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Abstract: Real-time anomaly detection has received wide attention in remote sensing image
processing because many moving targets must be detected on a timely basis. A widely-used anomaly
detection algorithm is the Reed-Xiaoli (RX) algorithm that was proposed by Reed and Yu. The kernel
RX algorithm proposed by Kwon and Nasrabadi is a nonlinear version of the RX algorithm and
outperforms the RX algorithm in terms of detection accuracy. However, the kernel RX algorithm is
computationally more expensive. This paper presents a novel real-time anomaly detection framework
based on the kernel RX algorithm. In the kernel RX detector, the inverse covariance matrix and the
estimated mean of the background data in the kernel space are non-causal and computationally
inefficient. In this work, a local causal sliding array window is used to ensure the causality of the
detection system. Using the matrix inversion lemma and the Woodbury matrix identity, both the
inverse covariance matrix and estimated mean can be recursively derived without extensive repetitive
calculations, and, therefore, the real-time kernel RX detector can be implemented and processed
pixel-by-pixel in real time. To substantiate its effectiveness and utility in real-time anomaly detection,
real hyperspectral data sets are utilized for experiments.

Keywords: hyperspectral remote sensing; real-time; kernel anomaly detection; matrix inversion
lemma; Woodbury matrix identity; local causal sliding array window

1. Introduction

Hyperspectral imagery (HSI) can provide abundant spectral information to describe various
ground materials due to its very high spectral resolution [1]. Anomaly detection, one of the main
research areas, is of particular importance since it can uncover many subtle materials of which there is
no prior knowledge or visualization for image analysts [2]. These types of materials generally appear
as anomalies in hyperspectral images, such as special species in agriculture and ecology, rare minerals
in geology, oil spills in water pollution, drug trafficking in law enforcement, man-made objects in
battlefields, and tumors in medical imaging [3].

In HSI anomaly detection, the Reed-Xiaoli (RX) detector of Reed and Yu [4] is widely used and
considered a baseline algorithm [5-12]. The well-known RX detector is the benchmark algorithm
derived from a generalized likelihood ratio test for an unknown additive contrast signal in
a multivariate Gaussian background. Complex ground material distributions have a negative impact
on the RX detection since the RX detector only makes use of low-order statistics of hyperspectral data.
To this issue, the kernel RX (KRX) algorithm [5], a nonlinear version of the RX algorithm, was proposed
by Kwon and Nasrabadi. By mining the high-order correlation between spectral bands via a kernel
function, the KRX detector (KRXD) provides better detection performance when original data samples
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are mixed in a non-linear model, as is always the case. Depending on the background information,
KRXD can be divided into two types: global KRXD (GKRXD) and local KRXD (LKRXD). GKRXD
calculates the Mahalanobis distance between a test pixel and global background information in the
feature space, while LKRXD uses sliding windows to effectively detect local anomalous targets that
could easily be overwhelmed in the global background. By virtue of a kernel trick [13], the KRX
detector can be implemented using the dot products of input data in the original low dimensional
space rather than in high dimensional space.

Recently, in applications of anomaly detection, there is an increasing interest concerning real-time
and quick algorithms of anomaly detection in HSI [14-16]. It is particularly crucial since some
moving targets, denoted by anomalies, need to be located in real time. Real-time processing also
alleviates the need for data storage, system response time and the transmission of large amounts
of hyperspectral data. Over the past few years, many real-time anomaly detection algorithms have
been proposed to enable real-time or nearly real-time on-board processing in the literature [14-26].
In [14], computationally efficient anomaly detectors were developed and tested in the operating
airborne platforms. In [17], the architecture for real-time global background data statistics evaluation
is shown. To speed up processing time, real-time anomaly detection was successfully implemented
on graphics processing units (GPUs) [21-23]. Subsequently, the real-time anomaly detectors based on
efficient updating strategies were proposed and developed in [25,26]. Unfortunately, most of them
are not actually real-time processors but simply fast algorithms. An anomaly detection algorithm for
implementation in real time must meet the requirement of causality [16]. In other words, the data
sample vectors used for data processing can only be those prior to the sample vector being visited,
and any future sample vectors should not be involved in processing. By doing so, a real-time causal
processing of anomaly detection was proposed in [15]. In this method, causal equations are derived
and updated recursively. In [16,27], global real-time causal RX detectors (GRTC-RXD) and local
real-time causal RX detectors (LRTC-RXD) based on different causal sliding windows were investigated.
Both the GRTC-RXD and the LRTC-RXD use the Woodbury matrix identity to reduce computational
complexity. While GRTC-RXD takes all data samples before the test pixel as background information,
the LRTC-RXD only utilizes the background information in a local causal sliding window. However,
these algorithms are designed based on RX detectors, where there is still a challenge of detection
accuracy since they only use low-order statistics of hyperspectral data.

