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Abstract: Sparse representation (SR)-driven classifiers have been widely adopted for hyperspectral
image (HSI) classification, and many algorithms have been presented recently. However, most of
the existing methods exploit the single layer hard assignment based on class-wise reconstruction
errors on the subspace assumption; moreover, the single-layer SR is biased and less stable due
to the high coherence of the training samples. In this paper, motivated by category sparsity,
a novel multi-layer spatial-spectral sparse representation (mlSR) framework for HSI classification
is proposed. The mlSR assignment framework effectively classifies the test samples based on the
adaptive dictionary assembling in a multi-layer manner and intrinsic class-dependent distribution.
In the proposed framework, three algorithms, multi-layer SR classification (mlSRC), multi-layer
collaborative representation classification (mlCRC) and multi-layer elastic net representation-based
classification (mlENRC) for HSI, are developed. All three algorithms can achieve a better SR for the
test samples, which benefits HSI classification. Experiments are conducted on three real HSI image
datasets. Compared with several state-of-the-art approaches, the increases of overall accuracy (OA),
kappa and average accuracy (AA) on the Indian Pines image range from 3.02% to 17.13%, 0.034 to
0.178 and 1.51% to 11.56%, respectively. The improvements in OA, kappa and AA for the University
of Pavia are from 1.4% to 21.93%, 0.016 to 0.251 and 0.12% to 22.49%, respectively. Furthermore,
the OA, kappa and AA for the Salinas image can be improved from 2.35% to 6.91%, 0.026 to 0.074
and 0.88% to 5.19%, respectively. This demonstrates that the proposed mlSR framework can achieve
comparable or better performance than the state-of-the-art classification methods.

Keywords: hyperspectral image (HSI) classification; sparse representation; multi-layer;
category sparsity

1. Introduction

The quantitative useful information provided by high-resolution sensors is helpful to distinguish
between different land cover classes with different spectral responses. Hyperspectral image (HSI)
classification remains one of the most challenging problems due to within-class variation and
spatial details [1–6]. In the past few decades, significant efforts have been made to develop various
classification methods. For example, there have been a variety of studies that utilize spatial-spectral
information for HSI classification [7,8]. However, most of the previous works mainly focus on various
dense feature extractions, such as Gabor, patch-based [9], scale-invariant feature transform (SIFT) [10],
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local binary pattern (LBP) [11], local Gabor binary pattern (LGBP) [12], random project (RP) [13] and the
bag-of-visual-words (BOVW) [14], where the extracted features are fed into k-nearest neighbor (K-NN),
support vector machine (SVM) or Markov random field (MRF) [15] to perform HSI classification.
Besides, some feature-matching methods [16,17] in the computer vision area can also be generalized
for HSI classification, but they have a prerequisite that the spectral features should be extracted in
advance. However, these local features may be contradictory because of their overlapping with each
other and result in less contribution to the classifiers.

Recently, researchers have exploited sparse representation (SR) techniques for HSI classification
and other computer vision applications, e.g., [18,19]. Sparse representation classification (SRC) assumes
the input samples of the same class lie in a class-dependent low-dimensional subspace, and a test
sample can be sparsely represented as a linear combination of the labeled samples via `1 regularization.
Different from the conventional classifiers aforementioned, it does not require training, and the class
label of a test sample is determined to be the class whose dictionary atoms provide the minimal
approximation error. Although SRC has achieved promising results in HSI classification [20,21],
it suffers from instable representation coefficients across multiple classes, especially with the similar
input features. After that, kernelized SRC (KSRC) [22] and structured sparse priors, such as
Laplacian regularized Lasso [23] and low-rank group Lasso [24], are presented for HSI classification,
and improved accuracies are reported. Later on, a collaborative representation classification (CRC) via
`2 regularization is introduced in face recognition and demonstrated that CRC can achieve comparable
performance with SRC at much lower computational cost [25]. Recently, CRC is actively adopted for
HSI classification [26], where the test sample is collaboratively represented with dictionary atoms
from all of the classes, rather than the sparsity constraint as in SRC. However, CRC has limited
discriminative ability when the labeled samples include mixed information.

