the influence of strong waves in the study area, which is a
semi-enclosed shallow sea.

In addition to mathematical models, percentile statistics are another way to describe and
characterize size distributions of aquatic particles and can be calculated from the various measures
of particle size, such as volume, number, and projected-area [2]. This study calculated the median
particle diameter of the volume distribution, Dv

50, which corresponds to the 50th percentile diameter
with half of an accumulated volume concentration. The parameter of Dv

50 carries information on the
relative concentration of small to large particles at each station. The greater is the Dv

50, the greater is
the dominance of the large particles, and vice versa.

2.4. Auxiliary Description

The LISST measurements provided particulate concentrations for each size class within a whole
size spectrum of 2.5–500 µm, in terms of both volume and number. One way to show the variability in
particle concentrations among samples is to use a particle concentration at a discrete size (such as N(D),
where D = 37 µm) [34]. However, this only refers to a particle distribution at a specific size and does
not contain information for all the other sizes. The present study used the total volume and number
concentrations, V(D) and N(D), to represent the magnitude of the variability in particle concentrations,
which were calculated by summing the quantities of all the size bins.

Statistical analysis was performed for several parameters, such as the particle volume and number
concentrations, PSD slopes, and median particle diameters. The statistics included the minimum,
maximum, mean, standard deviation (SD), and coefficient of variation (CV). A regression analysis was
used to show the relationships between different bio-optical quantities. In addition, the residuals of
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the power-law models were calculated to verify whether significant deviations occurred between the
observed and modeled data, and the MAPE (Mean Absolute Percent Error) was defined as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣× 100% (5)

where, n is the number of samples; and yi and yi
′ represent the measured and modeled values, respectively.

3. Results

3.1. An Estimation of the PSD Slope Using the Power-Law Model

Power-law models with and without the correction parameters are both used to estimate the
PSD slopes. Based on Equation (2), the model was generated by the regression analysis between
N′(D)/N′(D0) and D/D0.

Figure 2 shows two examples (Stations H5 and I1, which are selected randomly to represent the
majority of the samples) of the performance of the model. For the two stations, the power-law model
without the correction of the parameters (blue lines) performed better for medium-sized particles,
while the power-law model with the correction of the parameters performed better for other particle
sizes. A method was generated by combing the two models so that the power-law model without
the correction of the parameters is used to describe the medium-sized particles, and the power-law
model with the correction of the parameters is used for the smaller and larger particles. The MAPE
values of the two models from all stations showed the same results (Figure 2b). Thus, a combined
power-law model was used to describe the PSD slope for the study region. In this model, a particle
size in the range of 16.8–87.9 µm was modeled using the power-law function without the correction of
parameters, while for other sizes, the PSD slope was modeled using the same power law function with
correction of the parameters. It is important to note that the slope parameters determined from the
two individual models are very similar (mean absolute differences of 0.02 and mean relative difference
of 1.5% for the slope range of 2.7–4.5, N = 79), and therefore, the PSD slope determined from the
power-law model with the correction of the parameters was used in this study to describe the PSD in
space and time.
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Figure 2. (A) The modeling performance of PSD at two typical stations (H5 and I1) using two power-law
models (i.e., without/with correction of parameters), where the dotted lines and solid lines represent
the correction of the model’s independent (particle size or D/D0) and dependent (N′(D)/N′(D0))
variables at stations H5 and I1, respectively, and the colors black, red and blue represent the results of
observation data, by using the power-law model with constants and without constants, respectively.
(B) Errors (MAPE, %) in the modeled PSD for all stations (n = 79) in the whole particle size range.
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3.2. The PSD and Bio-Optical Variability

Figure 3 shows the variability in the PSD parameters and the bio-optical parameters, including
V(D) (in µL/L), N(D) (in 1 × 1010 count/m3), Dv

50 (in µm), PSD slopes, and cp (in m−1), from the
cruise (n = 79) in the Bohai and Yellow Seas in November 2013. V(D) varied 57-fold, ranging from
2.4 to 135.7 µL/L, with a mean of 26.0 ± 24.9 µL/L, and most (~70%) in the range of 5–35 µL/L. N(D)
also showed relatively large variability, ranging from 0.3 to 58.2 (1 × 1010 count/m3) with its CV
of 112.3% and most samples (~73%) in the range of 0–15 (1 × 1010 count/m3). The median particle
diameter (50th percentile) of the volume distribution, Dv

