
remote sensing  

Article

Spatial Distribution of Diffuse Attenuation of
Photosynthetic Active Radiation and Its Main
Regulating Factors in Inland Waters of
Northeast China
Jianhang Ma 1,2, Kaishan Song 1,*, Zhidan Wen 1, Ying Zhao 1,2, Yingxin Shang 1,2,
Chong Fang 1,2 and Jia Du 1

1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun 130102,
China; mmjjhh105@sina.com (J.M.); wenzhidan@iga.ac.cn (Z.W.); zhaoying477@163.com (Y.Z.);
goodlucksyx27@163.com (Y.S.); fangchong1991@gmail.com (C.F.); jiaqidu@iga.ac.cn (J.D.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: songks@iga.ac.cn; Tel.: +86-431-8554-2364

Academic Editors: Linhai Li, Claudia Giardino, Yunlin Zhang, Deepak R. Mishra, Xiaofeng Li and
Prasad S. Thenkabail
Received: 15 August 2016; Accepted: 16 November 2016; Published: 21 November 2016

Abstract: Light availability in lakes or reservoirs is affected by optically active components (OACs)
in the water. Light plays a key role in the distribution of phytoplankton and hydrophytes, thus, is a
good indicator of the trophic state of an aquatic system. Diffuse attenuation of photosynthetic active
radiation (PAR) (Kd(PAR)) is commonly used to quantitatively assess the light availability. The PAR
and the concentration of OACs were measured at 206 sites, which covered 26 lakes and reservoirs
in Northeast China. The spatial distribution of Kd(PAR) was depicted and its association with the
OACs was assessed by grey incidences(GIs) and linear regression analysis. Kd(PAR) varied from
0.45 to 15.04 m−1. This investigation revealed that reservoirs in the east part of Northeast China
were clear with small Kd(PAR) values, while lakes located in plain areas, where the source of total
suspended matter (TSM) varied, displayed high Kd(PAR) values. The GIs and linear regression
analysis indicated that the TSM was the dominant factor in determining Kd(PAR) values and best
correlated with Kd(PAR) (R2 = 0.906, RMSE = 0.709). Most importantly, we have demonstrated that
the TSM concentration is a reliable measurement for the estimation of the Kd(PAR) as 74% of the
data produced a relative error (RE) of less than 0.4 in a leave-one-out cross validation (LOO-CV)
analysis. Spatial transferability assessment of the model also revealed that TSM performed well
as a determining factor of the Kd(PAR) for the majority of the lakes. However, a few exceptions
were identified where the optically regulating dominant factors were chlorophyll-a (Chl-a) and/or
the chromophroic dissolved organic matter (CDOM). These extreme cases represent lakes with
exceptionally clear waters.

Keywords: light attenuation coefficient; optically active constituents; Northeast China; total
suspended matter; water transparency

1. Introduction

Diffuse attenuation of photosynthetic active radiation (PAR), expressed as Kd(PAR), indicates
the ability of solar radiation to penetrate a water column. The distribution of algae and hydrophytes,
which contribute greatly to the lake’s primary production, is mainly influenced by the availability
of light as well as other factors, for example, temperature and nutrition [1,2]. Euphotic zone depth
(zeu), an important input parameter for ecological models that estimate primary production of inland
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waters [3,4], defined as the depth where 1% of the PAR just beneath the water surface remains [5], can
be calculated using the equation zeu = 4.6/Kd(PAR) [5] provided that a water column is homogeneous.
The Kd(PAR) is also an important variable to research the heat transfer of lakes [6]. Global climate
change and anthropogenic impacts have strong effects on a lakes’ ecosystem and this may be depicted
by changes in Kd(PAR). Therefore, research of Kd(PAR) and further understanding of its effects can
significantly contribute to the development of new approaches for the management and protection
of lake environments [7]. Although water transparency, measured with Secchi disk depth (SDD) by
human eyes, can also represent the light properties of lakes [8], Kd(PAR) provides a more objective
depiction as it is measured with advanced electro-optical instruments [9].

Kd(PAR) can be obtained by fitting the profile of PAR values measured at different depths of the
water versus the corresponding depths, according to Lambert–Beer’s law [10–12]. Although portable
instruments, such as the Li-cor 191, are capable for accurate measurements to estimate Kd(PAR), there
are limitations in their application on large scale regions [12] as frequent in situ sampling is costly,
labor-intensive and time-consuming. Optical remote sensing imagery is a cost-efficient method to
obtain Kd(PAR) values at large regional scale due to the correlation between Kd(PAR) and water
leaving radiance, and also due to its spatial and temporal resolution. Numerous remote sensing data
such as Landsat/TM/OLI [13], Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [14], the Moderate
Resolution Imaging Spectroradiometer (MODIS) [15], the Medium Resolution Imaging Spectrometer
(MERIS) [12,16,17] and the Geostationary Ocean Color Imager (GOCI) [18] have been applied to
retrieve Kd(PAR) or Kd(490) (which is often used as an agent of Kd(PAR)).

