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Abstract: Ethiopia is a largely agrarian country with nearly 85% of its employment coming from
agriculture. Nevertheless, it is not known how much land is under cultivation. Mapping land cover
at finer resolution and global scales has been particularly difficult in Ethiopia. The study area falls in
a region of high mapping complexity with environmental challenges which require higher quality
maps. Here, remote sensing is used to classify a large area of the central and northwestern highlands
into eight broad land cover classes that comprise agriculture, grassland, woodland/shrub, forest,
bare ground, urban/impervious surfaces, water, and seasonal water/marsh areas. We use data from
Landsat spectral bands from 2000 to 2011, the Normalized Difference Vegetation Index (NDVI) and
its temporal mean and variance, together with a digital elevation model, all at 30-m spatial resolution,
as inputs to a supervised classifier. A Support Vector Machines algorithm (SVM) was chosen to
deal with the size, variability and non-parametric nature of these data stacks. In post-processing,
an image segmentation algorithm with a minimum mapping unit of about 0.5 hectares was used
to convert per pixel classification results into an object based final map. Although the reliability of
the map is modest, its overall accuracy is 55%—encouraging results for the accuracy of agricultural
uses at 85% suggest that these methods do offer great utility. Confusion among grassland, woodland
and barren categories reflects the difficulty of classifying savannah landscapes, especially in east
central Africa with monsoonal-driven rainfall patterns where the ground is obstructed by clouds
for significant periods of time. Our analysis also points out the need for high quality reference data.
Further, topographic analysis of the agriculture class suggests there is a significant amount of sloping
land under cultivation. These results are important for future research and environmental monitoring
in agricultural land use, soil erosion, and crop modeling of the Abay basin.
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1. Introduction

The Ethiopian Highlands provide the resource base for millions of people from the headwaters of
the Blue Nile (Abay) to Egypt’s Delta. In Ethiopia, the mountains are blanketed with rich soil and are
heavily cultivated from top to bottom. By intercepting the precipitation associated with the monsoon
winds of the Indian Ocean, the highlands form the headwaters of the Blue Nile. With an expanding
population and the associated intensive land use practices, the highlands are also increasingly under
pressure such that land degradation in the form of erosion and topsoil loss is now widespread. Indeed,
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extensive land degradation, combined with climate variability, is often implicated in the food shortages
experienced in Ethiopia in the 1970s and 1980s [1]. Soil erosion that results in land degradation also
threatens water quality and quantity in downstream countries by increasing sedimentation in low-lying
areas of Sudan as well as accelerating the siltation of the great Aswan Dam in Egypt. With projected
increases in population and changes in climate, a crisis in the highlands is looming and requires
quantitative and reliable environmental assessments of the landscape. Land cover data and cropland
extent are essential for this assessment, especially in regions facing food security challenges [2,3].
However, despite this pressing need for environmental evaluation, monitoring and simulation, there
are few datasets of high quality observations on the status of the landscape in this region that could
serve as input to these applications, at the spatial resolution of the smallholder farming livelihood.
This follows the general trend that even important areas for mapping do not receive sufficient attention
when they are located in difficult-to-map areas [4].

There are global and regional land cover products that encompass Ethiopia and East Africa for
some time. Africover provides 30 m spatial resolution and uses the comprehensive UN Land Cover
Classification System (LCCS), but it is unavailable for Ethiopia [5]. Global Land Cover 2000 (GLC2000)
uses daily observations of Satellite Pour l’Observation de la Terre-4 (SPOT4) VEGETATION sensor and
divides the globe into regions which are classified individually in partnership with regional experts
using unsupervised classification methods. Using LCCS, the detailed land cover categories of the
regional maps are aggregated into more general types for production of a global land cover map all
with a spatial resolution of 1 km [6]. Also at 1-km resolution, the Collection 4 moderate-resolution
imaging spectroradiometer (MODIS) Global Land Cover Map uses a supervised classification with a
boosted decision tree and maintains a database of geographically dispersed, representative sites for
each land cover class. It immediately provided improved information compared to AVHRR derived
land cover products [7]. Then, Collection 5 of MODIS Land Cover upgraded the input data and the
ensemble decision tree algorithm used to classify those data to produce an improved map at higher
spatial resolution (500 m) [8]. Comparisons of the 1 km resolution global land cover products have
found broad agreement over much of the globe. Challenges remain in the areas of disagreement such
as mixed covers, savannah and shrublands leading to the conclusion that improving mapping of
heterogeneous landscapes is of paramount importance [9,10].

More recently, a global, Landsat-based, 30 m spatial resolution product called Finer Resolution
and Monitoring of Global Land Cover (FROM-GLC) has been produced [11]. This land cover map
was developed by first testing four classifiers, SVM, Random Forest, Maximum Likelihood Classifier
and a decision tree and using Landsat TM and ETM+ as input spectral data [11]. In a follow-up study,
using Improved FROM-GLC, this map was further improved by the addition of MODIS-derived
EVI, monthly climate data, a digital elevation model, and soil-water status as well as the use of a
segmentation algorithm [12]. The whole map, but especially the cropland class, benefited from the
addition of greater temporal information. This new 30-m resolution map is a boon to environmental
monitoring applications but it still experiences some difficulty with the heterogeneous landscapes of
Africa, and Ethiopia has among the lowest accuracy within the map [11]. It is this specific deficiency
this study seeks to address.

Significant work has also focused on understanding the distribution of global cropland and,
some of it, leverages the land cover products detailed above. Comparing MODIS land cover and
GLC2000 with regards to cropland, MODIS estimates of crops tend to underestimate total agricultural
area whereas GLC-2000 tends to overestimate cropping area [13]. Using MODIS data, cropland was
mapped globally using a probability thresholding technique per country in combination with national
agricultural statistics. The map produced at 250 m was generally successful in areas of intensive
corn and soybean production but challenged in areas of lower agricultural intensity like Africa [14].
For sub-Saharan Africa, a map of crops and no crops was created using GLC2000, MODIS Land
Cover, GlobCover, MODIS Crop Likelihood and AfriCover and a synergy approach which ranked
the land cover products to give a confidence score per pixel which was then combined with national
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and sub-national statistics. It achieved high overall accuracy for the map at >80% but also errors of
omission at ~60% and errors of commission at ~50% for the crop class at a 1-km pixel size [15]. Very
recently, a cropland mask for Africa was created at 250-m resolution by combining results from various
land cover products including Africover as well as national and sub-National land cover maps in some
areas. The results were judged to be an improvement from the global crop mask and African crop
mask mentioned above [16].