50, ranged from 22.4 to 307.0 µm, with a
non-normal distribution (Figure 3C). The particulate beam attenuation coefficient, cp, varied between
4.2 and 24.4 m−1, with a mean of 10.4 ± 3.8 m−1 and a Gaussian distribution with a relatively small
CV (36.4%). Similarly, the PSD slope also showed large variations (Figure 3E).
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Figure 3. The variability in the bio-optical properties: (A) V(D) in µL/L; (B) N(D) in 1× 1010 count/m3;
(C) Dv

50 in µm; (D) cp in m−1 at a wavelength of 670 nm; and (E) PSD slope determined from the
modified power-low model) in the Bohai Sea and the Yellow Sea, measured during the cruise (n = 79)
in November 2013. SD: standard deviation; CV: coefficient of variation.
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Figure 4 shows the relationships between the PSD parameters and the bio-optical properties
measured at the 79 stations. Both V(D) and N(D) showed tight relationships with cp, with their
corresponding determination coefficients (R2) being 0.815 (p < 0.001) and 0.681 (p < 0.001), respectively.
Clearly, most of the variability in cp can be explained by the particle concentration (in either volume
or number). This is consistent with the prior knowledge, that is, the particle concentration is the
first-order influencing factor for variation of inherent optical properties (IOPs) of particles, while other
characteristics, such as size, composition, density, refraction, shape, may account for the second-order
effect of IOPs’ variation. Dv

50 showed a weak (but still significant) negative correlation with cp

(R2 = 0.285, p < 0.001), implying that large particles tend to attenuate light less. Finally, V(D) and N(D)
are highly correlated (R2 = 0.778, p < 0.001), suggesting that they may be equivalent when used to
describe PSDs.
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3.3. Spatial Variability in PSD in Surface Waters

Figure 5 shows the spatial distribution of the PSD slopes and Dv
50 determined from surface water

measurements at the 79 stations in November 2013. The PSD slopes in the BS showed relatively high
values (>3.8 for most waters). In the NYS, most waters away from the land had low PSD slopes (<3.4),
while the near-land waters showed relatively high PSD slopes (~4.0). In the SYS, the PSD slopes in the
northern part (~3.4) were generally lower than those in the southern part (>3.8); however the lowest
values (<3.2) were found in the center of the SYS.

Dv
50 showed opposite spatial distribution patterns relative to the PSD slopes (Figure 5B). Indeed,

there existed a significant negative relationship between the two parameters (R2 = 0.744, p < 0.001,
Figure 5C), suggesting that the PSD slopes also contain information on the relative proportions of
different particle sizes. The results obtained by this study confirmed the fact that the PSD slopes
carry information on the relative concentrations of small to large particles, namely the greater the
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slopes the less proportion of large particles, and the smaller the slopes the more proportion of large
particles. This observation is consistent with findings reported by Buonassissi and Dierssen (2010) [34].
In addition, another parameter, namely the correction parameter in the power-law model, generally
showed a positive relationship with the Dv

50 (R2 = 0.691, p < 0.01) (figure not shown). This indicates
that the more large particles the greater the correction parameter, and vice versa.
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3.4. Vertical Variability in PSD

For the three pre-defined layers (upper layer: 0–5 m; middle layer: 5–20 m; and deep layer:
20–90 m), Figure 6 shows the statistics of the PSD slopes, with a slightly decreasing trend from the
surface layer (3.79) to the bottom layer (3.69). This decrease indicates that relatively small particles
dominate the upper layer while larger particles dominate the bottom layer, a possible result of
precipitation. These results are presented differently in Figure 7, where the data were binned to 5-m
intervals, and the means and standard deviations for the PSD slopes were calculated for each bin.
When data from all the stations were combined, the mean PSD slopes showed a decreasing trend from
the surface to a depth of 25 m, and then gradually increased until water depth reached 50 m, and
then decreased again when approaching the bottom. Such distributions varied from region to region.
Mean PSD slopes in the BS were higher than those in the NYS, although they both decreased from
the surface to the bottom (Figure 7B,C). This PSD indicates the presence of more small particles in the
BS than in the NYS. Although in all the regions there appeared to be an intermediate layer between
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30 and 60 m with relatively high PSD slopes, this trend was more apparent in the SYS. The SYS showed
generally larger PSD slopes than the NYS, indicating relatively more small particles in the SYS than in
the NYS.