Therefore, this paper proposes a new framework of real-time anomaly detection based on the
KRX algorithm that has better detection accuracy than RX algorithms. A local causal sliding array
window is employed to ensure a causal detection system [27], thereby gaining an advantage in that the
data samples are collected and detection is performed simultaneously. The matrix inversion lemma
and Woodbury matrix identity are then combined to recursively update the inverse covariance matrix
and the estimated mean of the background data in the kernel space. There is no need for the entire
previously visited data sample vectors to be reprocessed, thereby speeding up real-time processing.
After meeting the requirements of causality and efficiency, the kernel RX detector can be implemented
and processed pixel-by-pixel in a real-time manner.

2. Methods

2.1. RX and KRX Anomaly Detector

Reed and Yu in [4] developed an RX detector that is a widely used anomaly detection algorithm
in hyperspectral imaging. The RX algorithm calculates Mahalanobis distance between the data sample
vector currently being detected and background data sample vectors. To exploit abundant nonlinear
information of hyperspectral data, Kwon et al. proposed a KRX algorithm that has better separation
performance between anomalies and the background by using kernel functions. In the following,
we briefly describe the RX algorithm and the KRX algorithm.
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2.1.1. RX Algorithm

Let each input spectral signal consisting of I spectral bands be denoted by x; = [x1;, X2/, . . ., Xj;] T
The two competing hypotheses that the RX-algorithm should distinguish are given by

{ Hy: x=n (Target absent) )

H;: x=as+n (Target present)

where a = 0 under Hyp and a > 0 under Hy, n is additive Gaussian noise, and s is a vector that represents
the spectral signature of the signal (target). The model assumes that the data are from two normal
probability density functions with the same covariance matrix but different means. Under Hy, the data
(background clutter) are modeled as N (0, C), and under H; the data are modeled as N(p, C). The RX
detector, referred to as 5% (r), is specified by

0(r) = (r—p) C 7} (r— ) @)
where u is the background estimated mean and C is the background covariance matrix.

2.1.2. Kernel RX Algorithm

The KRX algorithm uses the same assumptions as those used in the RX algorithm, in other words,
the mapped input data in the feature space now consists of two Gaussian distributions, thus modeling
the two hypotheses as

®)

Hoo : (x) = ng (Target absent)
Hip : ®(x) = apP(s) + nep (Target present)

where agp = 0 under op and agp > 0 under 19, O(s) and ng represent target spectral signature and
noise in the feature space, respectively. The corresponding KRX algorithm in the feature space is
represented as

KR (D (1)) = (P(r) — fipe) Kpe (P(r) — fpo) @)

where figg and Kpg are the estimated mean and covariance matrix of the background data in the
feature space, respectively. Through certain kernelization and derivation,

N

k! = k(r, X e k(r,x; 5
(6 %)~ ( L k(e x) ©
kT—lNk-X)——lNNk--) 6
ﬁ_<ﬁg (xll B) (Nzl;]; (Xl'x]> (6)

where Xp is the original background data including N data sample vectors. The Gram matrix Ky, is
expressed by k(Xp, Xp). Finally, the KRX algorithm can be simplified as

SKRX (1)) = (krT —kg)TK;l (krT —k£> @)

Kernel-based learning algorithms use an effective kernel trick to implement dot products in the
feature space by employing kernel functions [13]. A commonly used kernel is the Gaussian radial
basis function (RBF) kernel expressed as

o2
Kixy) = exp(~ X0 ®

where c is a positive constant.
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2.2. Proposed Real-Time Processing of KRX Detector

Although the KRX detector has desirable detection accuracy, neither the GKRXD nor LKRXD
is actually a real-time detector since the Gram matrix to be processed needs to use either the entire
background data sample vectors or the data sample vectors in the local window. Fortunately, both the
global and local KRX detection algorithms can be improved to become real-time. In this paper,
however, only real-time processing based on LKRXD, by using a local causal sliding array window,
is investigated. For the global real-time KRX detector, the Gram matrix will grow in size as detection
progresses because the size of the Gram matrix is dependent on the number of background data
samples, and the global model needs to include all data samples before the test pixel. Considering that
a real-time detector should be implemented in continuous time, the Gram matrix will become so big
that the computational complexity is too time consuming for practical applications.

2.2.1. Local Causal Sliding Array Window

Due to the requirement of causality, local real-time processing would be rather complicated if the
commonly used dual window is used. This is because, each time, more than one vector in the local
window alters to make sure that the background data sample vectors in the causal sliding window
only include the same data sample vectors as before. To address this issue, the literature [16] proposes
a local causal sliding array window obtained from stretching out the causal matrix window. The local
causal sliding array window of width w slides along with the data sample vector r,, being processed,
which performs first in and first out. Figure 1 shows the local causal sliding array window at 1,
depicted by dotted lines and the local causal sliding array window at r,, 1 depicted by dashed lines,
where the farthest data sample vector r,_ from r;, in the local causal sliding array window at r;, is
removed from the local causal array window at r,, 1, while the most recent data sample vector r, is
then added to the local causal sliding array window at r;, .