Many of the state-of-the-art techniques from large scale global and regional land cover mapping
have also been used along with other remote sensing tools and methods in land use and land
cover change studies addressing the difficulty of mapping specific heterogeneous and smallholder
agricultural landscapes like those of the Ethiopian highlands. One land cover study which attempts to
map cropping areas of central Ethiopia achieved overall accuracy of 55%–74% for its agricultural classes
that were differentiated based on intensity of cropping by supplementing wide area use of Landsat TM
data with limited area use of 1-m resolution IKONOS imagery [17]. In a single district of Zimbabwe,
an area of about 2000 km2, land cover mapping through a combined method of unsupervised and
supervised classification schemes achieved 85% accuracy including within agriculture but much of
that is large-scale commercial agriculture [18]. A dense time stack of imagery for a single year coupled
with phenological curves fed into a decision tree was important in discerning irrigated from rainfed
agriculture in West Africa, but there was still difficulty in separating rainfed agriculture from natural
vegetation in the heterogeneous smallholder landscape [19]. These authors point to the need for greater
temporal information and the utility of machine learning algorithms combined with other ancillary
datasets as the next steps towards addressing these challenges. Topographic information proved useful
for land cover change assessment in a difficult mixed wetland and smallholder landscape of Uganda.
By adding a digital elevation model (DEM) and slope from 90 m Shuttle Radar Topography Mission
(SRTM), the authors were better able to understand land use change trends around Kibale National
Park [20]. For a study area in southern Zambia, one study significantly improved on their objective of
identifying cropped areas when they decreased errors of commission by probabilistic reclassification
using a logit model [21]. Most recently, swidden agriculture in Southeast Asia has been mapped with
Landsat 8 and a thresholding strategy using several spectral based indices [22].

The purpose of the research presented here is to document the details of a new land cover map of
high spatial resolution for an area of high mapping complexity and important environmental value,
the Ethiopian highlands. This map is derived from remotely sensed observations and developed in
support of soil erosion, digital soil mapping and crop modeling studies. The method used to develop
the map combine many of the techniques from the studies above in order to address the deficiency of
available, high-quality land cover mapping for these important agricultural highlands. Our goal is
to describe the procedures used to develop this map, its attributes, its reliability, and its applications
for environmental assessment and simulation in the region. In the following sections, we describe
the geographic setting of the highlands, attributes of the remotely sensed data inputs, the mapping
procedure, and the accuracy assessment.

2. Materials and Methods

2.1. Study Area

The Ethiopian Highlands are a rugged mass of mountains covering much of central and northern
Ethiopia. Our study area is located in the northwestern portion of the Highlands in an area bounded
roughly by 8◦–12◦N latitude and 34.5◦–39.5◦E longitude. Our site, an area covering 20,000 km2 to the
north and west of the capital, Addis Ababa, includes wet highlands that reach 4000 m above sea level,
a small portion of the Rift Valley below the Eastern Escarpment at 500 m elevation, and foot slopes
to the highlands in the west all the way to the Ethiopian border with Sudan. The main topographic
feature of the study site is the Choke Mountain Range in the center, which is encircled by the Blue
Nile as it winds southeast from Lake Tana and then heads west toward Sudan (Figure 1). Rainfall in
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the highlands is mainly during the wet season from July to September and is characterized by high
intensity storms. Generally, rainfall varies with altitude and east to west, with typical annual totals
from 400 to 1500 mm with higher totals seen in the west and highest altitudes (>3000 m above sea level
(masl)) and lower totals in the east and in the gorge around Choke Mountain (<1000 masl) [23].
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Figure 1. Location of the study area (shaded) in Ethiopia (inset) that shows the 14 Landsat footprints
(grid) that cover the Abay Basin.

The study area is contained in the Amhara region for the most part, with small portions of
the regions of Oromo, Afar, and Benishangul-Gumuz in the watershed. Rainfed cereal agriculture
dominates the highlands with barley, wheat and teff being among the most important crops. Others
include millet, sorghum, maize, chickpeas and other legumes. Important non-grain crops cultivated in
fields or home gardens are potatoes, garlic, onions, tomatoes, and peppers. The Ethiopian society is
largely agrarian with agriculture accounting for 48% of GDP and 85% of employment [24], but there
are few data on how much land is under cultivation.

Livestock husbandry is an important component of rural livelihoods in the study area. Serpentine
grasslands lie along bottomlands among the grain fields of the agricultural plateaus and valleys of
the highlands. These grazing areas have rules of access typically established at the community level.
Cattle, sheep and goats are the most common ruminants in highland agricultural systems. Additional
fodder that is important in the grazing system includes crop residues and flora found on hill slopes.

The citizens of Amhara are mostly Ethiopian Orthodox Christians; they represent over 95% of
the population according to the last census [25]. The many Ethiopian Orthodox churches that dot the
highlands protect some of the healthiest portions of forest in the study area. Besides these, tree cover
in the highlands is limited to community and individual woodlots (often in Eucalyptus) or inaccessible
areas. Erosion of highland soil is often attributed in part to this lack of tree and shrub cover as well as
overgrazing and the intensity and methods of cultivation [1].



Remote Sens. 2016, 8, 1020 5 of 23

2.2. Data

Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) are
excellent sensors for the project because of their spectral, spatial and temporal coverage. The spectral
bands in red, near infra-red and shortwave infra-red are well suited to identifying vegetative land
covers over large areas. The relatively fine spatial resolution (30 m) allows identification of landscape
features that are critical in further agriculture and other environmental monitoring studies [26].
Additionally, the deep (and free) temporal archive of Landsat imagery is essential for capturing
phenological differences among the various vegetative land cover classes. For instance, agriculture
greens up and dies back in the course of the growing season whereas forest maintains high level of
greenness all year.

Several hundred individual scenes that had been acquired by both Landsat-5 TM and Landsat-7
ETM+ instruments covering a total of 14 individual footprints as part of the second World Reference
System grid were downloaded from the United States Geological Survey (USGS) Earth Explorer system
(Table 1). The image acquisition period covered a wide range from 2000 to 2011. Due to the Scan
Line Corrector (SLC-Off) issue associated with the ETM+ instrument, Landsat 5 images from 2008 to
2011 were preferred when cloud free images were available. Note that the climate of the study area
is dominated by the African monsoon system that leads to persistent cloud cover over a significant
portion of the year. Unfortunately, this is also the period when most crops are grown. To remedy this
issue, we decided to expand the number of years that are included in the study. The rationale behind
using this wide range of dates was to increase the likelihood of having cloud-free images within the
monsoon period. Note that the time period of 10+ years used here could be seen as excessively long
for a static land cover mapping exercise. Nevertheless, as shown in Table 1, the majority of the images
were from the 2008–2011 period, although the time window started in 2000. Often, in order to gather at
least 10 distinct dates of imagery for each path/row, Landsat-5 and Landsat 7 data from 2000 to 2003
were also used. We attempted to find cloud free data from a variety of times of the year for several
years, but generally cloud cover up to about 25% had to be accepted in order to obtain some data from
the rainy season.

Table 1. Number of Landsat Scenes from each date category by path and row.