Interestingly, note that there were large values of PSD slopes at the bottom compared to the
surface in Bohai Sea, as shown in Figure 7B. This may be potentially related to its geophysical and
hydrologic characteristics. As the largest inner sea of China, the BS covers Yellow River (the largest
river of China) estuary, and is strongly influenced by surrounding numerous rivers, well-known
for a large amount of suspended sediment discharge [64,65]. The sediments with sizes of 10–25 µm
contributed most of the materials that inputted into the BS, promoting Yellow River delta epeirogeny,
when large-sized sediments (>25 µm) had less contribution and more easily deposited in the river
course [66]. However, the suspended particles in the surface water column are easily dominated by
large-sized algae, such as diatom (>20 µm). Hence, fine inorganic particles may explain the large PSD
slope at the bottom when large algal particles are corresponding to the relatively low slopes at the
surface water column.

As shown in Figure 7D, the PSD slope showed large values between 30 and 60 m depth, which
is possibly related to the halocline, chlorophyll maxima depth, and hydrography. However, it is
unfortunate that these related materials are not available in this cruise. Even so, Zou et al. (2001)
had reported that the halocline in SYS was about between 30 and 60 m depth by using the samples
from November 1997, which is consistent with the sampling month of this study [67]. Fu et al. (2009)
demonstrated that the chlorophyll maxima depth also varied near to this depth range (see Figure 5 in
that paper) [68]. More detailed reasons for this phenomenon in the SYS should be addressed through
more complete and synchronous materials in the future.
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Figure 6. The statistics of the PSD slopes in the: (A) upper layer (0–5 m) (n = 375); (B) middle layer
(5–20 m) (n = 1065); and (C) deep layer (20–90 m) (n = 1354) of the water column. These sample
numbers were determined by LISST sampling frequency (1 count·s−1) and residence time during the
observation period in each specific layer, which is the time required for the LISST to travel down
through the upper layer (0–5 m), middle layer (5–20 m), and deep layer (20–90 m).
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To further illustrate the vertical variability in the PSDs, three stations were selected as
representatives of the various water environments (Figures 8 and 9), i.e., M4, J4, and A5. These stations
are located in the central regions of the BS, NYS, and SYS, respectively, with different water depths.
For M4 (water depth = 20 m), N(D) and V(D) did not show apparent vertical trends, although some
fluctuations were found at different water depths. The PSD slopes showed similar fluctuation patterns
as N(D), ranging between 3.83 and 3.98 (mean = 3.91, SD = 0.05). Relatively stable cp(670) was observed
(9.1–9.8 m−1, mean = 9.4 m−1 and SD = 0.2 m−1) but cp(670) showed a tight statistical relationship
with N(D) (R2 = 0.646, p < 0.001) (Figure 9A). For J4 (water depth = 65 m), both N(D) and V(D) were
stable for the upper 30 m (N(D) ~2.5 × 1010 count/m3; V(D) ~20 µL/L), and then gradually increased
to the bottom. Both the PSD slopes and cp(670) showed relatively large ranges (~1.0 and 8.4–10.0 m−1,
respectively), and cp(670) also showed an increasing trend from the surface to the bottom, similarly to
the N(D) and V(D) profiles (Figure 8G,H). At this location, cp(670) showed close relationships with both
N(D) and V(D) (Figure 9C). For A5 (water depth = 47 m), the PSD slopes showed a slightly decreasing
pattern from the surface to the bottom (3.90 to 3.70). cp(670) was approximately 10 m−1 for the surface
(0–30 m) waters and then rapidly increased to the bottom. Similarly to other stations, cp(670) showed
tight relationships with both N(D) (R2 = 0.951, p < 0.001) and V(D) (R2 = 0.918, p < 0.001) (Figure 9E).
Overall, particle concentrations showed tight relationships with cp(670), but the PSD slopes were not
usually significantly correlated with cp(670) (as in Figure 9B,D,F). Additionally, it is worth noting that
there are high volume concentrations of suspended particles in lower size classes in the BS compared
with the NYS and the SYS (Figure 8B,E,J). This is closely linked with high content of small-sized
sediments discharged by surrounding numerous rivers along the BS, which is an approximately closed
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inner sea. For instance, the largest river (Yellow River) of China discharged a total annual run-off
of 8.88 × 1010 m3 into the BS [69], where large particles easily accumulated on the riverbed while
small-sized sediments flowed into the BS [66]. In contrast, the YS is more open than the BS, and
possibly influenced by terrigenous runoff at a less degree than the BS.
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4. Discussion