It is generally agreed that SR coefficients follow a class-dependent distribution, which means
the nonzero entries of the recovered coefficients from the same class tend to locate at a specific
sub-dictionary, and the magnitudes of the coefficients in accordance with the true class are larger
than the others. Therefore, in [27], the class-dependent sparse representation classifier (cdSRC)
was proposed for HSI classification, where SRC combines K-NN in a class-wise manner to exploit
both correlation and Euclidean distance between test and training samples, and the classification
performance is increased. Furthermore, K-NN Euclidean distance and the spatial neighboring
information of test pixels are introduced into the CR classifiers. In [28], a nonlocal joint CR with
a locally-adaptive dictionary is developed. In [29], spatially multiscale adaptive sparse representation
in a pixel-wise manner is utilized to construct a structural dictionary and outperforms its counterparts.
However, the spatially multiscale pixel-wise operation requires extra computational cost. In [30],
the spatial filter banks were included to enhance the logistic classifier with group-Lasso regularization.
In addition, kernelized CRC (KCRC) is investigated for HSI classification in [31], and accumulated
assignment using a sparse code histogram is discussed in [32].

More recently, some sparse representation-based nearest neighbors (SRNN) and elastic
net representation-based classification (ENRC) for HSI are also reported. In [33], three sparse
representation-based NN classifiers, i.e., SRNN, local SRNN and spatially-joint SRNN, were
proposed to achieve much higher classification accuracy than the traditional Euclidean distance
and representation residual. In [34], the proposed ENRC classification method produces more robust
weight coefficients via adopting `1 and `2 penalties in the objective function, thereby turning out to be
more discriminative than the original SRC and CRC. In a word, such representation-based methods
are designed to improve the stability of the sparse codes and their discriminability by modeling the
spectral variations or collaboratively coding multiple samples.

Although the aforementioned representation-based classification methods perform well to some
extent, all of them reconstruct sparse coefficients in a single layer and still need to be further
exploited in terms of how to estimate the “true” reconstruction coefficients for the test sample. In fact,
a multi-layer sparse representation-based (mlSR) assignment framework is preferred to necessarily
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stabilize the sparse codes for representation-based classification. In this paper, we propose to
investigate a multi-layer spatial-spectral SR assignment framework under the structural dictionary for
HSI classification, which effectively combines the ideas of a multi-layer SR assignment framework with
adaptive dictionary assembling and adaptive regularization parameter selection. Specifically, three SR
algorithms, multi-layer SRC (mlSRC), multi-layer CRC (mlCRC) and multi-layer ENRC (mlENRC) are
developed. The proposed mlSR assignment framework enforces the selected bases (dictionary atoms)
into as few categories as possible, and the estimated reconstruction coefficients are refined thereby,
which boosts the accurate discrimination of the model. This is one feature of our method. Another one
is that the proposed mlSR assignment framework exploits the intrinsic class-dependent distribution,
which is utilized to stabilize test distribution estimation across multiple classes and lead to a selective
multi-layer representation-based classification framework. Moreover, we consider the construction
of the structural dictionary, that is, a dictionary consisting of spectral and spatial features via the
utilization of a group of globally-spatial filter banks is first constructed, thus integrating the spatial
consistency of the dictionary atoms and allowing drastic savings in computational time. The proposed
mlSR assignment framework is not only natural and simple, but also indeed beneficial toward HSI
classification. Note that these features compose our major contributions in this work and make the
proposed methods unique with regard to previously-proposed approaches in this area (e.g., [29,35,36]).
Our mlSR framework is different from [35] in terms of the implementation principle, where the latter
can be viewed as a kind of weighted sparse coding, and the classification is done by maximizing the
feature probability, but without dictionary assembling; meanwhile, unlike [29,36], which are designed
to capture spatial correlations by introducing the neighboring pixels of the test sample for sparse coding
and often time consuming, our proposed methods are in essence a multi-layer framework, which
involves assembling adaptive dictionaries for test samples. The experimental results demonstrate that
classification accuracy can be consistently improved by the proposed mlSR assignment framework.