Semi-analytical models [15,19–22] for Kd(PAR) or Kd(490) inversion emphasized the importance
of inherent optical properties (IOPs) and improved the accuracy of the Kd(PAR) estimation in both
open ocean waters (case-I) and coastal or inland waters (case-II). However, large uncertainties still
existed in this type of algorithms for turbid and optically complex inland waters [15,19,21]. Though the
applications may be confined to specified regions or seasons, empirical models have been widely used
to derive Kd(PAR) from remote sensing data for both case-I and case-II waters [12,23–25]. The models
were built by calibrating in situ Kd(PAR) with remote sensing reflectance at blue-green [14,24], red [12]
or Near-infrared (NIR) [26] bands so the Kd(PAR) can be directly mapped from remote sensing images.
Kd(PAR) is governed by the properties of natural water that include both dissolved and particulate
organic as well as the inorganic material [2,5,27]. Therefore, the Kd(PAR) can be expressed as a
function of the dominant one or some optically active components (OACs) whose concentrations
can be estimated from remote sensing data empirically or semi-analytically. Thus, Kd(PAR) can be
mapped indirectly from remote sensing images. Chl-a plays a significant role in optical property
of case-I water so it is rational to estimate Kd(PAR) by the concentration of Chl-a that derived from
satellite images [9,28]. Dominant factor of case-II water’s optical property varied dramatically from
Chl-a [27] to TSM [10,29] or CDOM [1,30]. Sometimes, there were multiple dominant factors [31] and
they changed by seasons [32]. Thereby, comprehensive analysis of the relationships between Kd(PAR)
and OACs with in situ data was necessary before indirectly deriving Kd(PAR) from remote sensing
data for inland waters. Models to estimate Kd(PAR) from OACs can be built with in situ data [33–35].
Factors that play a significant role in the variance of Kd(PAR) can be identified through the analysis [2]
and further used as a guidance for the policy making in the protection of limnology environments.

Northeast China lake zone, with 882 lakes whose area was greater than 1 km2 in 2010 [36], is one
of the five lake zones of China [37]. Some of the lakes and reservoirs in Northeast China are featured
with high TSM and CDOM due to the strong wind and shallow water depth, combined with rich soil
organic matter that supply much terrigenous dissolved organic matter (DOM) into waters [38–41].
Thus, the optical property and their influence on Kd(PAR) may be different from other lake zones of
China. Remote sensing may be the most suitable method to monitor environmental parameters for
the widely distributed lakes. Investigations on Kd(PAR) in lakes of East China zone have been carried
out [2,7,12,26,31]. Comparatively, much less research on Kd(PAR) in Northeast China lakes have been
conducted. Thus, the analysis of dominate OACs of Kd(PAR) could provide a guidance for future
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investigating of Kd(PAR) by remote sensing. The objectives of this paper are: (1) to depict the spatial
distribution pattern of Kd(PAR) of lakes and reservoirs, which represents the trophic state of waters in
Northeast China well; (2) to determine the dominant OACs of Kd(PAR) in waters of Northeast China
using data collected from 26 lakes and reservoirs with three types of grey incidences (GIs); and (3) to
build a relationship between Kd(PAR) and OACs that is meaningful for indirectly mapping Kd(PAR)
from remotely sensed imagery.

2. Materials and Methodologies

2.1. Study Area

Northeast China is an important base of agriculture, forestry, energy and heavy industry.
The region which extends from 38◦N to 54.0◦N and 116◦E to 136◦E, includes all of the Heilongjiang,
Jilin and Liaoning Provinces, and parts of Inner Mongolia Province. Its topography is characterized
by mountains to the east, north and west that surround the Sanjiang, Songnen, and Liaohe Plains
(Figure 1a). The region has a temperate continental monsoon climate which is controlled by the East
Asian monsoons. This climate is characterized for its cool and short summers and for its cold and long
winters with the lakes being frozen in winters. The annual average temperature ranges between −4
and 12 ◦C with a gradual increase from north to south. Precipitation is generally higher in the summer
and autumn seasons and decreases from 1100 mm in the southeast to 250 mm in the west [42].

Forests are predominantly distributed in mountainous areas where the soil erosion is weak.
Grasslands are mainly distributed in the Inner Mongolia plateau where the precipitation is generally
less than 400 mm (Figure 1b). A large amount of lakes and reservoirs with various features are
distributed in Northeast China. Reservoirs are mainly located in mountainous areas and are very deep
with long-narrow shapes. Unlike reservoirs, most of the lakes are generally shallow and are located
in plain areas, particularly in Western Songnen Plain. Due to the character of environmental factors
like unevenly distributed precipitation, high evaporation and geomorphology of terminal-flow areas,
many fresh and saline water bodies are distributed in the Songnen Plain [39].
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Figure 1. Study area map: (a) Digital elevation model (DEM) and sampling lakes with corresponding
lake ID; and (b) type of vegetation and spatial distribution of the Kd(PAR) derived from in situ
measurements, combined with isotherm and isohyets in Northeast China.

2.2. In Situ Data Collection and Analysis

In total, 206 stations with measurement of PAR collected in six field experiments were used.
The stations covered 26 lakes and reservoirs in Northeast China. Details about the distribution of the
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sample points are shown in Figure S1 (Supplementary Materials). There are only two lakes with areas
less than 10 km2. The water approximately 0.5 m below the surface was collected in the acid-washed
HDPE bottles for laboratory analysis. The location of each station was recorded with a UniStrong G3
GPS uint. Water transparency (Secchi disk depth, SDD) was measured with a 30 cm diameter black and
white quadrant (Secchi) disk. PAR was measured by the Li-Cor 193SA underwater spherical quantum
sensor on the sunny side of the boat to avoid any shadow effects. After posing the sensor at one depth
in the water, PAR value was continuously recorded for 15 s and output an averaged value by the data
logger. This value was regarded as the PAR value at this depth. The PAR measurements were taken at
no less than five point’s depth for each station. Kd(PAR) was determined by applying the exponential
regression model which utilizes Equation (1) [33], provided that the water column was homogeneous.
The results were accepted only if the coefficient of determination (R2) was no less than 0.95 [7] and the
number of depth points was no less than 4. In Equation (1), the PAR(Z) represents the PAR value at
depth Z and PAR(0−) represents the PAR value just beneath the surface of the water.