Figure 1. Local causal sliding array windows at r, and r,, ;1.

2.2.2. Local Causal KRX Detector

By using the local causal sliding array window to get background data sample vectors, the LKRXD
can be designed as a local causal KRX detector (LC-KRXD):

SLC—KRXD (b, }) — (krT(n) _ kE(n))TK;Ul(n) (krT(n) — kg(n)) ©)

where 1, is the n'" sample vector currently being processed, and Ky () is called the causal Gram
matrix, which is defined by Ky, () = k(Xew (1), Xw (1)) where Xy, (1) consists of all data sample vectors
included in the local causal sliding array window.

In Equation (9), kf(n) and ka(n) should meet causality as well. Accordingly, they are
represented by

Ne
KT (1) = k{0, X (1)) — (5 22 KO0 0) e, (10)
wi=1
T 1 Nw 1 Nw Nw
A1) = (g L kO X)) — (2 15 L ks v, an
i= i=1j=

where Ny, is the total number of data sample vectors in the local causal sliding array window.
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2.2.3. Local Real-time KRX Detector

As for LC-KRXD, it is quite time-consuming since every component of Equation (9) has to be
recalculated as long as the local causal sliding array window moves. To solve this problem, we develop
a local real-time causal KRX detector (LRTC-KRXD) specified by

FLRTCKRXD, (g, ) — (krT(n) B kg(n))TK;l(n) (krT(n) - kﬂ(n)) (12)

Employing the Gaussian RBF kernel function denoted by Equation (8), the Gram matrix in the
local causal sliding array window at r, is expressed as

k(anw, anw) k(xn,w, Xn—w+1) ce k(xn,w, Xn—l)
k(x n— +1,Xn7w) k(xnf +1, Xn— u+1) e k(xn7w+1/ anl)
Kw(n) = k(xn,zwxn,zu) = e . “ . | . = Z; ;ln (13)
n n
k(X”,l,Xn_w) k(xnflz xnwarl) te k(xnflz xnfl)

where X, is represented by (Xn—w, Xp—w+1, - - - Xn—1) that involves all of the data sample vectors in
the local causal sliding array window at 1y, v, is given by v, = k(Xy—w, Xn—w), and 1, is a vector
obtained by n,, = [k(Xn—w, Xn—w+1), kK(Xn—w, Xn—w+2), - -+ , k(Xn—w, Xy—1)]. Similarly, the Gram matrix
in the local causal sliding array window at r,, 1 1 is written as

k(Xp—wi1, Xn—wt1)  kKXn—wi1, Xn—wy2) - kK(Xn—wi1,Xn)
k(xn7w+2/ Xn—w+1) k(xn7w+2/ X717w+2) e k(xn7w+2/ Xn) K,BT
Kw(n + 1) = k(Xn+1,ern+1,w) = . . . = Bn in (14)
: : : nAn
F(Xn, Xn—w+1) ke (xn, Xp—w+2) cee k(xu, xn)

where X114 is represented by (X, —z+1, Xn—w+2, - - - Xn) involving all of the data sample vectors in the
local causal sliding array window at 1,11, x» is denoted by x, = k(x»,x,), and B,, is a vector derived
from B, = [k(xnr Xn—wt1), K(Xn, Xn—wy2), -+ k(Xu, xnfl)]-

The matrix inversion lemma [28,29] is a favored technique to simplify the matrix inversion process
and is expressed by

_ _ _ -1 _ _ _ -1
R,' + R, 'Up (P — ViR, 'Up) ™ ViR, —R,Up(Py — ViR, 1U,)

-1
R71 _ R U _
1 - _ -1 _ _ -1

mt —(Pp — VuR;,'U,) VR (P, — VR, 1U,)

VP

} (15)

¥n in Equation (13) can be regarded as a 1 x 1 matrix. So if we let 7, = Ry, ng =V, n, =U,
and K,, = P,;, then K;,!(n) can be denoted as

-1 B B B ) B B - )
K (n) = [ Ti M } _ { Yo' M (K =y 11nn) Myt =7 (K =l 1111,1) } (16)
w - T - _ _ _ -~ _
M Ka 7(K71 - ﬂZ’Yn 11]11) nng ! (Kﬂ - ﬂE’Yn 11]11)

Next, we would like to speed up the calculation of K ! by deriving the recursive formula between
K;!(n) and K;!(n + 1), which is one of the main contributions in this paper. Let

_ ab
Ky'(n) = [ bTD ] (17)
According to Equations (16) and (17), we have
_ -1
(Ky =75 'n,) =D (18)

_ _ _ -1
K, T= (D ! + T 1115%) (19)
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In order to efficiently calculate K;;! from the known D and avoid an inverse operation, we use
the Woodbury matrix identity [30,31] given by
O lyz'o™!
14+ 2zTO 1y

(0O+ sz)_1 =01 -

(20)