There are three main contributions in this work. First, a multi-layer spatial-spectral sparse
representation (mlSR) framework for HSI classification is proposed. In the proposed framework, three
algorithms, multi-layer SR classification (mlSRC), multi-layer collaborative representation classification
(mlCRC) and multi-layer elastic net representation-based classification (mlENRC), are developed and
achieve stable assignment distributions via the adaptive atoms selection in a multi-layer manner.
Second, both the test distribution evaluation-based filtering rule and dictionary assembling based on
the classes ranked within the top half of the minimal residuals are developed to convey discriminative
information for classification and decrease the computational time. Last, but not least, a structural
dictionary consisting of globally-filtered spatial and spectral information is constructed to further
boost the classification performance. It is also worth mentioning that our proposed mlSR framework
has another nice property that can be easily plugged into any representation-based classification
model using different HSI features (e.g., spectral features, spatial features and spatial-spectral features).
The proposed approach is evaluated using three real HSI datasets. The experimental results verify the
effectiveness of our proposed methods as compared to state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section 2 briefly reviews representation-based
techniques for HSI classification. Section 3 presents the proposed mlSR framework and classification
approaches in detail. Section 4 evaluates the proposed approaches against various state-of-the-art
methods on three real HSI datasets in terms of classification accuracy and computational time. Section 5
includes discussions of our framework and method. Finally, Section 6 concludes the paper.

2. Representation-Based HSI Classification

2.1. Sparse and Collaborative Representations

As a natural way in signal representation, sparse representation (SR) assumes that the input
samples of a particular class lie in a low-dimensional subspace spanned by dictionary atoms
(training samples) from the same class. A test sample can be represented as a linear combination of
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training samples from all classes. Formally, in SR-based classification (SRC), for a test sample y ∈ Rd

(d is the number of the features of HSI), the objective of SR according to the `1-norm is to find sparse
coefficient vector α(SR) with a given d× N structural dictionary D, so the objective function can be
formulated as:

α̂(SR) = argmin
α(SR)
||y− Dα(SR)||22 + λ ||α(SR)||1 (1)

where N is the total number of atoms in D. ||·||1 denotes the `1-norm. λ is the regularization parameter
that balances the contribution of the reconstruction error and the sparsity of the reconstruction weights.
Once the sparse coefficient α̂(SR) is obtained, the class label of the test sample y can be determined by
the minimal residual error between y and the class-dependent sub-dictionary of each class.

rSRC
c (y) = ||y− Dcα̂

(SR)
c ||2, c = 1, ..., C (2)

where C is the number of classes and α̂
(SR)
c represents the coefficients in α̂(SR) belonging to the c-th

class. The class label is given by SRC:

classSRC(y) = argminc=1, ..., C rSRC
c (y) (3)

Different from SRC, in collaborative representation-based classification (CRC), a test sample is
represented collaboratively over all of the training samples, and the objective is to find the weight
vector α̂(CR), which can be expressed as:

α̂(CR) = argmin
α(CR)

||y− Dα(CR)||22 + λ ||α(CR)||22 (4)

with λ being the regularization parameter. By taking derivative with regard to α(CR) in Equation (4),
α̂(CR) can be solved as:

α̂(CR) = (DT D + λI)
−1

DTy (5)

Then, the class label assignment by CRC is determined according to the minimum residual
rCRC

c (y). Obviously, CRC is more computationally efficient than SRC due to the closed-form solution
as in Equation (5).