PAR (Z) = PAR
(
0−

)
× exp [−Kd (PAR)× Z] (1)

2.3. Water Quality Parameters

To determine the water quality, we calculated the concentrations of TSM and Chl-a, and the
absorption of CDOM, phytoplankton and non-algal particles (NAP), as follows.

TSM concentration: For all samples, the concentration of TSM was determined gravimetrically.
Whatman GF/F glass fiber filters (47 mm in diameter, 0.7 µm in average pore size) were initially
combusted at 400 ◦C for 4 h to remove any organic matters on the filters. After cooling, they were
weighed before proceeding to filtration. The volumes of water samples to be filtered were determined
by their turbidity. The used filters were stored at 4 ◦C and re-weighed after drying for 4 h at 105 ◦C.
The concentration of the TSM was calculated by dividing the difference of weight by the volume of the
corresponding water sample.

Chl-a concentration: Chl-a was determined spectrophotometrically [43,44]. A certain volume (V)
of water sample was filtered through GF/F cellulose acetate membrane filters with 47 mm in diameter
and 0.47 µm in pore size. The filters were frozen at −20 ◦C and stored under dark conditions until
further analysis. Pigments were extracted by soaking the mashed filters in 10 mL of 90% acetone
solution for 24 h under dark conditions. The supernatant was collected after centrifugation (5000 r/min,
20 min) and its absorbance at 630, 647, 664 and 750 nm was measured by the Shimadzu UV-2600
PC spectrophotometer. Concentration of Chl-a was calculated by Equation (2) [45], where OD(630),
OD(647), OD(664) and OD(750) represented the absorbance at 630, 647, 664 and 750 nm, respectively.
The number 10 is the volume of the acetone solution. V is the volume of water sample in liter. L is the
cuvette path length in cm. The cuvette with path length of 1 cm was used in this study.

Chl− a = {11.85× [OD (664)−OD (750)]− 1.54× [OD (647)−OD (750)]
− 0.08× [OD (630)−OD (750)]} × 10/ (V× L)

(2)

CDOM absorption: The generally high concentration of particles in inland waters results in the
difficulties in collecting enough filtrate for measurement by solely filtering water samples through
0.22 µm filters as the particles block the pore easily. Thus, water samples were initially filtered through
0.7 µm (pore size) Whatman GF/F glass fiber filters (pre-combusted at 400 ◦C for 4 h in a Muffle
furnace) and then through 0.22 µm (pore size) nuclepore filters (Whatman) [2]. Then spectrophotometer
(Shimadzu UV-2600) was used to measure the CDOM absorbance spectra (OD(λ)) between 200 and
800 nm at 1 nm intervals with the filtrate in 1 cm quartz cuvette and Milli-Q water as reference.
The absorption spectrum (aCDOM(λ)) was calculated from the absorbance using Equation (3) [46],
where L is the cuvette path length (0.01 m) and 2.303 is the conversion factor. Some fine particles may
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have remained in the filtrate so backscattering caused by them should be corrected with absorption of
CDOM was assumed to be zero at λ0, where λ0 equals to 700 nm [2].

a′CDOM(λ) =
2.303

L
× [OD (λ)−OD (λ 0)× (λ/λ 0)] (3)

The absorption coefficient at 355 nm (aCDOM(355)) was selected to represent the CDOM
concentration [47,48].

Absorption coefficients of phytoplankton (aph) and NAP (aNAP) were measured by the
quantitative filter technique (QFT). A certain volume of each water sample was filtered through
Whatman GF/F filter with a nominal pore size of 0.7 µm. Absorption of total particles (ap) on the filter
was measured by spectrophotometer (Shimadzu UV-2600), and then aNAP was measured after the
filter was bleached by sodium hypochlorite solution to remove the pigment. As for phytoplankton
absorption, aph was calculated by subtracting aNAP from ap. The details can be found in [40,49]. Due to
the artificial factors during the experiment, only ap of each sample point were measured for Baishan
Reservoir (BSR number 4, Table 1).

Table 1. Summaries of sample points and average values of optical parameters of the sampling lakes.
N: counts of sample points; SDD: Secchi disk depth; TSM: total suspended matter; aCDOM(355):
the absorption coefficient of chromophroic dissolved organic matter (CDOM) at 355 nm; Chl-a:
chlorophyll-a concentration.