Landsat Path/Row

Acquisition Dates 168/52 168/53 168/54 169/52 169/53 169/54 170/51 170/52 170/53 170/54 171/51 171/52 171/53 171/54

Wet Season 2008–2011 6 5 4 5 4 4 9 8 8 4 3 5 4 6

Dry Season 2008–2011 4 6 5 8 7 5 6 6 6 4 6 7 3 4

Wet Season 2000–2003 3 3 6 0 0 5 0 0 0 3 5 5 4 3

Dry Season 2000–2003 7 5 10 2 0 7 0 0 0 7 6 7 7 4

Total Scenes 20 19 25 15 11 21 15 14 1 18 20 24 18 17

The second source of data was a 30-m spatial resolution DEM derived from the Advanced
Spaceborne Thermal Emission Radiometer (ASTER) observations [27]. The DEM dataset provided
an important non-spectral input for this classification by characterizing elevation and slope-related
landscape variability, particularly in two classes of interest. In the agriculture class, crop types are
expected to vary with elevation as well as crop calendar. In dryer lowlands, grassy areas may green
up only for a brief period during and immediately after the wet season, causing them to be spectrally
similar to grain crops on higher plateaus. Woody vegetation varies with rainfall, which changes with
elevation, but at the highest elevations woody cover gives way to grassland. By adding the DEM, the
classifier was enabled to discriminate between some classes and aggregate within a varied class. In
addition, slope information was derived from the DEM, which helped improve separability between
classes. For example, spectral discrimination among the grassland, agriculture, and wooded categories
in Ethiopian highlands is often very difficult. However, since Ethiopian law bans cultivation on slopes
greater than 20 degrees, the steepest vegetated slopes are expected to be occupied by grasslands rather
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than agricultural cover. The flattest, lowest areas are often ribbons of managed pasture among a sea of
cereal agriculture.

2.3. Pre-Processing

A cloud mask was applied to each image with greater than 5% cloud cover. This mask removed
the clouds and their shadows from the six reflective bands. We used a common cloud detection
algorithm called FMask [28]. Nearly all images, even those acquired in the dry season, had at least 5%
cloud cover. The wet season imagery often exceeded 20% cloud cover, but images with more than 35%
cloud cover were excluded. Our intent was to find enough imagery for each season to have spatial and
temporal coverage in spite of the “holes” created by the masking process.

The Landsat data were not atmospherically corrected, since each footprint was classified
individually using an approach in which all available cloud-screened raw data, together with derived
vegetation index and topographic information, were classified as a single large image stack. The DEM
was trimmed to match each path/row, and finally, these DEM data were used to generate slope based
on a 5 × 5 pixel moving window.

In addition to the raw spectral input, we also derived Normalized Difference Vegetation Indices
(NDVI) from the original Landsat data using the following well-known formula:

NDVI = (NIR − R)/(NIR + R) (1)

where NIR and R correspond to near-infrared and red spectral bands of Landsat, respectively. These
derived NDVI layers for each date were made from the cloud-masked layers.

The logical extreme of the masking process is an area where cloud cover is complete throughout
the image stack, which would lead to a set of pixels with no spectral input to the classifier. In this
case, slope and DEM would be the only nonzero data for determining land cover. In reality, the top of
Choke Mountain itself is the only area with such ubiquitous cloud cover (and it is not complete across
all the dates of imagery). At the top of the mountain, the cover is nearly all grass and slope and DEM
alone would give the classifier reasonable likelihood of making the correct determination.

2.4. Classification Scheme

The most difficult part of classification was dealing with variability and mixed pixels across the
landscape at Landsat’s 30-m resolution. Class labels were chosen to include the major broad categories
of land use and cover. The land cover classes included: agriculture, bare ground, urban/impervious
surfaces, grasslands, marsh and seasonal water, water, wooded/shrub and forest areas. Table 2 outlines
the features of these classes.

Agriculture in the study area most often consists of a patchwork of smallholder plots in valleys
and on mountainsides with very few areas of larger, broad tracts of mechanized production. The
growing season is generally from July to December for the major grain crops. The most important
grains in the highlands are wheat, barley and the indigenous grain teff. At higher elevations, potatoes
are common and often rotated with barley. At lower elevations below the escarpment on the western
edge of the study area, peanuts are common and there is much more maize.

The grassland class covers bottomland pasture of the highlands, herbaceous high mountain
meadows, grassy mountainside and some extensive savannah grasslands of the lowlands. This
includes a wide range of productivity. Rich, well-managed pasture of the highlands and extensive
savannah in the west of the study area may be green for much of the year. On the other hand, on the
foot slopes toward the Afar basin at the eastern edge of the study area, semi-arid grasslands may green
up for only a short period after limited rains. This class also includes areas where up to 30% is covered
in woody plants, shrubs and trees.
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Table 2. Descriptions of the land cover categories used.

Class Description Importance Setting

Agriculture Crop fields In this agricultural society this land use
is one of the most common

Broad valleys and highland
plateaus, some hillslopes

Bare Ground Non-vegetated
open ground

On slopes, these are areas of high runoff
potential and may also signal some
amount of land degradation

Degraded agricultural and pasture
land, eroded hillsides, dry river and
stream beds, desert

Grassland Areas of less than 30%
woody cover

Another common land cover and an
important land cover for
livestock production

Mountaintops, hillslopes,
community pastures, arid lowlands,
grassy savannah

Forest Dense, closed
canopy forest Source of fuel and other forest products

Western humid lowlands and
woodlots and protected areas of
highlands

Seasonal Water
and Marsh

Flat areas with significant
water coverage only part
of the year

Wetlands are sites of ecosystem services
and biodiversity but waterlogged
pasture can also be a symptom of
land degradation

Around reservoirs behind dams,
more flood prone pasture
and floodplain

Urban/Impervious
Surface

Built structures,
pavement, rock

These areas of little infiltration are
essential to understand erosion dynamics

Urban areas and towns, large areas
of exposed rock

Water Areas with continuous
water coverage

Provide resource for drinking, cooking
fishing, cleaning irrigation, recreation Small lakes, larger rivers, reservoirs

Wooded/Shrub

Unclosed canopy forest
and shrublands with
greater than 30% woody
coverage as estimated from
high resolution imagery

The major fuel source in the rural parts
of the study area also stabilizes hillsides

Hillsides, church forests, community
woodlots, woody savannah

The wooded class represents a variety of savannah-like land cover seen in both the highlands
and lowlands. Hillsides and river canyons are often covered in dense shrub and are one example of
this class. The wooded class includes areas that range from >30% shrub or tree cover up to dense,
closed canopy forest seen only in the western lowlands. The forest class, then, is found mostly in the
west region of the study area. The highlands have limited forest cover in protected church forests,
inaccessible areas of the mountains, and community and individual woodlots (often m

The bare ground class contains eroded and degraded hillsides, pasture or farmland, village lands,
some dry riverbeds and arid areas in the east. The urban/impervious surface class encompasses urban
areas, other built structures, and bare rock. Finally, marsh and seasonal water are seen in only a few
locales, near dams and where bottom lands are prone to flooding.