By virtue of Equation (20), if we also let D~ L=0,9,;'nl = y,and n,, = z", then K, ! can be
transformed into L T

Yn Dnyn,D (21)

K,'=D- =
1+, n,Dn}

n
We employ Equation (20) again to derive K, !(n + 1). x» in Equation (14) can also be treated as
al x 1matrix. Let K, = Ry, B, = Vi, [3,{ = Uy, and x; = Py, then K;' (n + 1) is finally written as

Kbl | [ K KB o BKBT) K KB (8K BT (22)
B —(n — BaK; 1B T BLK; ! (tn — BuK; 1B

Kyl(n+1) = {

Since xn — B,K; !Bl is a constant, there is no inverse operation of the matrix existing in
Equation (22).
The proposed fast formula for updating Kg,!(n + 1) from K, (1) consists of the following steps:

Step 1 Obtain D from K3 (n):
D=K,'(n)(2:w,2:w)
Step 2 Derive K, ! by D:
- n lD Z nD
K,'=D- 117;‘:]1;11)115
Step 3 Update K3, ! (1 + 1) through K;; !:

-1 -1
KB K, U+ KB (xn — BaKy 1BY) BuKy D —KG 1B (xn — BAK, 1BY)

Kpl(n+1) = a _
B Xn —(tn — BuK;1BD) B K (tn — BoK;1BT)

. . T .
To save computing time further, kg, (n + 1) can be recursively updated

1 n—1 1 n—1 n—1

kg(”) = (= Z k(xi, Xn,w)) — (72 Z Z k(xirxj))llxn =K1 (n) — k2 (1) 11n (23)

Witn—w u)i:nfwj:nfw

n n n

kg(n+1) = (% r k(xirxn+l,w) - (132 X r k(xi/xj))llxn :kml(nJrl) *ka(nJrl)llxn (24)

i=n—w+1 i=n—w+1j=n—w+1

1 n—1 1 n—1 1 n—1 1 n—1
kml(”) =w. x k(xirxn,w) = lw. Y k(xi/xl’l*w)l w . b k(xi/Xn,Z:w) = 5(_ x Nin—w Jr'Y)rkmf (25)
i=n—w i=n—w i=n—w i=n—w
1 v 1 v 1 v
kim(n+1) =5 Z k(xi Xnt1,0) = |5 L ki Xut1pw-1) 5 L k(xi,%n)
i=n—w+1 i=n—w+1 i=n—w+1
(26)
= |: kaf n+8) %( Z Bint1+X)
i=n—w+1
1 ¢ 1 1
kmp(n+1) = w2 . r k(Xi,x]‘) = 7. Z Z k(x;,x ) Wz, Z k(Xn—w, ])
i=n—w+1j=n— w+1 i=n—w j=n—w j=n—w
n—1 n n
7# Y k(xz‘/ anw) + # Y k(xn/ x]) + # Y k(XZ‘, xn) + k(xnfwr anw) - k(xn/ Xn) (27)
i=n—w j=n—w+1 i=n—w+1
n—1
= w%(wzkmz(”) - 2‘ r Hin—w+2 Z ,Bt n Y —=X)

I=n—w i=n—w+1
where X,, 5., denotes the data sample matrix with the vectors ranging from 2 to w'" in the local causal sliding
array window at r,;, and X, {1 1.y—1 denotes the data sample matrix with the vectors ranging from 1t to (w — 1)“1
in the local causal sliding array window at 1, 11. According to k1 (1), we can obtain k¢, and further, k1 (1 + 1)
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can be derived by Equation (26). Using Equation (27), k(1 + 1) can be updated by k2 (1). After obtaining
kp1(n+1)and kyp(n+1), k£ (n + 1) can be updated recursively by Equation (24).

This paper is inspired by the real-time RX algorithm in the literature [15,16], but it should be noted that both
algorithms are different in terms of the original algorithms used to design real-time frames and the processing
styles. The real-time RX algorithm is developed based on the RX algorithm, while the proposed algorithm is
derived according to the nonlinear version of the RX algorithm, which is more complicated but has a higher
detection accuracy. In the recursive process of the real-time RX algorithm, Woodbury matrix identity is used to
directly update the inverse covariance matrix. In contrast, the accelerated processing of the proposed algorithm is
intricate. The matrix inversion lemma must be associated with the Woodbury matrix identity, in this case, K;; I can
be derived through D. After that, by using the matrix inversion lemma again, K3 (1 + 1) is finally updated
from K;; 1. Moreover, the estimated mean of the background data in the kernel space is also recursive in this paper.

3. Description of Hyperspectral Datasets

3.1. Pavia University Dataset

The Pavia University (PaviaU) data were obtained from the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor during a flight over Pavia University, northern Italy. They consist of 115 bands ranging from 430
to 860 nm with a 4 nm spectral resolution. The space resolution is approximately 1.3 m. The dataset contains
610 x 340 pixels in the image scene shown in Figure 2. In this study, a subarea shown in Figure 3a was segmented
from the initial larger image to conduct experiments. The subset contains 260 x 110 pixels and 103 bands after
removing low signal-to-noise ratio (SNR) bands. The ground-truth map is displayed in Figure 3b. Its detailed
parameters are presented in Table 1.