With the increased use of the LISST instrument in recent years, the PSD slopes from different
marine waters have been reported by a number of studies. Several representative results are listed
in Table 1 to provide a context and a comparison of the results presented in this study. Of these,
Buonassissi and Dierssen (2010) reported a range of 2.7–4.7 (mean = 3.63) from 175 stations along
the east and west coasts of America and the Atlantic sector of the Southern Ocean [34], and
Neukermans et al. (2012) reported a range of 2.5–4.5 from 366 stations in coastal and offshore waters
around Europe and French Guyana [11]. Lower values of approximately 2.0 were reported by
Reynolds et al. (2010) for European coastal waters [2]. In the present study, the PSD slopes obtained in
the BS and the YS varied from 2.72 to 4.46, which was well in line with previously reported ranges.
It is important to note that the mean PSD slopes from previous studies from different regions were
stable (3.4 or 3.6) (Table 1), suggesting similarity in the overall PSDs in these different waters.

In this study, although the surface PSDs showed some differences between the three different
regions (BS, NYS, and SYS), they all showed a predominance of smaller particles in nearshore
waters, where terrestrial inorganic sediments contributed significantly to total suspended matter.
In the offshore waters of these regions, lower PSD slopes were possible indicators of large-sized
phytoplankton. Small particles are generally mineral particles with a high refraction index, while
larger particles are biological in origin with a lower refraction index [70]. The observations in this
study are in line with those reported by Xi et al. (2014) for the Hudson Bay [4].
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Table 1. Variations of PSD slopes reported in the published literature and in this study.

Water Regions Ranges of PSD
Slopes Mean (± SD) Stations References

The east and west coast of
America and the Atlantic

sector of the Southern Ocean
2.7–4.7 3.63 175 Buonassissi and

Dierssen, 2010 [34]

Coastal and offshore waters
around European and

French Guyana
2.5–4.5 Case 1 water: 3.4 (±0.3);

Case 2 water: 3.4 (±0.4) 366 Neukermans et al.,
2012 [11]

The global oceans 3.04–5.99
(Satellite retrieval) 4.22 (±0.59) 480,231 Kostadinov et al.,

2009 [1]

European coastal waters 2.0–4.0 3.47 36 Reynolds et al., 2010 [2]

Monterey Bay 2.5–4.3 3.46 14 Reynolds et al., 2010 [2]

Hudson Bay 2.84–4.46 3.63 (±0.40) 33 Xi et al., 2014 [4]

Bohai Sea and Yellow Sea 2.72–4.46 3.64 (±0.38) 79 This study

In addition to being the first report of PSD variability in these three regions, this study also used
an empirical power-law model to describe the PSD. This model is actually a combination of an original
power-law model fitted for the medium-sized particles and a modified power-law model for other
sizes, and still belongs to common practice, i.e., power-law function fitting. As an independent
validation, Figure 10 demonstrated the good performance of the combined model, by using the in
situ dataset (n = 75) collected from the Bohai Sea and Yellow Sea in November 2014. It means that
the combined model used in this study is capable to capture the PSD characteristics, at least in the
study areas. However, it is necessary to note that the power-law model could not be well used
to describe the PSD for the entire size range, as found in previous studies [4,29,30,34]. This study
also indicates that the selection of the reference particle size might potentially influence the PSD
slopes derived from the power-law model (data no shown). Indeed, researches on best estimations
of PSD slopes have been performed for different reference sizes, such as 1 µm [34], 2 µm [1], and
37.6 µm [4], and different size ranges, such as 4.5–10 µm, 4.5–104 µm, and 4.5–280 µm [71,72]. In this
study, we investigated the PSD spatial distribution of the study area based on in situ laser diffraction
measurements during November 2013. Note that the observation stations were actually investigated
on different dates and time during a month, and so some factors such as tidal current, waves and
turbulence [25–28], might show a certain impact on temporal variability of PSD. However, it is very
difficult to do synchronous observation on all these stations in the investigated water areas, which
limits the plot of spatial distribution in a rigorously simultaneous manner. Instead, Figure 5A,B could
show the spatial distribution characteristic at least on a monthly-time scale. A long-term mooring
buoy observation is expected in future to investigate the influence of tide, turbulence, currents, and
wind to PSD. In addition, the temporal variability is another important aspect for investigating PSD
characteristics, and should be studied in the future when sufficient datasets would be collected in
different seasons, and even different years.