2.2. Elastic Net

The reconstruction weights play an important role in representation-based classification.
Thus, many representation-based methods aim to obtain the weight vector based on some reasonable
constraint. For instance, in SRC, training samples are projected onto a subspace, and only a few
dictionary atoms (sparsity) are allowed to be selected to form sparse representation, which becomes
inaccurate when dictionary atoms are less related and small; while in CRC, many dictionary
atoms collaborate on the representation of a test sample and contribute to the reconstruction
(collaboratively). Nevertheless, the non-sparse vector of CRC might distribute across multiple classes,
and its discriminant ability is limited. Recent literature [34] has pointed out that the classification
improvement in some cases is brought by SR, while in other cases, the gain is brought by CR. In order
to avoid the aforementioned problem, the elastic net model was recently presented and resulted in
robust coefficients via a convex combination of SR and CR [37]. The objective function of elastic net
representation-based (ENR) classification (ENRC) is defined as:

α̂(EN) = argmin
α(EN)

||y− Dα(EN)||22 + λ1 ||α(EN)||1 + λ2 ||α(EN)||22 (6)

where the nonnegative parameters λ1 and λ2 are used to control the contributions of the sparsity
constraint and self-similarity constraint, respectively. The first constraint encourages sparsity in
the reconstruction weights, and the second constraint enforces similarity in their collaborations.
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The `1-norm and `2-norm regularization terms are utilized together in the objective function to
overcome the limitation of SR-based and CR-based methods, respectively. Therefore, the highly
correlated samples are guaranteed to be selected, and the intrinsic sparsity is enforced by the ENRC.
After obtaining α(EN), the class label of the test sample y is then determined according to the minimum
residual rENRC

c (y), similar to Equation (2). As a result, the ENRC may offer a correct label assignment
even when both SRC and CRC give wrong labels.

3. Proposed Classification Framework

3.1. Motivation for the Proposed Approach

It is well known that the HSI data are characterized with high correlation with each other and
spatial variation of spectral signatures, which makes single-layer SR/CR/ENR-based classification
methods challenging. This is because the recovered coefficients under such scenarios potentially are
instable. The instability implies that the nonzero entries of the recovered coefficients might distribute
across multiple classes, thus deteriorating the discriminability. In other words, multi-layer sparse
representation is preferred. Intuitively, the more classes associated with the top several minimal
residuals can be kept for dictionary assembling, the more accurate the class label of the test sample
expected to be assigned. Therefore, we can enforce dictionary assembling into few categories in
a multi-layer manner, and the regularization parameter for each test sample is adaptively chosen
by cross-validation again. To better understand the working mechanism of the proposed method,
we randomly take four test samples located at ((21, 6), (25, 7), (18, 13), (18, 6)) in the Indian Pines for
example and calculate respective recovered coefficients using SRC, CRC and ENRC for at most three
layers. The sparse coefficients and corresponding residuals of each test sample under various norms
are shown in Figure 1. From this figure, one can easily notice that, although all the four test samples
belong to Class 2, the single-layer hard assignments of SRC, CRC and ENRC for the considered test
samples are inaccurate because the residual error computed from Class 2 is higher than that from
some other classes. However, the samples with obviously the wrong class label assigned by the
single-layer SRC, CRC and ENRC are enforced to carry out the second-layer SR, even the third-layer
SR, respectively, and then assigned the correct class label, which clearly denotes the effectiveness
and superiority of this proposed mlSR assignment framework. It should be noted that the structural
dictionary consisting of globally-spatial and spectral information is combined to further boost the
classification performance.