2.5. Classification Inputs

Most stacks of images included more than 100 bands. Most of the bands in the image stacks
contained the raw Digital Number (DN) from Landsat’s reflective bands. The slope and elevation
derived from the digital elevation model were also included in all image stacks. Note that a test case
using both the Top of the Atmosphere (TOA) and Surface Reflectance inputs and derived vegetation
index did not produce improved classification results and hence only DN inputs were used in the
classification process.

Vegetation indices over time can be useful in classifications, so from the set of NDVI images, the
mean and variance at each pixel in those bands were calculated to create a temporally longitudinal
data layer. The result was two additional bands of data, one for mean and one for variance of NDVI
for each Landsat path/row. Finally, all these bands were combined into a single image stack for each
path/row for use by the classifier.

In two cases, path/row 170/52 and 168/52, the image stack was segmented by elevation in order
to run it through the classifier with separate training data for highlands and lowlands. In both of these
areas, an escarpment bisects the scene, separating significantly different agroecologies. An elevation
mask was created for areas greater and less than 1500 masl. The choice of 1500 masl is not an arbitrary
number. Inspection of the DEM at the escarpment boundary shows a sharp change around 1500 m,
and this is in line with Ethiopian agricultural nomenclature for the transition from Kolla (lowlands) to
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Weina Dega (low highlands) [1]. Training data for these two elevation bands were gathered separately
and the classifiers run separately.

2.6. Classification Algorithm

The variability seen in Ethiopia’s agrarian landscape required a classification algorithm equipped
to deal with complex relationships between spectral inputs afforded by satellite data and land surface
conditions while being immune to missing or mislabeled training data. In this research, we chose
a Support Vector Machines (SVM) algorithm for this task. SVM is a supervised, non-parametric
statistical learning technique that has been shown to be appropriate for classification problems with
large dimensionality [29]. The SVM algorithm works by determining, through an iterative learning
process, an optimal linear hyperplane of N-dimensional space that separates the input data into the
predefined classes [30,31].

SVMs are known to be especially well-suited for applications of multispectral remote
sensing [29,31,32]. The support vectors are defined using only a subset of the training data. Those
that lie on the margin are used to define the hyperplane of maximum margin, which allows SVMs to
handle small training sets [33]. SVMs are less data intensive than other machine learning algorithms
such as Artificial Neural Networks, which require additional training data as the input dimensionality
increases [32]. Finally, when input spectral data are not normally distributed, the SVM algorithm
is superior to classifiers such as the Maximum Likelihood Classification, which require a normal
distribution of data [29].

Several approaches have been developed to improve SVM predictive accuracies using
multispectral remote sensing data. These include the soft margin approach and kernel-based learning
that lead to SVM optimization in higher learning space, although the kernel functions often result in
more expensive parameterization [34–36]. Note that while SVMs have been shown to perform well
in spite of a certain level of noise (i.e., mislabeled training data), they are not completely impervious
to outliers [37]. Methods have been developed to mitigate the effects of outliers on SVMs that
include assigning a confidence value that indicates how likely a point is believed to be an outlier, or
through fuzzy-SVMs and weighted-SVMs [37–40]. However, these studies show only incremental
improvements over standard SVM methods [38]. With sufficient ground truth information and large
amounts of satellite data over time, the SVM algorithm should be able to be trained to separate classes
of the Ethiopian landscape in spite of their great inherent variability.

To show that SVMs were the right tool for this classification problem, we further evaluated four
different image classification algorithms, namely the Maximum Likelihood, Decision Trees, Neural
Networks, and K-nearest neighbor algorithm. To achieve this, we picked a footprint that appeared to
have the most diverse set of land cover types and used the training data associated with that footprint
and used a 10-fold cross validation procedure with 75/25 training/testing split. This preliminary
analysis (not shown) confirmed that in Ethiopia’s complex agrarian landscapes, SVMs outperformed
other image classification algorithms. The SVM classifier was able to remove both the striping artifacts
in the final classification results associated with the Landsat 7 SLC-Off issue and the salt-and-pepper
texture common in per pixel classification results. The SVM classification was 5–25 percent higher in
overall accuracy without a significant computation cost. Three reasons contribute to this, which have
already been identified in the literature. First, regardless of the size of the learning sample, not all the
available examples are used in the specification of the hyperplane. This allows SVMs to successfully
handle small training data sets because only a subset of points that lie on the margin—the support
vectors—are used to define the hyperplane [33]. Second, unlike many statistical classifiers, SVMs do
not make prior assumptions on the probability distribution of the data, and this leads to reduction in
classification errors when input data do not conform to a distribution that other statistical qualifiers
may require (e.g., Gaussian). Third, SVM-based classification algorithms have been shown to produce
generalizable models from a set of input training data, eliminating the notion of overfitting [41].



Remote Sens. 2016, 8, 1020 9 of 23

2.7. Training Data

The method for collecting training data was manual interpretation of the original Landsat data,
supplemented by high-resolution imagery available through Google Earth. There is a growing number
of high-resolution images, even covering areas of rural Ethiopia, available in Google Earth. A typical
training data collection exercise takes the following form: first, the analyst displays several dates
of Landsat imagery, usually one or two from the dry season and one or two from the rainy season,
and possibly another one or two that seem particularly helpful for a given class. Displaying many
images allows the analyst to see the phenological changes, which aid in the recognition of different
land cover types. The analyst then finds a target land cover in the scene and confirms that land cover
by cross-referencing the area in Google Earth’s imagery. For homogenous classes like water, only a
couple of hundred pixels per footprint were gathered for training. In some areas of the Landsat scenes,
availability of multiple dates of high resolution data in Google Earth make it easier to interpret the
landscape. For more complicated classes, such as agriculture and wooded categories, 1000–2000 pixels
are chosen in each Landsat path/row with an average total of ~5000 training pixels for each Landsat
scene across the eight land cover classes. These training pixels are gathered for each of the 14 Landsat
scenes individually, and finally the SVM tool is run for each Landsat scene separately.

After running the classifier, results are assessed visually to compare assigned classes to an analyst’s
interpretation of raw data and Google Earth imagery. New training data are gathered via this method
for several iterations of the classification before formal accuracy assessment is undertaken. Once the
analyst is satisfied with the results qualitatively, an image segmentation and accuracy assessment can
be performed (see below). With this objective feedback, the analyst may continue to gather training
data to improve the most troublesome classes. Each Landsat footprint requires somewhere between
four and eight iterations before the classification is considered final.

2.8. Refinement of Wooded Cover Categories

Our preliminary accuracy assessment indicated that there was great confusion between the
wooded/shrub category and forested areas, especially in lower woody covered sites. To remedy this,
we used an independent (i.e., it was not part of SVM classification inputs) continuous forest cover
dataset and a thresholding approach to more accurately separate the shrub category from the forest
category. In particular, we used the Landsat Vegetation Continuous Fields (VCF) tree cover dataset [42]
that contains estimates of the percentage of horizontal ground in each 30 m pixel covered by woody
vegetation greater than 5 m in height. The VCF data were for the 2005 target year and developed from
the NASA/USGS Global Land Survey collection (GLS) of Landsat data [42].