Water Name a Abbreviation
(Number)

Area
(km2) Date N Kd(PAR)

m−1
SDD
(m)

TSM
(mg/L)

aCDOM(355)
m−1

Chl-a
(µg/L)

Shanmen R. SMR(1) 1.5 21 April 2015 4 0.77 1.543 3.17 7.86 5.88
Xiasantai R. XSTR(2) 1.3 21 April 2015 4 2.73 0.703 18.75 10.56 32.84
Xinmiaopao XMP(3) 26.6 24 April 2015 8 2.53 0.506 26.01 3.51 7.66
Baishan R. BSR(4) 90.0 4 May 2015 24 1.11 1.283 6.29 5.08 28.02

Xiaoxingkai L. XXKL(5) 162.1 15 August 2015 13 3.65 0.362 34.77 4.43 6.21
Daxingkai L. DXKL(6) 1062.4 17 August 2015 8 5.43 0.226 55.17 1.85 6.58
Qingnian R. QNR(7) 41.1 18 August 2015 4 13.93 0.113 174.50 5.14 4.31
Lianhua L. LHL(8) 111.7 19 August 2015 14 1.80 1.284 8.12 4.30 16.89
Jingbo L. JBL(9) 88.8 20 August 2015 11 1.22 1.520 4.61 4.84 23.00

Songhua L. SHL(10) 216.2 21 August 2015 7 0.68 2.599 1.48 2.41 5.41
Kulipao KLP(11) 11.6 6 September 2015 4 4.32 0.328 22.10 10.56 3.74

Nanyin R. NYR(12) 96.4 7 September 2015 3 5.35 0.253 34.17 3.22 40.04
Lamasipao LMSP(13) 47.9 8 September 2015 7 2.81 0.440 16.10 6.03 59.80
Longhupao LHP(14) 126.9 9 September 2015 10 4.11 0.280 36.33 4.69 12.27

Talahongpao TLHP(15) 67.5 10 September 2015 2 5.63 0.240 56.00 6.49 20.62
Xihulupao XHLP(16) 57.9 10 September 2015 7 6.23 0.254 50.00 4.71 21.25

Huoshaolipao HSLP(17) 64.3 10 September 2015 8 4.00 0.371 27.18 4.53 9.02
Hulun L. HLL(18) 2050.2 14 September 2015 28 3.54 0.402 28.38 5.23 7.37
Nierji R. NEJR(19) 429.6 16 September 2015 16 1.56 1.678 4.24 6.53 4.46

Shankou R. SKR(20) 64.9 17 September 2015 3 1.27 1.847 1.99 7.59 6.88
Nanchengzi R. NCZR(21) 10.7 14 April 2016 4 0.85 1.80 1.98 2.45 2.97

Qinghe R. QHR(22) 17.3 15 April 2016 3 1.49 1.24 8.61 1.98 5.03
Chaihe R. CHR(23) 12.1 15 April 2016 3 1.00 1.17 4.00 1.83 8.12
Tanghe R. THR(24) 18.1 18 April 2016 4 0.92 1.85 4.47 1.07 3.25

Huanren R. HRR(25) 69.6 19 April 2016 2 0.47 2.74 2.63 1.92 3.58
Shuifeng R. SFR(26) 165.7 20 April 2016 5 0.97 1.45 8.85 1.98 3.94
a denotes that L. = Lake; R. = Reservoir; pao means lakes in Northeast China; LHL, JBL and SHL are actually
reservoirs but their Chinese names are called lakes.

2.4. Grey Incidences (GIs) Analysis

The grey system theory is a method of processing and analyzing systems with incomplete
information [50]. It has been used in remote sensing applications [51]. GIs provide a quantitative
description of the system and dominant factor which influences the system’s development can be
determined with GIs. Given a system contains m factors and one output, for k times of tests of the
system, it generates a data sequence with k values of the output as Equation (4). This data sequence
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is defined as systematic behavior. The corresponding factors compose m data sequences that each
contains k values (Equation (5)). This data sequences are defined as factor’s behavior.

X0 = {x0(k), k = 1, 2 . . . n} (4)

Xi = {xi(k), k = 1, 2 . . . n} (i = 1, 2, 3 . . . m) (5)

In Equations (4) and (5), X0 and Xi represent the data sequences, x0(k) is the system output at kth
test, and xi(k) is system factor value of ith factor at kth test. GIs describe the developmental trends of
behaviors and factors in a system by analyzing the similarity of geometric patterns between systematic
behavior and factor’s behavior data sequences [50]. By calculating and comparing GIs between X0 and
Xi, the most influential factors could be identified.

In this research, Kd(PAR) of the sample points was regarded as the systematic behavior meanwhile
corresponding Chl-a, TSM, and CDOM were regarded as factor’s behavior. Three types of GI were
calculated. The first one (GI1) was proposed by Deng [52] and the details about calculation can be
found in [53]. GI1 was the first model proposed in grey system theory. It measured the trend of system
behaviors and factors by the distance between corresponding points of the data sequences. The second
one (GI2) was the improved generalized absolute grey incidence model proposed by Cao and the
details about its calculation can be found in [50]. GI2 is the modification of the GI proposed by Liu [53].
It measured the trend of system behaviors and factors by the area of the region that surrounded
by the curves of the data sequences. Finally, the third one (GI3) was the absolute degree of grey
incidence proposed by Mei [54]. According to GI3 model, data sequences X0 and Xi were converted to
Y0 = {y0(k), k = 1, 2, . . . ,n − 1} and Yi = {yi(k), k = 1, 2, . . . ,n − 1}, respectively, using Equation (6).
This conversion calculates the slopes of the adjacent data points in each data sequence.

y(k) = x(k + 1) − x(k) k = 1, 2, 3, . . . ,n − 1 (6)

GI (X0, Xi) =
1

n− 1

n−1

∑
i=1

1
1 +

∣∣y0 (k)− yi (k)
∣∣ (7)

The GI of two data sequences (GI(X0,Xi)) was calculated from Equation (7). As shown above,
the GI3 measured the trend of system behaviors and factors by the slope of the data sequences.