Remote sensing technology provides a powerful tool for detecting the large-scale PSD information.
A commonly used method for the PSD retrievals is through “Junge distribution” model [2,9,34],
referred as the default power-law model. In this study, the PSD model has been updated with
combining the default power-law model and a modified power-law model with a correction parameter
for different particle size ranges. The new model, which performed more accurate simulation for the
PSD than the default power-law model, will potentially improve remote sensing retrievals of the PSD,
at least in the research areas. One key parameter used in remote sensing algorithms is the PSD slope, ξ,
which can link the PSD with the spectral slope (η) of particle backscattering or attenuation coefficients
by the equation of ξ ≈ η + 3 or other correction relationships [1,9,10]. Using SeaWiFS global data from
August 2007 and a remote sensing algorithm to retrieve PSD slopes, Kostadinov et al. (2009) showed
global distributions ranging from 3.04 to 5.99 [1]. In this study the PSD slopes obtained in the BS and
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the YS varied from 2.72 to 4.46, which was consistent with the remote sensing retrievals provided
by Kostadinov et al. (2009) [1]. Another important quantity for the remote sensing retrievals of the
PSD is the correction parameter in the new model, ω. It was found to be closely related with the Dv

50

(R2 = 0.691, p < 0.01), and would in general increase along with the increase of the median diameter
and vice versa, which implied that the power-law model might need more correction by using greater
coefficients when large particles appeared in some stations. Obviously, it would be further linked to
mass-specific backscattering or attenuation. In addition, previous studies have shown the influence
of suspended particle size distribution on optical properties and remote sensing reflectance [73,74].
Thus, a potential remote sensing retrieval for the PSD based on the new model will be helpful to
precisely estimate the water properties from satellite remote sensing. How to establish a remote sensing
algorithm to estimate PSD is beyond the scope of this study, and will be possibly elaborated in detail in
future research. Furthermore, similar to the PSD, the bulk refractive index is also essential to describe
the characteristics of suspended particles. It is worth noting that a new remote sensing model has been
developed to retrieve the refractive index in recent studies [75,76].
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assemblages in Bohai Sea and Yellow Sea waters. The generation of the PSD model of this study 
provides a potential help to precisely estimate the water properties from satellite remote sensing. 
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Figure 10. A comparison of MAPE (%) derived from the power-law models with/without constants,
by using an independent validation dataset (n = 75) collected from the Bohai Sea and the Yellow Sea in
November 2014.

5. Conclusions

In this study, we investigate the PSD properties and variability in two typical shallow and
semi-enclosed seas of China, Bohai Sea and Yellow Sea, based on in situ laser diffraction measurements
(LISST-100X Type C) and other measurements during November 2013. Large variations were found
in particle concentrations from LISST measurements. The volume concentrations varied by 57 folds.
The median particle diameter (Dv

50) from each of the water samples also covers a large range
(22.4–307.0 µm) and shows an irregular statistical distribution.

Power-law models with and without the correction parameters were used to evaluate PSD.
Large variations were also found in PSD in the Bohai Sea and Yellow Sea, with higher slopes in
near-shore surface waters than in offshore surface waters. Significant regional and vertical variability
in the PSD indicated the complexity of suspended particulate composition in our investigated water
regions. These results are consistent with the general knowledge that near shore waters are under
more influence of small particles of terrestrial origin.

To conclude, this study provides fundamental knowledge on particle size properties, and
documents variability of the PSD as a key parameter describing the nature of suspended assemblages
in Bohai Sea and Yellow Sea waters. The generation of the PSD model of this study provides a potential
help to precisely estimate the water properties from satellite remote sensing. Further study should
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focus on the improvement in the remote sensing algorithms for PSD estimation, seasonal variability
of the PSD by extending PSD observations, and comprehensively characterizing the PSD based on
more cruise datasets. In addition, it is an important and interesting subject for water optics and remote
sensing to study how the spatial and temporal changes of PSD influence on optical properties of
marine particles in Bohai Sea and Yellow Sea waters and remote sensing algorithms for estimating
particle concentrations and sizes.
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