3.2. Test Distribution Evaluation

According to the above observation, the recovered coefficients follow a class-dependent overall
distribution despite the instability in a single-layer SR, and the nonzero entries of the recovered
coefficients from the same class tend to locate at a specific sub-dictionary; and the magnitudes of
the coefficients corresponding to the true class are usually larger than the others. Perceptually, a
test sample y is correctly assigned the class label because this sample has the largest magnitude of
sparse coefficients within the active sub-dictionary. We introduce the following heuristics to find
out the obviously misclassified samples, which will be accepted to perform a second-layer SR, and
newly-assigned class labels of those samples are updated. Similarly, a third-layer SR can be done in
the same way. This is based on the following reasons. First, less test samples that will be accepted
to carry out multi-layer SR means less computational time for the proposed method. Second, some
obviously correctly-assigned samples are unnecessary to run in the subsequent layers. As a result,
the classification accuracy of such a selective multi-layer SR assignment framework is consistently
improved. To this end, we first adopt the sparsity concentration index (SCI) [38] as the degree
measurement across multiple classes:

SCI(α) =
C·maxi ||δi(α)||1/||α||1 − 1

C− 1
(7)
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where δi(α) indicates the entries associated with i-th class. Obviously, in SR via the `1-norm, for
a test sample y, if SCI(αy) = 1, y is definitely represented using a unique class, and if SCI(αy) = 0,
the sparse coefficients are spread evenly over all classes. Furthermore, we define the heuristic as
follows. Specifically, for a test sample y with its label assigned by the lth (l > 0) layer classification as
Ll(y), it is accepted to do a multi-layer SR based on the following condition of being ‘true’.

τl(y) =


true, SCI(αy) = 0
f alse, SCI(αy) = 1

true, Ll(y) = c and (Position(Peak(αy)) and SCI(αy))(X
(

Dl
c)− εl)

f alse, otherwise

, c = 1, ..., C (8)

where Position(Peak(αy)) denotes the position of maximal peak of sparse coefficients α from test

sample y. X
(

Dl
c) indicates the lth layer class-dependent overall distribution from class c and can

be expressed as a triplet <Peak, Position, SCI>. In addition, the slight fluctuation εl is introduced
possibly due to the bias of sparse coefficients in each layer. Thus in a sense, the proposed filtering rule
for a multi-layer classification via the residual and sparse coefficient together can pick the obviously
misclassified samples for the next layer SR. Let us take the Indian Pines image for example, as
illustrated in Figure 2.
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Figure 1. Estimated assignment distributions (sparse coefficient and residual) for the pixels from
Class 2 in the Indian Pines image. (a) Sparse representation classification (SRC) (`1) for pixel (21, 6);
(b) SRC (`1) for pixel (25, 7); (c) elastic net (`1 + `2) for pixel (21, 6); (d) elastic net (`1 + `2) for pixel
(25, 7); (e) collaborative representation classification (CRC) (`2) for pixel (18, 13); and (f) CRC (`2) for
pixel (18, 6).
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The class-dependent overall distribution (blue curve and red blocks) of sparse coefficients of
twelve classes are obtained using all of the labeled samples of the corresponding class, under a
structural dictionary with forty training samples per class. Further, the sparse coefficients (green curve)
of a test sample is also plotted. As can be seen, class-dependent sparse coefficients and the magnitudes
mainly concentrate at some fixed blocks; that is, the nonzero entries of the sparse coefficient and
larger magnitudes are in accordance with the true class. Hence, class-dependent overall distributions
convey discriminative information and are exploited to find the obviously misclassified samples at
the previous layer. With this treatment, the plotted test sample is recognized as a ‘good’ sample,
i.e., this sample is partitioned into the same class as the true class (ID: 2), and it is unnecessary to
proceed to do a multi-layer classification. For the non-`1-norm SR, we use a similar rule to filter the
obviously misclassified samples to run a multi-layer SR. Note that the heuristic rule in Equation (8)
has the advantage of both computational efficiency and achieving better classification performance
over several state-of-the-art methods.

3.3. mlSR Framework

Motivated by the above observations, we propose a novel multi-layer sparse representation (mlSR)
framework to explore the stable assignment distribution. To summarize, the overall outline of the
proposed mlSR is shown in Figure 3. As depicted in Figure 3, for each test sample, the method consists
of the following main steps: (1) compute the sparse coefficients and residual matrices at the first layer;
(2) select the obviously misclassified samples at the first layer to perform the second layer SR according
to the top C/2 minimal residuals based on the test distribution evaluation and dictionary assembling,
and update the corresponding class label assignments; (3) choose the obviously misclassified samples
at the second layer to carry out the third layer SR according to the top C/4 minimal residuals on
the basis of the predefined test distribution evaluation, and update the corresponding class labels;
(4) output the final class labels.