Note that although the Landsat VCF product was designed to capture woody land cover fractions,
we noticed that very low values of VCF observations were required to identify large fractions of actual
woody cover. Specifically, when an independent set of wooded areal fractions data—extracted by
visual examination of a set of randomly located 90 m × 90 m samples—was compared to the VCF data
for the same plots, a small range of VCF values (0%–30%) covered the full range of wooded fractions
(0%–90%). This finding required that we translate the original VCF data to a new range of woody
cover areal fraction data using a logistic fit. The new “scaled” range of VCF values (VCFscaled) then
allowed for better separation of the shrubland category (VCFscaled ≤ 50%) from the forested category
(VCFscaled > 50%). In the final land cover map, the original shrubland and forest categories were then
replaced with this independent two-category dataset derived from the scaled Landsat VCF data.

2.9. Post-Processing—Image Segmentation

Raw outputs from a classification algorithm often contain significant noise when examined on a
pixel-by-pixel basis. To overcome this issue, we employed a post-classification segmentation process
to translate the initial per-pixel results to per-polygon outcomes (segments). To do this, we employed
a segmentation algorithm [43] with a minimum mapping unit of six Landsat pixels (roughly equal
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to 0.5 hectares). Input features to the segmentation tool included a combination of Landsat bands 3,
4, and 5 images (red, NIR, and SWIR) from a set of dates that maximized both the number of valid
observations (defined as free of cloud, cloud shadows, and SLC-Off gaps) and the temporal variability.
These inputs typically included at least one image from the wet season and at least one from the dry
period. Per-pixel classification results were first eroded and dilated, and converted to polygon-based
outputs using a simple plurality (majority) rule. The final polygon-based classified images were more
realistic and devoid of the high frequency noise present in the original per-pixel classification results.
After adding in clouds and cloud shadows that were masked out earlier, each footprint contained a
final land cover map in vector format. Note that the cloud/cloud shadow categories only exist in a
small number of locations and hence they are not seen as a hindrance to the land cover map produced
here. The final fourteen maps were then merged to make a single land cover map covering over 96%
of the Abay Basin.

2.10. Accuracy Assessment

The accuracy of the final map was evaluated using two different methods associated with two
independent validation datasets. In the first method, all categories of the final classification were
assessed for accuracy by using random sampling. Roughly 200 segments per category were chosen.
These segments were then assessed by an analyst through visual inspection of the vector overlays
within Google Earth. In the end, the total number of independent samples was in excess of 1450.
Note that while it would have been desirable to use a ground-validated dataset to assess the accuracy
of the land cover maps, neither the data nor the resources to evaluate the entire area of the study
were available or logistically feasible. In the final step, the independent set of samples was used to
generate a confusion matrix, a standard tool for quantifying map accuracy derived from remotely
sensed data [44].

In the second method, we evaluated only the cropland category against all other categories using
an existing validation set acquired as part of the Geo-Wiki project [45] As part of a global land cover
validation exercise, the Geo-Wiki team assembled a volunteer basis crop/non-crop dataset for all of
Ethiopia in 2012. Each analyst was asked to identify a randomly selected location for crop presence
along with the degree of presence as well as confidence in making a decision. For this evaluation
purpose, we selected roughly equal amounts of crop and non-crop samples covering only the study
area (the Abay Basin) from the large Ethiopia-wide dataset. We then compared the observed (reference)
label of each sample to the map label and summarized the results in a confusion matrix.

3. Results

Visual assessment of the results on the final map (Figure 2) shows that some broad relationships
were well captured by the classification. A general look at the results shows ~35% of the area
(~7,000,000 ha) is occupied by agriculture, which is slightly more than wooded/shrub which covers
33% of the map. Agriculture dominates the highlands of Amhara and Oromo in the center of the map
and becomes sparse in the western lowlands, which are humid but characterized by more extensive
production systems. The patterns of pasture and farmland throughout the agricultural plateau will
be especially important for erosion studies and can be seen in Figures 3 and 4. The farmland in
the highlands is often threaded with tendrils of managed pasture in the flattest and lowest areas
of village territories.
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Figure 2. Final land cover map of the Ethiopian Highlands.

There is more tree and woody cover, as expected, in the west as well as in the gorge of the Abay
River. Forests cover about 18% of the study area. The anomalous church forests were well captured
in the agricultural highlands. These healthy stands of trees are seen throughout the final map as
islands of woodlands within a sea of agriculture. Figure 4 shows some examples. Finally, almost
11% of the area is grasslands, which includes managed pasture of the highlands and grassy savannah
at lower elevations.

Figure 3 also illustrates the utility of the DEM and the use of temporal mean and variance in
NDVI for separating agricultural areas and grasslands from the woody-shrub covered hillsides. The
DEM in the upper left panel (a) shows the flatter plateau approach of the mountainside, which falls
away quickly. The next two panels show green vegetation differences at two times of the year. The
woody shrub maintains some relative greenness in both, whereas the vegetation on the plateau has
more pronounced seasonality. The image in the bottom left (d) is the mean of NDVI at each pixel
over time. The woody vegetation remains the greenest in terms of mean followed by agriculture and
grasslands categories, which are comparable. The next image, variance of NDVI, is most useful for
separating the agricultural lands from the grasslands. Figure 4 also illustrates the utility of using
the variance of NDVI over time to separate agriculture and grasslands. The agriculture category has
much larger variance than the grassland category. These patterns are then reflected in the final map
on the bottom right (f). None of these data layers are likely to have been sufficient to separate these
classes had they not been combined with the others. There is significant overlap of classes among
these rules and patterns, but the ability of the SVM to work with and combine these different sources
of information made the final map possible.
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Figure 3. Set of example images from edge of single location on agricultural plateau. Notice the
grasslands weaving through the farmland in the top half of the images and the shrubland in the gorge
in the bottom half. The bottom edge measures approximately 12 km across. (a) Digital Elevation Model
of an area at the edge of the agricultural plateau (bright is higher); (b) Greenness image before the
growing season; (c) Greenness image during the growing season; (d) Grayscale image showing mean
of NDVI over time (brighter pixel = higher mean); (e) Grayscale image showing variance of NDVI over
time (brighter pixel = higher variance); (f) Final classified map (Yellow = agriculture, Green = grassland,
Brown = wooded).
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Figure 4. Set of example images of farmland with pasture and woodlots. Notice the grasslands weaving
through the agriculture in all images. Bottom edge measures approximately 12 km across. (a) Greenness
image before the growing season in the highlands; (b) Greenness image during the growing season;
(c) Grayscale image showing the variance of NDVI over time for the highland location (brighter
pixel = higher variance); (d) Final classified map of the area (yellow = agriculture; green = grassland;
brown = wooded/shrub, white = bare ground).
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Degraded lands are symptomatic of erosion and overgrazing in these highlands. Areas of both
farmland and pasture that have been degraded have been captured in the bare ground class. Figure 5
shows examples of imagery where farmland and pasture give way to bare ground, shown in white,
and its derived classification.
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Figure 5. Set of example images of fragmented landscape. The bottom edge measures
approximately 600 m across. (a) High resolution image of diverse highland agricultural landscape;
(b) Land cover classification of image at same location (yellow = agriculture; green = grassland;
brown = wooded/shrub, white = bare ground).