Table 1. Parameters of the Pavia University hyperspectral dataset. ROSIS is the Reflective Optics
System Imaging Spectrometer.

Sensor ROSIS
Image size 260 x 110
Gray range 0-8000
Wavelength 0.43-0.86 um

Spectral resolution 4nm
Spatial resolution 1.3 m
Available bands 103
Location Pavia University

Figure 2. Pavia University hyperspectral image scene.
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() (b)

Figure 3. (a) The smaller image scene; (b) ground truth of the smaller image scene.

3.2. Pavia Center Dataset

The Pavia Center hyperspectral dataset, acquired by the ROSIS sensor, covers the Pavia Center in northern
Italy shown in Figure 4. It is a 115-band image with a size of 1096 x 715 pixels, but only 102 bands were used for
experiments after removing low signal-to-noise ratio bands. In this experiment, a smaller subset with a size of
115 x 115 pixels, shown in Figure 5a, was segmented from the initial larger image. Its parameters are presented
in Table 2. The smaller image constitutes the background, including a bridge, water and shadows, and anomalies
representing vehicles on the bridge, which are shown in Figure 5b.

Figure 4. Pavia Center hyperspectral image scene.
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(a) (b)
Figure 5. (a) The smaller image scene; (b) ground truth of the smaller image scene.

Table 2. Parameters of the Pavia Center hyperspectral dataset.

Sensor ROSIS
Image size 115 x 115
Gray range 0-8000
Wavelength 0.43-0.86 um

Spectral resolution 4 nm
Spatial resolution 1.3m
Available bands 102
Location Pavia Center

3.3. San Diego Airport Dataset

The San Diego Airport dataset was collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral spectrometer over the area of the San Diego airport and the image is shown in Figure 6. It contains
400 x 400 pixels and 224 bands, 126 of which were used for experiments. A smaller dataset shown in Figure 7a
was segmented from the larger image, and its ground truth is given by Figure 7b. Table 3 presents the parameters

of the smaller dataset.

Figure 6. San Diego Airport hyperspectral image scene.
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(b)

Figure 7. (a) The smaller image scene; (b) ground truth of the smaller image scene.

Table 3. Parameters of the San Diego Airport hyperspectral dataset. AVIRIS is the Airborne
Visible/Infrared Imaging Spectrometer.

Sensor AVIRIS
Image size 51 x 50
Gray range 0-10000

Wavelength 0.4-1.8 um
Spectral resolution 10 nm
Spatial resolution 35m
Available bands 126
Location San Diego Airport

4. Experimental Results

In this section, three sets of real hyperspectral datasets, collected by different imaging sensors, are used to
perform experimental evaluation for the proposed algorithm.

4.1. Optimum Kernel Parameter on the LRTC-KRXD

This group of experiments explores the optimum Gaussian radial basis function kernel parameter c on the
LRTC-KRXD. In the experiments, by virtue of cross-validation, the local causal sliding window width in the
LRTC-KRXD on the PaviaU dataset, Pavia Center dataset, and San Diego Airport dataset is manually set to be 70,
40, and 70, respectively.

The receiver operating characteristics (ROC) curve representing detection probability versus false-alarm
rates is a strong technique to present quantitative performance analysis. Area under the ROC curve (AUC) is also
used to judge the performance of hyperspectral detection. Figure 8 gives the different AUC of the LRTC-KRXD
with changing kernel parameter c for all three hyperspectral images. For the PaviaU dataset, the AUC is the
largest when c is equal to 100. For the Pavia Center and San Diego Airport datasets, however, the LRTC-KRXD
shows the best AUC when c is up to 10. From Figure 8, the AUC for all three datasets rises rapidly between
c=10"'and ¢ = 1, then they keep basically smooth until ¢ = 106, which is followed by a steady drop before
¢ = 107. Therefore, the kernel parameter c is not sensitive to the LRTC-KRXD in some very long numerical range.
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Figure 8. The area under the cure (AUC) of the local real-time causal kernel RX detector (LRTC-KRXD)

with the changing kernel parameter ¢ on the Pavia University (PaviaU) dataset, Pavia Center dataset,
and San Diego Airport dataset.

4.2. Effects of the Local Causal Sliding Array Window Width on the LRTC-KRXD

This group of experiments investigates the performance sensitivity of the LRTC-KRXD in terms of local
causal sliding array window width. In these experiments, the local causal sliding array window width in
the LRTC-KRXD on three images is manually set from 10 to 130 with steps of 30. By using cross-validation,
the parameter c of the Gaussian radial basis function kernel in LRTC-KRXD is set at 100 on the PaviaU dataset
and 10 on both the Pavia Center and San Diego Airport datasets.