One of the key ingredients in the proposed mlSR framework is that adaptive selection of the
sub-dictionary atoms, that is, the new sub-dictionary that are re-assembled for each test sample based
on the test distribution evaluation and the classes ranked within the top half of minimal residuals
(i.e., C/2 classes in the second layer, C/4 in the third layer, and so on) and appropriate for representing
the test sample. In other words, a subset of the structured dictionary is re-selected for the SR of each
test sample, favoring a stable assignment distribution and resulting in better discriminative ability
of the proposed approach. In addition, the filtering rule for obviously misclassified samples sieved
into the next layer SR is another core part of the proposed method because, on the one hand, the
correctly-assigned samples at the first layer are unnecessary to do subsequent layer SR according
to Equation (8); on the other hand, the new cross-validation on the parameter searching from the
second layer is conducted for each test sample and time costly. Thus, a tradeoff between the number of
samples filtered to do a multi-layer SR and classification performance should be made. Furthermore,
the proposed mlSR framework is detailed in Algorithm 1.

In the proposed framework, the globally-filtered spatial features, such as the widely-used band
ratios from the three first principal components (PCs) of original spectral features, 2D Gabor energy [12]
and morphological files [5], are extracted and employed to construct the structural dictionary. Note that
different types of global features exploit the local information of each considered pixel and should
contribute to the discrimination of dictionary atoms; meanwhile, the globally spatial features are much
faster to be extracted. These considered features are reported in Table 1. As shown in Table 1, D{s, r, g, m}
indicates that different types of features except for spectra are globally extracted via different spatial
filter banks.
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Figure 2. Distribution of sparse codes of samples (twelve classes and a test sample) in the Indian Pines
image under a structural dictionary with 480 atoms in total. The red curve indicates the corresponding
class-dependent atoms. The used test sample belongs to Class 2.
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Figure 3. Overall architecture of the proposed multi-layer spatial-spectral sparse representation
(mlSR) framework.
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Algorithm 1. Multi-layer spatial-spectral sparse representation classifier.

Input: Layer l = 1, a structural dictionary Dl with M features and N samples; number of
classes C; regularization parameter set λall , test index set Ul , threshold εl and residual rl = φ

Step 1: Calculate lth layer class-dependent overall distribution X(Dl)
Step 2: for each test sample y do
Step 3: Determine the optimal regularization parameter λ, λ2 via five-fold cross-validation

searching in λall under the dictionary Dl

Step 4: Compute sparse coefficients α(SR), α(CR), α(EN) using Equations (1), (5)
and (6), respectively

Step 5: Obtain individual residuals rSRC
c (y), rCRC

c (y), rENRC
c (y) according to Equation (2),

and update respective class label matrices LSRC
l , LCRC

l , LENRC
l

Step 6: Evaluate test distribution τl(y) based on X(Dl)
Step 7: Add y into the (l + 1)th test set Ul+1 if τl(y) = true
Step 8: Find newly-selected atoms’ indexes and assemble the sub-dictionary according to the

classes ranked within the top half of the minimal residuals
Step 9: l← l + 1, if l > 2 or Ul = NULL; go to the Step 12
Step 10: Go to the Step 3
Step 11: end for
Step 12: Decide the final class label classSRC(y), classCRC(y), classENRC(y) according to

Equation (3)
Step 13: Output: class(y)

Table 1. Types of features except for spectra via globally filtering in the experiments.