Three of the classes in this map can be found across a continuum of savannah landscapes.
In our system, forest gives way to wooded savannah as the canopy opens up, which in turn should be
classified as grassland at less than 30% cover. These savannah transitions from woodier savannah to
grasslands are a challenge to classify since by definition these are mixed pixels.

Descending into the gorge of the Blue Nile, dryer conditions prevail. Vegetation is shrubby to
barren. Figure 6 is imagery from above the Abay gorge from different years. In 2004, during the dry
season in March, it is difficult to discern any agriculture even though a couple of homesteads are
visible. In more recent imagery in December 2011, late in the growing season, it is possible to see
some small fields traced within the thorny scrub. The classifier has labeled these as agriculture and
wooded/shrub. This is emblematic of some of the most difficult areas to classify in the study area
because the low productivity agriculture can be difficult to separate from bare ground with sparse
shrub cover. Also notice that it is likely that agriculture expanded toward the river in the upper left of
the newer image. This illustrates how change is necessarily masked using the greater temporal depth
of imagery, but the full extent of contemporary agriculture is captured.

Figure 7 is taken in the lowland savannah of the western frontier and illustrates how the classifier
managed separation of woodland savannah and grassland savannah. The grassy right side of the
image is dotted with some trees and shrubs but is still open. The left side has more tree cover and some
small stands where the canopy may be closed, but most of it still falls below 30% closure although
there is substantial variability across a continuum of tree cover. The final classification expresses the
major distinctions of grasslands to the right and wooded area to the left, with a small patch of forest at
the bottom and a bit of agriculture at the top.
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Figure 7. Example images of savannah classification. The bottom edge measures approximately 1.3 km 
across. The classifier has managed to capture a transition from grassy to woody savannah. (a) High 
resolution imagery of woody and grassy savannah; (b) Final classification of woody and grassy 
savannah. 

Figure 8 shows part of the peak of Choke Mountain at a point over 3600 masl, which receives 
greater than 1 m of rainfall per year and is characterized by herbaceous groundcover and some 
dense stands of trees [23]. Despite very few cloud-free observations at this peak, the classifier has 
captured and separated this grassy cover from the forest.  

Figure 6. Set of example images of area of Blue Nile Gorge over time. The bottom edge measures
approximately 1.3 km across. (a) High resolution image of bottom of Blue Nile Gorge in the dry season,
2004; (b) The same area in growing season, 2011. Agriculture has expanded; (c) The classification image
showing agriculture in yellow, shrub in dark/green brown and water in blue.
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Figure 7. Example images of savannah classification. The bottom edge measures approximately
1.3 km across. The classifier has managed to capture a transition from grassy to woody savannah.
(a) High resolution imagery of woody and grassy savannah; (b) Final classification of woody
and grassy savannah.

Figure 8 shows part of the peak of Choke Mountain at a point over 3600 masl, which receives
greater than 1 m of rainfall per year and is characterized by herbaceous groundcover and some dense
stands of trees [23]. Despite very few cloud-free observations at this peak, the classifier has captured
and separated this grassy cover from the forest.
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Table 3 shows the confusion matrix that provides an assessment of the map’s accuracy using the 
first sampling approach. Overall accuracy is around 55% with average producer’s accuracy at 64% 

Figure 8. Example images from high elevation area of map. The bottom edge measures approximately
1 km across. The classifier has captured the land cover in an area frequently covered in clouds.
(a) High resolution imagery near peak of Choke Mountain (~3500 masl); (b) Final classification of
forest and grassland.

Figure 9 shows how this agricultural area is separated across some broad slope categories. The
largest category of agricultural land is found where the slope is less than 5%: this totals about 45%,
or more than 3 million hectares. The two middle categories, where slopes increase from 5% to 20%,
combine to hold slightly more farmland than the first category. About 3.2 million hectares of agriculture,
200,000 more than with 5% slope, are found in these two categories. Finally, there is significant land
with slope greater than 20% that is farmed. This is over 5% or about 400,000 hectares. Omitted from
this figure is about 0.1% of agricultural land that was classified on slopes from 40% to 75%. It would
hardly register on this graph but would probably include a higher percentage of error of land cover
classification and slope calculation.
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Table 3 shows the confusion matrix that provides an assessment of the map’s accuracy using the
first sampling approach. Overall accuracy is around 55% with average producer’s accuracy at 64% and
average user’s accuracy at 55%. Within the most common classes in the study and classes of particular
interest in erosion studies (agriculture, wooded, grassland, bare and forest categories), the results
were mixed. The agriculture category had producer’s accuracy of 51% and user’s accuracy of 85%.
The high user’s accuracy for the agriculture class means that a map user can have 85% confidence
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that a segment labeled as agriculture is indeed agriculture. The lower producer’s accuracy means
the model significantly underpredicted agriculture. It often classified agricultural land as grassland
(35 segments), bare (34 segments), wooded (34 segments) and even urban (24 segments) and forest
(15 segments). Wooded is the second most common land cover in the map after agriculture and the
final results were mixed, with producer’s accuracy of 36% and user’s accuracy of 64%. The classifier
most often mislabeled woodlands as forest (53 segments) or marsh (62 segments). Grasslands proved
difficult to classify, with 59% user’s accuracy and 52% for producers. The grassland category was
significantly mislabeled by the classifier as belonging to all the classes except forest and agriculture,
yet the predicted grassland segments on the final map included significant amounts of agriculture
(35 segments) and wooded areas (29 segments). The bare ground category had around 54% user’s
accuracy and 48% producer’s accuracy and was usually mislabeled as urban (64 segments) or labeled
bare when it was actually agriculture (34 segments). Of these more common land cover types, forest
had the highest producer’s accuracy at 78%. Its user’s accuracy was just 59%, however, due to
confusion with wooded segments.

Table 3. Confusion matrix associated with the complete final classification map.

Actual

Predicted

Agric. Grass Bare Urban Wooded Water Marsh Forest Prod. Acc.