Figure 9 shows the ROC curves of the LRTC-KRXD on three images using changing local causal sliding
array window width w between 10 and 130. For the PaviaU dataset in Figure 9a, the detection effect is poor using
the local causal sliding array window width w = 10, but the detection performance starts to improve as the local
causal sliding window width grows. When it is greater or equal to w = 70, the local causal sliding array window
detection performances are comparable. For the Pavia Center dataset in Figure 9b, the ROC curve result with the

local causal sliding array window width w = 10 performs the worst, however, the detection accuracy increases
when the local causal sliding window width rises. When w = 40, their ROC curves are similar. For the San Diego

Airport dataset in Figure 9c, the detection performance improves as the local causal sliding window width w rises
from 10 to 70. When it continues to grow, the ROC curve result remains basically unchanged.

Probability of detection

i i i
00 0.002 0.004 0.006
False alarm rate

(a)

i
0.008 0.01

Figure 9. Cont.
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Figure 9. The receiver operating characteristics (ROC) curves of the LRTC-KRXD with changing local
causal sliding array window width on the (a) PaviaU dataset; (b) Pavia Center dataset; (c) San Diego
Airport dataset.

Figure 10 reveals the grayscale results of the above experiments. When the local causal sliding window
width w = 10, shown in Figure 10a, f, and k, there is a bad detection effect on the pixels next to the large anomaly
in the direction of the window. This is because at those positions, with the small local causal sliding array window
width, backgrounds are easily corrupted by the anomalies involved in the local causal sliding array window.
As the local causal sliding array window width increases, such phenomena disappear gradually since the number
of background pixels in the local causal sliding array window grows. When the local causal sliding array window
widths of the LRTC-KRXD on the PaviaU, Pavia Center, and San Diego Airport images are greater or equal to
w =70, w =40, or w = 70, respectively, their own grayscale outputs are similar by visual inspection.

b) w =40

PaviaU Dataset

(c)w=70 (d) w =100 ) w =130

(@) w=10

Figure 10. Cont.
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Figure 10. The grayscale results of the LRTC-KRXD with the changing local causal sliding array
window width on the PaviaU, Pavia Center, and San Diego Airport datasets.

4.3. Detection Performance of the LRTC-KRXD

These experiments explore the detection performance of the LRTC-KRXD. We made comparisons between the
LRTC-KRXD and three other anomaly detectors on three hyperspectral datasets. The other three anomaly detectors
included two real-time detectors (GRTC-RXD and LRTC-RXD) and one non-real-time detector (LKRXD). In these
experiments, for the LRTC-KRXD, by cross-validation, the parameter c of Gaussian radial basis function kernel is
set to 100 on the PaviaU dataset and to 10 on both the Pavia Center dataset and the San Diego Airport dataset.
The local causal sliding array window width, w, on the PaviaU dataset and San Diego Airport dataset is set to 70,
and the local causal sliding array window width, w, on the Pavia Center dataset is set to 40. For the LRTC-RXD,
the local causal sliding array window width, w, on the PaviaU, Pavia Center, and San Diego Airport datasets is set
to 400, 300, and 300, respectively, to obtain the best, stable outputs. For the LKRXD, by cross-validation, the set of
the kernel parameter c is the same as the LRTC-KRXD on all three images, but the size of the inner window and
outer window in the LKRXD is set to 5 and 11, respectively.

Figure 11 shows the results of the ROC curves from all three real-time anomaly detectors and one
non-real-time anomaly detector on the three HSI datasets. For the PaviaU dataset shown in Figure 11a,
the LRTC-KRXD and the LKRXD are similar throughout the curves, and compared to the GRTC-RXD and
the LRTC-RXD, they show a much higher detection probability. For the Pavia Center dataset shown in Figure 11b,
the ROC curve results of the LRTC-KRXD and the LKRXD are comparable, but they far outperform those of
the GRTC-RXD and the LRTC-RXD. For the San Diego Airport dataset, similar detection effects related to the
LRTC-KRXD and the LKRXD are shown in Figure 11c, and these detection effects are better than those of the
GRTC-RXD and the LRTC-RXD. This result is because the recursion process of the LRTC-KRXD is derived from
the LKRXD that mines nonlinear information by a kernel trick, and there is no information leaked out in this
process. Some small differences occur between the detection results of the LRTC-KRXD and the LKRXD because
the pseudoinverse of the Gram matrix generally needs to be implemented when each pixel is detected in the
LKRXD [32], while this is avoided by recursion in the LRTC-KRXD; the local dual window is used in the LKRXD
while the local causal sliding array window is used for the LRTC-KRXD.
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Figure 11. The ROC curves of four anomaly detectors on (a) PaviaU dataset; (b) Pavia Center dataset;
(c) San Diego Airport dataset.