In order to eliminate influence of dimension, the data sequences were standardized to values
ranging from 0 to 1 according to Equation (8) before calculating the three kinds of GIs.

x′i(k) =
xi (k)−min (X)

max (X)−min (X)
(8)

2.5. Linear Regression between Kd(PAR) and OACs

GIs provided the means to identify which of the OACs acts as the dominant factor in determining
Kd(PAR), however it does not provide a relationship to quantitatively derive Kd(PAR) from the factor.
Therefore, a linear regression analysis was performed to establish the quantitative relationship between
Kd(PAR) and the concentration of the OACs. In some researches the regression analysis was also
used to identify the dominant factor of Kd(PAR) [2,7] so it can also be used to validate the result of
GIs analysis in this paper. In order to further evaluate the applicability of the predicting model, we
first used the leave-one-out cross validation (LOO-CV) method and then accessed the model’s spatial
transferability. For the LOO-CV analysis, n− 1 samples were used to calibrate Kd(PAR) and the sample
left out was used to validate the model. Similarly, leave one lake out cross validation was used for the
assessment of spatial transferability, sample points from n − 1 lakes were used to calibrate the Kd(PAR)
and the sample points of the lake that was left out were used for validation. The prediction error sum
of squares (PRESS) was used to derive the root-mean-square error of cross-validation (RMSECV) of the
LOO-CV. Moreover, the relative error (RE), the mean relative error (MRE), and the root-mean-square
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error (RMSE) were used to assess the accuracy of the model. The details on how to calculate these
indicators can be found in [12,44].

2.6. Relationship between Kd(PAR) and SDD

Water transparency is an easily measured indicator of water quality and is used to calculate the
trophic state index [55]. SDD is correlated with Kd(PAR) as they are both influenced by the absorption
and scatter characteristics of the OACs; in effect, both measurements represent the penetration of light
in the water [56]. The difference between them is the varied contributions of the extent of spectral
bands as SDD is related to the visible domain (410–665 nm) [57,58] and Kd(PAR) is 400–700 nm [5,33].
Kd(PAR) and SDD are inversely correlated since higher Kd(PAR) values indicate lower water clarity.
The relationship of SDD and Kd(PAR) as defined by Holmes [8] is:

Kd(PAR) = f × SDD−1 (9)

where f has the value of 1.44 for turbid coastal waters [8]. However, other studies have reported
different values of f, ranging from 1.7 to 2.3 [59,60]. In this paper, f was determined by linear regression
with a fixed intercept at 0. With the relationship Kd(PAR) can be estimated from SDD.

3. Results and Discussion

3.1. Water Quality Characteristics

Due to the different geographical environments, the sampled area included a large diversity of
inland waters with varying concentration of OACs (Table 1). The concentration of Chl-a (average:
15.16 ± 15.78 µg/L) varied from 1.20 (sample point number 10 of NEJR, number 19, Table 1) to
67.15 µg/L (sample point number 1 of LMSP, number 13, Table 1). BSR (number 4, Table 1) exhibited
the largest variation of Chl-a ranging from 6.36 to 60.94 µg/L (average: 28.02 ± 20.35 µg/L) attributed
to its long-narrow shape. Upstream regions contained high concentration of Chl-a. As the water
depth becomes deep and flow velocity becomes slow from upstream to downstream regions, the
suspended components sunken so concentration of Chl-a gradually decreased in the up layer of the
water. The TSM concentration ranged from 0.83 (sample point number 3 of SHL, number 10, Table 1) to
184 mg/L (sample point number 4 of QNR, number 7, Table 1), with an average of 4.55 ± 28.25 mg/L.
The highest concentration appeared in QNR (average: 174.5 ± 8.85 mg/L) and the lowest was in SHL
(average: 1.48 ± 0.97 mg/L). XMP (number 3, Table 1) had the largest variation in the concentration
of TSM (range: 10.75 to 64 mg/L, average: 26.01 ± 17.32 mg/L). This variation resulted from one
particular sample point with very high TSM concentration (64 mg/L). It was collected in a site with high
water turbulence as it located at the junction of a river and the lake. The absorption coefficient of CDOM
at 355 nm was high both in XSTR (10.56 ± 0.25 m−1, number 2, Table 1) and KLP (10.56 ± 0.44 m−1,
number 11, Table 1) due to their grayish yellow water color.

The SDD ranged from 0.1 to 4.32 m (Table 1). QNR (number 7, Table 1) had the lowest water
clarity (0.11 ± 0.01 m), while HRR (number 25, Table 1) was the clearest (2.74 ± 0.34 m). The coefficient
f fitted from all sample points was equal to 1.38 (R2 = 0.97) (Figure 2a). This result was closer to the
one reported by Holmes [8] indicating that the equation proposed therein can be used to predict the
Kd(PAR) from the SDD measurements.