Features Description

Ds Original spectral information
Dr Band ratios from the three first PCs [5]
Dg 2D Gabor energy [12]
Dm Morphological profiles [5]

4. Experiments

In this section, in order to demonstrate the superiority of the proposed method in HSI
classification, the proposed multi-layer spatial-spectral sparse representation (mlSR) method is
compared with various state-of-the-art methods on three benchmark hyperspectral remote sensing
images: Indian Pines, University of Pavia and Salinas. Note that the proposed method utilizes
a structural dictionary consisting of globally-filtered spatial feature such as 2D Gabor (scale = 2,
orient = 8), morphological profiles and spectral feature along all bands. To further validate the
effectiveness of the proposed model on exploring the structural consistency in the classification
scenarios, we compare the proposed mlSR assignment framework with competitors built on only
spectral features. Meanwhile, the number of the layers is set as three in order to balance computational
complexity and classification performance. Additionally, we also analyze the influence of several key
model parameters.

4.1. Hyperspectral Images and Experiment Setting

Three hyperspectral remote sensing images are utilized for extensive evaluations of the proposed
approach in the experiments: Indian Pines image captured by AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer), University of Pavia image captured by ROSIS (Reflective Optics System
Imaging Spectrometer) and Salinas image collected by AVIRIS sensor.

The Indian Pines image was acquired by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over northwest Indiana’s Indian Pine test site in June 1992 [39]. The image
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contained 16 classes of different crops at a 20-m spatial resolution with the size of 145 × 145 pixels.
After uncalibrated and noisy bands were removed, 200 bands remained. We use the whole scene, and
twelve large classes are investigated. The number of training and testing samples is shown in Table 2.

The University of Pavia utilized in the experiments is of an urban area that was taken by the
ROSIS-03 optical sensor over the University of Pavia, Italy [40]. The image consists of 115 spectral
channels of size 610 × 340 pixels with a spectral range from 0.43 to 0.86 µm with a spatial resolution
of 1.3 m. The 12 noisy channels have been removed, and the remaining 103 bands were used for
the experiments. The ground survey contains nine classes of interest, and all classes are considered.
The number of training and testing samples is summarized in Table 2.

The Salinas image was also collected by the AVIRIS sensor, capturing an area over Salinas Valley,
CA, USA, with a spatial resolution of 3.7 m. The image comprises 512 × 217 pixels with 204 bands
after 20 water absorption bands are removed. It mainly contains vegetables, bare soils and vineyard
fields. The calibrated data are available online (along with detailed ground-truth information) from
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. There are also
16 different classes, and all are utilized; the number of training and testing samples is listed in Table 2.

The parameter settings in our experiments are given as follows.
(1) For training set generation, we first randomly select a subset of labeled samples from the

ground truth. Then, we randomly choose some samples from the selected training set to build the
dictionary. For all of the considered images, different training rates are employed to examine the
classification performance of various algorithms. We randomly select a reduced number of labeled
samples ({5, 10, 20, 40, 60, 80, 100, 120} samples per class) for training, and the rest are for testing.
The classification results and maps of our approach and other compared methods are generated with
120 training samples per class.

(2) For classification, we report the overall accuracy (OA), average accuracy (AA), class-specific
accuracies (%), kappa statistic (κ), standard deviation and computational time (including searching
the optimal regularization parameters) derived from averaging the results after conducting ten
independent runs with respect to the initial training set.

(3) For performance comparison, some strongly-related SR/CR-based methods, including
kernelized SRC (KSRC) and KCRC, attribute profiles-based SRC (APSRC) and CRC (APCRC) and
their multi-layer versions (i.e., mlAPSRC, mlAPCRC), have been implemented. As the basic classifiers,
SVM and representation-based classification (SRC, CRC) and attribute profiles-based SVM (APSVM)
are compared; furthermore, the elastic net representation-based classification (ENRC) method is
also compared.