Figure 12 presents the grayscale outputs of ther GRTC-RXD, LRTC-RXD, LKRXD and LRTC-KRXD on
three hyperspectral images. For the PaviaU dataset and the Pavia Center dataset, by visual inspection of
Figure 12¢,d,g h, there are no appreciable differences, but they clearly show better grayscale results compared
with that of Figure 12a,b,e,f. For the San Diego Airport dataset, better background suppression is shown in the
LRTC-KRXD and the LKRXD. Three-dimensional (3D) plots are used to verify the detailed differences among the
GRTC-RXD, LRTC-RXD, LKRXD, and LRTC-KRXD on the three hyperspectral datasets. As we can see from the
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3D plots shown in Figure 13, the detection results of the LKRXD and the LRTC-KRXD are comparable with better
detection performances than those of the GRTC-RXD and the LRTC-RXD on both the PaviaU dataset and Pavia
Center dataset. It is also clear in Figure 13¢,fi 1 that the 3D plots of the LRTC-KRXD and the LKRXD show the
robust target clusters.

PaviaU dataset

(a) GRTC-RXD (b) LRTC-RXD (c) LKRXD (d) LRTC-KRXD
Pavia Center dataset

(e) GRTC-RXD (f) LRTC-RXD (j) LKRXD (h) LRTC-KRXD
San Diego Airport dataset

(i) GRTC-RXD (j) LRTC-RXD (k) LKRXD (1) LRTC-KRXD

Figure 12. (a-1) The grayscale results of the global real-time causal RX detector (GRTC-RXD),
local real-time causal RX detector (LRTC-RXD), local kernel RX detector (LKRXD), and LRTC-KRXD
on the PaviaU, Pavia Center, and San Diego Airport datasets.

PaviaU dataset Pavia Center dataset San Diego Airport dataset

2000 i 300

1500

1200
150 1000 -‘150
100 100

500
50 50
0 . nasm
] 100 100 0 50"50 0
(a) GRTC-RXD (b) GRTC-RXD (c) GRTC-RXD

Figure 13. Cont.
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50'50

(j) LRTC-KRXD (k LRTC-KRXD (1) LRTC-KRXD

Figure 13. (a-1) The 3D plots of the GRTC-RXD, LRTC-RXD, LKRXD, and LRTC-KRXD on the PaviaU,
Pavia Center, and San Diego Airport datasets.

Figure 14 shows the progressive detection procedures of the LRTC-KRXD on the PaviaU, Pavia Center,
and San Diego Airport datasets. By using the local causal sliding array window, anomalies in the hyperspectral
images are detected pixel-by-pixel in real time. In addition, as time moves along, some weak anomalies appear
with various levels of background suppression. For example, on the Pavia Center image, the first three weak

anomalies display clearly in the progressive detection results, but when the strong anomaly is detected later,
these weak anomalies become dim.

PaviaU Dataset

(a) (b) (©)

Figure 14. Cont.
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Pavia Center Dataset

(f) (8 (h) (®) @

San Diego Airport Dataset

(k) M (m)

Figure 14. Progressive detection procedures of the LRTC-KRXD on three datasets. (a,f,k) 1/5 detection
result; (b,g,1) 2/5 detection result; (c,h,m) 3/5 detection result; (d,i,n) 4/5 detection result; (e,j,0) full
detection result.

(n)

4.4. Computational Analysis of the LRTC-KRXD

Both computational complexity and computing time are significant indicators to measure the performance
of anomaly detection, especially real-time processing. The computational complexity of the LKRX algorithm
originates in the components of the LKRX formula specified by Equation (7), including the current pixel in the
feature space krT , the background data sample mean kg, the Gram matrix K, and its inversion K;l. First, krT is of
order O(w - I) where w is the size of the local causal sliding array window and ! is the number of bands. It is not
really possible to improve it since r in the equation of k] is not constant when the local sliding array window
moves. Second, for kg, the multiplicative order is approximately O(w) without recursive update processing,
while using the recursive update equation given by Equation (23), the multiplicative order is close to zero. Third,
the multiplicative order of Ky, in the LKRXD is O(w? - 1) + O(w? - e") (m € R), while in the the LRTC-KRX
detector, due to the usage of recursive processing, the multiplicative order is not defined (“n.d.” entries in Table 4).
Lastly, the multiplicative order of K is reduced to O(w?) from O(w?) by virtue of the matrix inversion lemma
and Woodbury matrix identity. The more detailed computational complexity is shown in Table 4, where we can
see that O(w?®) and O(w? - 1) in the multiplicative order are not involved in LRTC-KRX detection, which reduces
much of the computational complexity and cuts down on the massive computing time.

The computer environments used for the experiments were 64-bit operating systems with Intel(R) Core (TM)
i7-4770K, 3.5 GHz CPU, and 16 GB memory (RAM). All the experiments were conducted five times and averaged
to remove computer error [15,16]. Table 5 shows the total computing time of the LKRXD and the LRTC-KRXD on
three hyperspectral datasets. By using recursive update equations, the total computing time of the LRTC-KRXD is
reduced by at least 44-fold compared to the LKRXD.