3.2. Spatial Distribution of Kd(PAR)

The mean Kd(PAR) of each lake and their corresponding geographical distribution are shown
in Figure 1b. In general, the reservoirs displayed low Kd(PAR) values. The reason might be due to
the fact that they are located in mountainous areas, which are covered by forests that prevent soil
erosion, hence, resulting in low concentrations of TSM. Lakes distributed in the Songnen Plain overall
displayed high Kd(PAR) values. The soil erosion around these lakes was strong, the lakes were shallow,
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and the re-suspension caused by strong winds in the area also contributed to high turbidity [39].
These findings were in agreement with the research conducted by Olmanson [61], which revealed that
lakes of Minnesota that were located in forest regions were clearer than those located in plain regions.Remote Sens. 2016, 8, 964 8 of 17 
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3.3. Grey Incidences between Kd(PAR) and OACs

According to previous studies [48], absorption coefficient at 355 nm of CDOM (aCDOM(355))
was regarded as a representative measure of the concentration of CDOM. GIs were calculated with
TSM, Chl-a and aCDOM(355) as the factor’s behavior data sequences while Kd(PAR) as the systematic
behavior data sequence. The factor with higher GIs score indicates a relative bigger influence on
Kd(PAR). The GIs of all the sample points were calculated and the results (Table 2) showed that the
highest GIs were obtained by comparing between TSM and Kd(PAR). These results indicated that
TSM had a higher contribution to Kd(PAR) than Chl-a and CDOM, which is consistent with previous
studies in Lake Taihu in China [7,12] and UK marine waters [10]. Furthermore, in order to assess the
difference of the relationships across various waters, lakes with more than 10 sampling points were
also selected to calculate GIs individually. The results (Table 2) indicated that the dominant factors of
Kd(PAR) varied according to lakes. For example, Kd(PAR) of BSR may largely influenced by TSM and
Chl-a as the GIs of two materials did not vary significantly.
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Table 2. GIs between the OACs and Kd(PAR) of all the sample points and of lakes whose number of
sampling points were greater than 10. The bigger the GI the larger the influence of OACs on Kd(PAR).

Name OACs GI 1 GI 2 GI 3 Name OACs GI 1 GI 2 GI 3

All points
TSM 0.82 0.81 0.97

Jingbo L.
TSM 0.73 0.73 0.94

aCDOM(355) 0.51 0.69 0.86 aCDOM(355) 0.63 0.87 0.92
Chl-a 0.63 0.66 0.85 Chl-a 0.58 0.81 0.83

Baishan R.
TSM 0.77 0.91 0.92

Longhupao
TSM 0.73 0.65 0.86

aCDOM(355) 0.47 0.78 0.82 aCDOM(355) 0.66 0.45 0.63
Chl-a 0.73 0.87 0.91 Chl-a 0.71 0.53 0.82

Xiaoxingkai L.
TSM 0.83 0.77 0.88

Hulun L.
TSM 0.73 0.54 0.78

aCDOM(355) 0.57 0.47 0.76 aCDOM(355) 0.68 0.45 0.76
Chl-a 0.73 0.74 0.74 Chl-a 0.65 0.30 0.75

Lianhua L.
TSM 0.86 0.93 0.92

Nierji R.
TSM 0.72 0.71 0.89

aCDOM(355) 0.55 0.71 0.89 aCDOM(355) 0.62 0.56 0.81
Chl-a 0.66 0.72 0.77 Chl-a 0.57 0.46 0.87

L. = Lake; R. = Reservoir.

3.4. Kd(PAR) Model Calibration and Validation

In this study, TSM was revealed to be the major impact factor for the determination of Kd(PAR).
The linear regression analysis provided the means to predict Kd(PAR) by utilizing the OACs data.
The results indicated that Kd(PAR) was strongly correlated to TSM, while there was no obvious
relationship between Kd(PAR) and Chl-a or CDOM (Figure 2). The mean value of Kd(PAR) and OACs
of each lake were determined by averaging all the sample points collected from the corresponding
lakes. The coefficient of determination (R2) was improved when averaged value of each lake, rather
than all the single point values, was fitted in the linear model. This is because experimental error may
exist in a single sample point, which leads to the dispersion of the data. The average of the data can
eliminate the error to some extent and result in a stable performance. The slope of the linear model
between Kd(PAR) and TSM in the current study was slightly higher than results in [7] (slope = 0.0626,
intercept = 1.6068) and [12] (slope = 0.0563, intercept = 1.52). Considered that our research covered
a larger number of lakes than those earlier studies, such a difference was acceptable. The results of
linear regression also indicated that the dominant factor of Kd(PAR) for lakes of Northeastern China is
TSM as the GIs indicated. This result provides a guidance in band selection to derive Kd(PAR) from
remote sensing image that the bands well correlate to TSM may perform well in deriving Kd(PAR) [12].
The model estimating Kd(PAR) from TSM may be applied in mapping Kd(PAR) indirectly from
remote sensing image. The dominant factor of Kd(PAR) for lakes in Northeastern China was same
to Lake Taihu, a large shallow lake in Eastern China [2,7,12]. However, the coefficients of the linear
relationship indicated there was difference in optical properties between Lake Taihu and lakes in
Northeastern China.

A multivariate linear regression analysis was also performed with Kd(PAR) as dependent variable
and TSM, Chl-a and aCDOM(355) as independent variables. A slight better fit was obtained as the R2

was 0.916 for all sample point values and 0.960 for lake specified mean values. The result was similar
to those of Zhang [2] and Devlin [11], demonstrating that slight improved models were achieved when
fit Kd(PAR) with all three explanatory variables rather than solely TSM for waters that Kd(PAR) was
mainly influenced by TSM.

The simple linear model may be suitable for predicting Kd(PAR) from TSM as it produced low
error rates (RMSE: 0.689 for lake averaged values, and 0.709 for single point values). The RMSECV
of the LOO-CV analysis was 0.709 and the MAPE was 0.315. The RE which was used for validation
ranged from 0.0016 to 2.2 (Figure 3). The relative error of 61% of the samples was below 0.3 and of
74% of the samples was below 0.4. Altogether our results indicated that the TSM performed well in
estimating Kd(PAR). However, care should be taken when applying this model to some cases as TSM
might not always represent the major determining factor of Kd(PAR). This could be the case of eight
sample points in our study which displayed RE values larger than 1.0 in LOO-CV.
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the Kd(PAR) from the concentration of TSM.