Agric. 157 35 34 23 34 9 2 15 309 0.51
Grass 5 111 19 24 20 15 14 5 213 0.52
Bare 4 11 100 64 3 21 4 0 207 0.48

Urban 0 1 10 61 0 2 1 0 75 0.81
Wooded 15 29 20 11 121 22 62 53 333 0.36

Water 0 0 0 0 0 102 24 0 126 0.81
Marsh 1 0 0 0 1 7 46 1 56 0.82
Forest 3 0 0 1 9 8 9 108 138 0.78

185 187 183 184 188 186 162 182 1457

User’s Acc. 0.85 0.59 0.55 0.33 0.64 0.55 0.28 0.59

Overall 0.55

The results of the second accuracy assessment involving only the cropland category revealed that
this category had an overall accuracy of over 76% with a tolerable amount of commission errors but
a significant amount of omission error (about 43%) in the non-cultivated category (Table 4). Of the
roughly 3800 samples used in this evaluation, 55% were selected from the cultivated category, and the
remainder were selected from the non-cultivated category, encompassing all other categories targeted
in this study. Of the roughly 1700 non-cultivated samples selected, grasslands (23%), wooded (48%)
and forest (28%) made up the majority of the non-cultivated class. As depicted in Table 4, the majority
of the errors in the cultivated vs. non-cultivated comparison were omission in the non-cultivated
category in nature, meaning that many areas that were labeled as non-cultivated in the map should
have been mapped as cultivated. To this end, the grasslands category made the largest contribution to
the omission error observed in Table 4—over 77% of the samples labeled as non-cultivated (grasslands)
should have been mapped as cultivated. This was followed by the bare ground category where
roughly half of the samples were incorrectly classified as that class and should have been mapped
as cultivated. The smallest omission error with a significant amount of samples occurred in the
forest category—less than 30% of all non-cultivated (forest) samples were incorrectly classified as
non-cultivated and belonged to the cultivated category in reality. These results suggest that the main
source of confusion in the cropland category was the grasslands—not a very surprising result given
the ecology and the topographic position of this land cover type.
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Table 4. Confusion matrix associated with the cropland category extracted from the Geo-Wiki dataset.

Predicted

ag no-ag Total

reference
ag 1938 168 2106

no-ag 729 977 1706
total 2667 1145 3812

overall accuracy 76.47%
agriculture users accuracy 72.67%
agriculture commission error 27.33%
agriculture producers accuracy 92.02%
agriculture omission error 7.98%
non-agriculture users accuracy 85.33%
non-agriculture commission error 14.67%
non-agriculture producers accuracy 57.27%
non agriculture omission error 42.73%

Of the 1706 non-agriculture samples selected from the classified image:

Category Sample Size Proportion

grassland 392 22.98%
bare ground 76 4.45%

urban/imper. 3 0.18%
wooded 808 47.36%

water 21 1.23%
marsh 10 0.59%
forest 396 23.21%
sum 1706 100.00%

The proportion of non-agriculture categories that are in reality in the agriculture category:

Category Sample Size Proportion

grassland 304 77.55%
bare ground 37 48.68%

urban/imper. 3 100.00%
wooded 270 33.42%

water 3 14.29%
marsh 3 30.00%
forest 109 27.53%
sum 729 100.0%

4. Discussion

The results of the classification for this difficult mountainous and variable terrain are encouraging.
Many aspects of the method performed well and merit consideration when confronted with similar
classification problems. The main problems addressed by our study were these:

1. Mountainous terrain and cloud cover
2. Diversity of management and land use history
3. Lack of reference data

4.1. Mountainous Terrain

Mountainous terrain is difficult to classify due to cloud cover and topographically-linked
variability of land cover classes of interest. First, mountains are often shrouded with clouds, which
makes it difficult to measure spectral reflectance from space-based platforms. To deal with the cloud
cover, we combined data from several years. This allowed us to obtain a variety of data from the wet
and growing seasons, which was integral to discerning phenological differences among our classes.
Unfortunately, it necessarily occludes land cover change that must occur over this timeframe, and
must also then give rise to some of the error in the classification. Because the classification was driven
in part by the need for better erosion studies and crop modeling simulations, the motivation to get
the agriculture category correct outweighs some of the error derived from landscape change, and
this goal was accomplished since agriculture was mapped at 85% user’s accuracy. The temporal and
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phenological differences captured in our time stacks was key to separating agriculture from woodlands
and grasslands, so this sacrifice was necessary.

The second difficulty in classifying mountainous terrain is that the topography gives rise to
variation across the broadly defined classes that interested us. Alpine grasslands at the top of Choke
look much different than semi-arid grasslands in the canyon below. More than 10 crops are grown on
small plots across various areas of the highlands. The use of the DEM and slope data can effectively
turn these differences into an advantage. The SVM classifier can learn that a given class may have
a range of expressions across different parts of a mountain. Other classification algorithms might
have required that we create more specific sub-class labels in different mountain ecologies and then
combine the results into a single class. That would likely create more work in training the classifier
and processing the results, so in this case, the use of DEM information with the SVM classifier was
a success.

4.2. Diversity of Management and Land Use History

Agriculture in the highlands is practiced on plots of small size using several different crops, each
with its own cropping calendar. This creates much variation within and among agricultural pixels in
space and time. Farmers planting different crops adjacent to one another in a given year may have
planting and harvest dates that differ by months. Over the years that imagery was gathered, various
crop rotations may be prevalent in different areas. Again, the SVM can handle this variability, but
only if given appropriate and sufficient training data. With a deeper temporal set of data, the onus
is on the collector of the training data to find points with unique temporal characteristics as well as
unique spatial characteristics. In practice, this entails being mindful of gathering training data that use
imagery from a variety of dates and seasons across the breadth of time covered by the satellite imagery
selected. The use of a single set of temporal imagery simply because it shows agriculture particularly
well would bias the training data toward specific cropping and management practices and miss the
fuller expression and extent of agriculture in the study area. The algorithm is always only as good as
the data it is given, and in this instance the use of so much input data implies significant effort in data
collection and analysis.

4.3. Lack of Reference Data

Research for this project included time spent in the study area on Choke Mountain completing
socio-economic survey, but not gathering organized groundtruth data. This fieldwork was still useful
for interpreting imagery and training the classifier, but formally collecting validation samples in a
structured manner would have been a huge undertaking, given the large and diverse study area
and the difficulty of travel in some parts. For this reason, Google Earth high resolution imagery
was leveraged for training the SVM algorithm. In some areas, these images are not of sufficient
quality to inspire confidence using them in training or accuracy assessment. Often, these areas are
the more remote western lowlands and there is better coverage in more populated highland areas.
Unfortunately, the remote areas can be among the hardest to classify. Shrubby vegetation makes it
impossible to differentiate between grassland and wooded savannah. There are areas of small villages
with agriculture that can be confused with grasslands, woodlands and even barren lands if the land
is very marginal. The bias in image availability, unfortunately, coincides with this research team’s
expertise, which is also concentrated in agricultural communities of the more populated highlands.
These biases have certainly affected the results, with agriculture being more successful as a class than
the land covers present in the west.

There is also a lack of multi-temporal imagery in the Google high resolution data archives. Often, a
single image is not sufficient to determine the class label in this study area, especially if it is a dry season
image. Thus, the results are influenced by the season of the imagery available in Google. Where Google
Earth has more wet season images, less bare ground may be chosen and vice versa. This can lead to
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misclassification both in training and in verification. However, this can be minimized if the analyst
uses a large number of dates of satellite imagery that are independent of the Google Earth images.