Table 4. Computation complexity of four components.

Multiplicative Order Additive Order
Computing Components
LKRXD LRTC-KRXD LKRXD LRTC-KRXD
k! O(w-1) O(w-1) O(w-1) O(w-1)
kg O(w) 0 O(w?) O(w)
Ky O(w?-1) +O(w?-e™)  nd. O(w?-1) n.d.
K;' O(w?) O(«?) O(w?) O(«?)
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Table 5. Processing time for real datasets.

Total Computing Time (Seconds)

Hyperspectral Data Speedu
YPersp LKRXD LRTC-KRXD P P
PaviaU dataset 560.109 11.398 49.141
Pavia Center dataset 247.324 5.030 49.170
San Diego Airport dataset 50.267 1.039 48.380

5. Discussion

In the experiment, the effect of kernel parameter ¢ on the LRTC-KRXD was analyzed. It is clear in Figure 1
that if ¢ is less than 1 or larger than 10° the AUC descends immediately for three datasets. With a wide range
(e.g., from 10 to 10°) of kernel parameter, the AUC can reach a very high value and basically remain stable.
Therefore, it can be concluded that the Gaussian radial basis function kernel parameter c is not sensitive to the
LRTC-KRXD in some very long numerical range.

The effect of the local causal sliding window width on real-time detectors was depicted. The results from
Figures 9 and 10 indicate that the best detection performance of the LRTC-KRXD is obtained when only a very
small local causal sliding window width (less than 100) is utilized. By contrast, the LRTC-RXD needs hundreds
of pixels to form the local background information to realize a better detection performance [27]. Due to the
requirement of causality, the pixels in the first local causal sliding window are not processed, which implies
that the anomalous targets will be missed when they are involved in the initial local causal sliding window.
Since the LRTC-KRXD uses fewer pixels than the LRTC-RXD to constitute the local background information,
the LRTC-KRXD has a lower probability of missing targets.

In the experiment, the proposed the LRTC-KRXD was also compared with its original algorithm (LKRXD)
and two other widely used algorithms (GRTX-RXD and LRTC-RXD). Experimental results on three real data sets
illustrate the advantage of the proposed LRTC-KRXD method. The LRTC-KRXD possesses a comparable detection
output with the KRXD but higher detection accuracy than the GRTX-RXD and the LRTC-RXD (Figures 11 and 12).
For computational complexity and processing time, the results from Tables 4 and 5 show that the LRTC-KRXD is
very computationally efficient. This implies that the LRTC-KRXD achieves a breakthrough in terms of detection
accuracy in real-time anomaly detection. Although the LRTC-KRXD gets an over 44-fold speedup, it is sometimes
still limited for practical applications. GPU can be taken into account to speed up the processing further using its
parallel processing capability.

In the real-time detectors based on the RX algorithm, the size of covariance and the autocorrelation matrix
is dependent on the number of bands. So as the number of bands grows, the computational complexity and
processing time will increase considerably. For the LRTC-KRXD, however, the Gram matrix is determined by the
number of pixels in the local causal sliding window, which means the band growth does not have a great influence
on the LRTC-KRXD. This finding can be considered as an encouraging result since modern hyperspectral sensors
are characterized by a very high spectral resolution, thus acquiring data on a large number of contiguous bands.

A real-time anomaly detector is implemented pixel-by-pixel, which means that the detection result display
of the current pixel is not impacted by subsequent detection results. Accordingly, some weak anomalies detected
early may be shown in the detection result (Figure 14). However, this phenomenon cannot appear in non-real-time
anomaly detectors that show the final detected anomalies by performing a one-shot operation.

6. Conclusions

Real-time anomaly detection has promising prospective applications and significant practical value.
Most real-time anomaly detection algorithms are designed based on the RX detector. However, the real-time RX
detector has limitations with the usually undesirable detection output. Therefore, this paper focuses on this issue
and develops a new real-time processing framework based on the KRX detector. The kernel RX algorithm has
better detection accuracy, but the computation of the Gram matrix and its inverse is computationally inefficient.
By taking advantage of the matrix inversion lemma and Woodbury matrix identity, the computation can be
recursively updated without repeated calculation. As a result, the kernel RX algorithm complexity is greatly
reduced and computing time becomes very short. Our experimental results, conducted using three hyperspectral
datasets, indicate that the proposed real-time KRX detector possesses comparable detection accuracy with the
original KRX algorithm but with much shorter processing time.
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In general, hyperspectral imaging has three data acquisition formats: band interleaved by pixels (BIP) that
collects data pixel-by-pixel, band sequential (BSQ) that collects data band-by-band, and band interleaved by
lines (BIL) that collects data line-by-line. This paper is designed according to BIP. So both BSQ and BIL can be
considered for the real-time KRX implementation in the future. In addition, designing some other computationally
efficient methods, for example, using GPU or additional matrix simplification/efficiencies to speed up real-time
processing can also be considered for future work.
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