To investigate this further, 32 points, whose RE of LOO-CV was greater than 0.6, were selected to
analyze the relationship between Kd(PAR) and OACs. For the 32 sample points, the averaged Kd(PAR)
was 0.727 ± 0.150 m−1 and the large RE value was mainly caused by the overestimation of the model
(see Figure S2). The linear regression analysis (see Figure S3) indicated that Kd(PAR) had a better
correlation with the concentration of TSM (R2 = 0.60) than with Chl-a and CDOM (R2 < 0.1). However,
when compared to the model built by all sample points, the slope and intercept decreased to 0.06 and
0.522, respectively. This explained why the model built with all sample points lead to overestimation
of Kd(PAR) for the 32 sample points. However, the GIs revealed that the correlation between the OACs
(TSM, Chl-a, CDOM) and Kd(PAR) did not vary significantly (GI1: 0.70, 0.65, 0.68), (GI2: 0.55, 0.67, 0.72)
and (GI3: 0.91, 0.80, 0.80),which indicated that the dominant factors of Kd(PAR) may not solely TSM
for this 32 sample points. The R2 of multivariate linear regression analysis was 0.64, which implied an
improved fit with TSM, Chl-a and CDOM.

The integration of the absorption coefficient curves between 400–700 nm were used to calculate
the relative contribution of phytoplankton, NAP and CDOM to the total absorption of the samples
(Figure 4). Due to the absorption spectra of phytoplankton and NAP in the BSR were not measured,
therefore, six data points from BSR were not analyzed further. Nonetheless, the absorption spectra of
the total particulate matter showed an obvious peak at 675 nm (see Figure S4), which indicated that
the contribution of the phytoplankton to the total absorption is strong. The total absorption of HRR
was dominated by CDOM and phytoplankton which might cause the large error observed by solely
estimating Kd(PAR) from TSM. Though NAP contributed more than phytoplankton and CDOM to the
total absorption of QHR1, CHR1, THR and SFR, high RE were observed when predicting Kd(PAR)
solely from the TSM. This might be attributed to the extremely clear water which makes the model
unsuitable for this type of environment; therefore, a separate analysis should be done for this lake.
For JBL and SHL, the CDOM was the main contributor to the total absorption, thus, the Kd(PAR) may
have a good correlation with it, as discussed in Section 3.5.
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3.5. Spatial Transferability

The MRE and RMSE of each lake were calculated in the spatial transferability assessment (Figure 5).
QNR (LakeID: 7), KLP (LakeID: 11), NYR (LakeID: 12), and XHLP (LakeID: 16) all had high RMSE
values but relatively low MRE values due to their high Kd(PAR). Unlike the RMSE values, which
were low for HHR (LakeID: 25), SFR (LakeID: 26), SHL (LakeID: 10) SMR (LakeID: 1), THR (LakeID:
24), JBL (LakeID: 9) and BSR (LakeID: 4) (Figure 5), the MRE (MRE: 1.794, 0.862, 0.860, 0.726, 0.694,
0.641 and 0.532, respectively) indicated that there were large errors in predicting Kd(PAR) in this lakes.
These lakes commonly had low levels of TSM, so the relative contributions of Chl-a and CDOM could
not be eliminated from the analysis as they may also have large influence on Kd(PAR). Otherwise,
it may cause the high MRE values in predicting Kd(PAR) solely with TSM.

In order to identify the differential contribution of OACs to the estimation of Kd(PAR) across
different lakes, a separate analysis was undertaken for lakes with more than 10 sample points. Although
only six sample points were obtained from SHL, it was still selected because it was the second clearest
lake in this study, and it had RE greater than 0.4 in the LOO-CV analysis. The GIs for the lakes were
calculated respectively and linear regression between OACs and Kd(PAR) was performed. The lake
specified averaged absorption spectra were used to calculate the relative contribution of phytoplankton,
NAP and CDOM to the total absorption of each lake. The R2 of linear regression and the relative
contribution were shown in Figure 6.

GIs of the lakes are shown in Table 2. For SHL, the GIs between the OACs (TSM, Chl-a, CDOM)
and the Kd(PAR) are (GI1: 0.62, 0.81, 0.67), (GI2: 0.77, 0.90, 0.80) and (GI3: 0.77, 0.89, 0.83). The GIs
of SHL showed that Chl-a and CDOM displayed a higher correlation than TSM with the Kd(PAR),
and this was consistent with the results obtained by linear regression analysis. The contribution of
CDOM and phytoplankton to the total absorption was larger than NAP and this could explain why
Kd(PAR) was mainly influenced by Chl-a and CDOM. The R2 of the correlation analysis revealed
that the Kd(PAR) of BSR was highly related to both TSM and Chl-a, and that there was only a minor
variation in the GIs of TSM and Chl-a. The Kd(PAR) of NEJR was greatly correlated to both TSM



Remote Sens. 2016, 8, 964 12 of 17

and CDOM, and CDOM and NAP contributed more to the total absorption. This was similar to the
analyzing results of XXKH. Overall, the count of dominant factors for determining Kd(PAR) were
two rather one in the cases of the lakes/reservoirs described above. This results is consistent with the
findings in Danjiangkou Reservoir (averaged Kd(PAR) was 0.726 m−1) in Hubei Province, China [32].
That study revealed that TSM and Chl-a dominated Kd(PAR) during the wet season while Chl-a and
CDOM were the major determinants of Kd(PAR) in the dry season in the reservoir.
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correspond to those in Table 1 and are represented on the x-axis.