4.4. Explaining Confusion

These challenges in combination caused a certain degree of error and confusion by the classifier.
We believe the method of combining multitemporal imagery and DEM derived information with
a nonparametric pattern recognition algorithm was more successful than a classification that used
a single year of imagery could have been. However, the method was still hindered even by these
challenges it was meant to address.

Agriculture covers a large proportion of these highlands. When the classifier identified a piece
of land as agriculture, it was correct most of the time, probably because the chances favored that it
was. Unfortunately, many other segments of agriculture were labeled erroneously, such as grasslands,
bare, or wooded lands. Pixels and segments mixed with these land cover types and some land cover
change over time are likely the reason for this deficiency. Over the landscape, these categories often
occur together and morph among one another over time. There is no regular fallowing in many of the
core agricultural areas, but even intermittent fallowing and cycling of marginal lands into or out of
production on the edges would cause difficulty for the classifier, depending on when it was able to get
clear observations of a specific location in the timestack.

Grasslands, similarly, proved difficult to classify for these reasons and possibly due to the variety
of its expression. Even within a single Landsat scene, grasslands vary due to a wide rainfall gradient
or human impacts and management. In a very small area, grasslands may be lush, managed pasture,
degraded former farmland, or less shrubby hillside. In training, all these were gathered into the single
class “grasslands” with no awareness of how the training sample might be skewed to one or another
of these types. Certainly, the higher productivity, managed pastureland would be over-represented
because it was easily identified in the images in the 7-4-2 Landsat TM band combination during the
dry season through to early in the cropping season (~January–July). This tendency was remedied
through an iterative approach to training data collection and classification. When the analyst saw
errors relative to types of a certain land cover class, more training data would be gathered for that
subtype. It would have been more efficient to collect training data by explicitly splitting the land cover
into these subtypes during training and classification so that the number of training pixels in each
could be readily seen. Then, the subtypes could have been rolled into the single, overarching type
when making the final map.

4.5. Assessing Agriculture on Slopes

One of the goals of this study is to support future soil erosion, soil mapping, and crop modeling
studies by mapping the patterns of land use and land cover at the scale of smallholder use. The high
user’s accuracy in the agricultural landcover map will prove useful in any such research. Although
agriculture is still somewhat underestimated in this map, areas which are labeled as agriculture are
likely to be agriculture with a high degree of confidence. The study thus provides important new
assessment of where agriculture is being practiced in the Abay basin and this information is crucial for
spatially-explicit studies of erosion or crop modeling.

Cultivation of sloping farmland in this area does not, in and of itself, automatically imply land
degradation, as there are numerous soil conservation practices employed in highland agricultural
systems. At the spatial resolution of the DEM and slope layers, for instance, it would be impossible to
account for terraces on hillsides, which could be in the order of ten meters wide. Figure 9, however,
does provide a window into some challenges for soil conservation in the study area. On the positive
side, more than 45% of the land labeled agriculture in the final map was in a low slope category (<5%).
There are also more than 400,000 hectares of farmland with slope over 20%, the legal limit on which
land may be cultivated. Further, almost 1.5 million hectares of agricultural land were located on slopes
of 10%–20%.



Remote Sens. 2016, 8, 1020 20 of 23

Errors are also likely in slope calculations, beginning with potential discrepancies in the elevation
measurements of the DEM. The size of the window used in computing slope can change the result
of slope analysis significantly and exacerbate or dampen the propagation of the DEM error [46].
A 5 × 5 pixel moving window used here was judged to be superior to a 3 × 3 pixel window calculation
over the same DEM dataset as it appeared smoother and with less noise. Increasing window size
further would have reduced error, but at the cost of excessive generalization [46]. Taken as a whole,
the slope data derived from the 5 × 5 window was a compromise that would generally smooth areas
of higher slope but still provide reliable information for the point in question without overgeneralizing.
Since the agricultural land is also acknowledged to be an underestimate of total agricultural lands, it
follows that the slope analysis of agricultural land is also conservative. This provides a useful lower
limit to characterizations of where and how much sloping land may be cultivated in the study area.
However, we again caution that soil conservation techniques are unaccounted for in both the land
cover map and the slope map and obviously would need to be incorporated in any soil erosion study.
The authors have commonly observed bunding, hedging and terracing, among other techniques, on
many hillside agricultural lands in the study area. The authors have also observed their absence,
especially on some steeper slopes, which may be under cultivation opportunistically, temporarily
or illicitly.

4.6. Comparison with Existing Land Cover Products

The reported overall accuracy of 55% here compares well with the 48% accuracy in Ethiopia
in FROM-GLC [11]. Improved FROM-GLC did not report accuracy per country but does report
accuracies per class [12]. Its Random Forest classification performed best and comparison of its user
and producer’s accuracies for similar class labels is given in Table 5. Generally, the map presented
here does well compared to the Improved FROM-GLC especially given the difficulty the FROM-GLC
product experienced with Ethiopia. In the agriculture class, our map does generally as well, but better
if looking at the high confidence samples of Table 4. Our map shows an improvement in the difficult
Grassland and Shrub categories. Our map falls short of the standard of Improved FROM-GLC in Forest,
Water and Bare Ground, but these classes are a small fraction of total mapped area of the Ethiopia map
when compared with the area Agriculture, Grassland and Wooded/Shrub. This supports our claim in
the utility of our product for environmental assessment of this region of Ethiopia.

Table 5. Comparison of user’s (UA) and producer’s (PA) accuracies of this map and
Improved FROM-GLC.

Improved FROM-GLC Our Results

PA (%) UA (%) PA (%) UA (%)

Agriculture 75 56 51 85
Forest 76 84 78 59

Grassland 38 46 52 59
Shrub 38 53 36 64
Water 88 79 81 55
Bare 88 68 48 55

5. Conclusions

This challenging land cover classification is judged a mixed success. It has advanced knowledge
of land cover of a difficult to map area for which global and regional scale maps had struggled.
Agriculture is mapped with high accuracy, and the map captured important patterns of cropland,
grassland, and shrubland in the highlands. For applications such as erosion studies and crop modeling,
it is a significant step forward, since this productive landscape is mapped accurately at a scale
commensurate with smallholder land use patterns for the first time in such a large area of Ethiopia.
Some important classes in the map do have low producer’s and consumer’s accuracies and effort
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needs to be made to improve these with better reference data. The western part of this study area is
more dynamic with extensive production systems and, likely, significant conversion of savannah to
intensive agriculture in the last 10 years, and will need focused attention and mapping in that regard
in the future. With the addition of better imagery and validation data, the methods used in making
this map will also work for the western edge of the study area, so again, progress can be counted even
on this western frontier.

Going forward, researchers should do three things. (1) Apply similar methodology to other
difficult mapping areas that have not been well captured by global scale maps at this type of resolution;
(2) Use this map in environmental applications in the study area; (3) Improve this map on the western
lowland side since it is an area of ongoing landscape change.
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