The TSM and CDOM concentrations were well correlated to Kd(PAR) for JBL. Similarly, Chl-a
also had a modest correlation with Kd(PAR). In contrast to JBL which displayed similar contributions
of each constituent to the total absorption, the Kd(PAR) of LHL was mainly correlated to the TSM.
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The reason may be that the TSM was more varied in LHL (range: 2.83–22.6 mg/L, StDev: 6.33)
than in JBL (range: 2.14–10.2 mg/L, StDev: 2.3), while the Chl-a was more varied in JBL (range:
9.94–61.67 µg/L, StDev: 14.61) than in LHL (range: 6.81–43.11 µg/L, StDev: 10.43). Though NAP
contributed the most to the total absorption in LHP and HLH, Kd(PAR) had a weak correlation with
the TSM. Taking into account that these two lakes are vast in shape and relative shallow in depth
(5.92 m for HLH and 2.7 m for LHP) [37], it is possible that the OACs are uniformly distributed in the
water causing a little variation in the calculation of Kd(PAR) across different sample points. This might
have produced low standard deviations in the values of the dependent and the independent variables,
in effect, lowering the significance of the linear correlation. In addition, the measurement of PAR
was easily influenced by waves in these lakes which could induce large errors to the calculation of
Kd(PAR). These errors could contribute to the reduction of the correlation between the Kd(PAR) and
the OACs in HLH and LHP. There was an inconformity that a factor showed a high contribution to
the total absorption might not be best correlated to the Kd(PAR). This inconformity was also observed
by Shi [29] in Bosten Lake in Xinjiang Province, China. In his study, both CDOM and phytoplankton
contributed more than NAP to the total absorption, however, the Kd(PAR) was best correlated to the
TSM concentration.

4. Conclusions

Based on the data collected in Northeast China, the relationships between Kd(PAR) and OACs
were studied. The optical properties of water bodies were diverse and complex. Kd(PAR) was
significantly correlated to the water transparency (SDD) and the coefficient was in agreement with
previous studies [8]. According to GIs and linear regression analysis of the data of all the sampled
points, it was found that TSM was the most dominant component of the OACs in regulating Kd(PAR).
As a systemic analysis method, GIs were effective in identifying the dominant factors of Kd(PAR). The
TSM accounted for the most variation of the Kd(PAR) as the R2 of the linear model only increased
0.01 when TSM, Chl-a, and CDOM were the explanatory variables rather than solely TSM was the
explanatory variable. The investigation of the simple linear model demonstrated that it was an effective
tool to predict Kd(PAR) from TSM data as it produced small RE in a LOO-CV analysis. However, the
dominant regulating factors of Kd(PAR) varied among some of the sample points and lakes, especially
for some clear waters, in which the dominant factors may be a combination of two or three kinds of
OACs. This variation can be attributed to their distinct geographical environments. Lakes that are open
in shape and shallow in depth and distributed in plain areas, where soil erosion is relatively strong,
show high Kd(PAR) values. Therefore, the major determining factor of Kd(PAR) in these types of lakes
is the concentration of TSM. However, for very clear water bodies, for example in deep and narrow
reservoirs, which are distributed in mountainous areas where soil erosion is weak, the concentration
of the TSM is low. In such cases, the contribution of the concentrations of Chl-a and/or CDOM to
the estimation of Kd(PAR) is also significant. There was a discrepancy in the results derived from
correlation analysis and from absorption spectra analysis. The material which contributed the most to
the total absorption may not be well correlated to the Kd(PAR) due to the scattering of phytoplankton
and TSM also affect Kd(PAR) [29]. In general, reservoirs in the east part of Northeast China had low
Kd(PAR) values, while lakes located in plain areas showed high Kd(PAR) values. These differences in
the Kd(PAR) could reflect variations in the composition of TSM in these distinct geographical locations.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/11/964/s1,
Figure S1: Distribution of sample points of each lakes or reservoirs. The color represents the average Kd(PAR), the
number and abbreviation were listed in Table 1; Figure S2: The estimated Kd(PAR) by TSM and in situ Kd(PAR)
for sample points that had relative error (RE) greater than 0.6 in LOO-CV. Eight sample points had RE greater
than 1 and they were HRR1 (RE: 2.20), JBH1 (RE: 1.59), JBH3(RE: 1.54), SHH7(RE: 1.50), SFR5(RE: 1.49), HRR2(RE:
1.36), SHH5(RE: 1.15) and QHR1(RE: 1.06); Figure S3: Linear regression analysis between OACs and Kd(PAR)
for sample points that had relative error (RE) greater than 0.6 in LOO-CV. (a) total suspended matter (TSM);
(b) chlorophyll-a(Chl-a); (c) absorption coefficient of chromophroic dissolved organic matter (CDOM) at 355
nm (aCDOM(355)); Figure S4: Absorption coefficient of total particulate materials of BSR. Only the absorption
coefficients of total particulate materials were measured during the experiment but the phytoplankton and

www.mdpi.com/2072-4292/8/11/964/s1


Remote Sens. 2016, 8, 964 14 of 17

non-algal particles were not measured. The obvious absorption peak at 675 nm indicated the pigment absorption
was dominant in the total particulate absorption.
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