(4) For implementation details, to make the comparisons as meaningful as possible, we use the
same experimental settings as [41], and all results are originally reported. For Indian Pines and Salinas
image datasets, the attribute profiles (APs) [42] were built using threshold values in the range from
2.5% to 10% with respect to the mean of the individual features, with a step of 2.5% for the standard
deviation attribute and thresholds of 200, 500 and 1000 for the area attribute, whereas the APs in the
University of Pavia image were built using threshold values in the range from 2.5% to 10% with respect
to the mean of the individual features and with a step of 2.5% for the definition of the criteria based on
the standard deviation attribute. Values of 100, 200, 500 and 1000 were selected as references for the
area attribute. The fluctuation epsilon in Equation (8) is heuristically found and 10% of the class atom
position range in our experiments. It should be noted that each sample is normalized to be zero mean,
unit standard deviation, and all of the results are reported over ten random partitions of the training
and testing sets. All of the implementations were carried out using MATLAB R2015a on a desktop PC
equipped with an Intel Core i7 CPU (3.4 GHz) and 32 GB of RAM.

http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Table 2. Information classes and the number of labeled samples for four considered image datasets.

Class Indian Pines
Name (# Labeled)

University of Pavia
Name (# Labeled)

Salinas
Name (# Labeled)

C1 Alfalfa (54) Asphalt (6631) Brocoli-green-weeds-1 (2009)
C2 Corn-notill (1434) Meadows (18,649) Brocoli-green-weeds-2 (3726)
C3 Corn-min (834) Gravel (2099) Fallow (1976)
C4 Corn (234) Trees (3064) Fallow-rough-plow (1394)
C5 Grass/pasture (497) Metal sheets (1345) Fallow-smooth (2678)
C6 Grass/trees (747) Bare soil (5029) Stubble (3959)
C7 Grass/pasture-mowed (26) Bitumen (1330) Celery (3579)
C8 Hay-windrowed (489) Bricks (3682) Grapes-untrained (11,271)
C9 Oats (20) Shadow (947) Soil-vineyard-develop (6203)

C10 Soybeans-notill (968) Corn-senesced-green-weeds (3278)
C11 Soybeans-min (2468) Lettuce-romaine-4wk (1068)
C12 Soybeans-clear (614) Lettuce-romaine-5wk (1927)
C13 Wheat (212) Lettuce-romaine-6wk (916)
C14 Woods (1294) Lettuce-romaine-7wk (1070)
C15 Bldg-grass-trees-drives (380) Vineyard-untrained (7268)
C16 Stone-steel (95) Vineyard-vertical-trellis (1807)

4.2. Model Parameter Tuning

We investigate the parameters of the proposed classification framework. As a regularized
parameter, the adjustment of λ is important to the performance of representation-based classifiers.
We conduct the five-fold cross-validation test using training data by a linear search in the range of
[1 × 10−6 1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1 1] for the regularization parameter in the
proposed method. The associated parameters for other considered methods are also done in the same
way. We empirically found that best regularization parameters specific to individual methods led to
good performance. It can be noted that the regularization parameters from the second layer in the
proposed method are sub-dictionary dependent and specific; namely, the five-fold cross-validation
from the second layer is done for each test sample, which can achieve higher accuracy, but requires
more computational time. For simplicity, Figure 4a–f show the overall classification accuracies of three
proposed representation-based classifiers in the first layer versus the regularization parameter λ for
the Indian Pines, University of Pavia and Salinas images, respectively. Similarly, the parameter tuning
of λ for other investigated methods are also observed. Note that the optimal parameter λ is varied
according to different training rates.

4.3. Experiment 1: Results on the Indian Pines Classification

We perform a comparative evaluation of our proposed mlSR approach against several
state-of-the-art sparse classification methods mentioned above, as summarized in Tables 3 and 4.
Based on the results in Table 3, one can easily see that the classification performances of the proposed
mlSRC, mlCRC and mlENRC approaches considerably and consistently outperform those of the other
baseline algorithms (except APSVM and mlAPSRC) over a range of training samples. Table 4 reports
the average OA, AA, class-specific accuracies (%), κ statistic and computational time of ten trials in
seconds using one hundred and twenty training samples per class (mlAP-based and APSVM are not
presented because of the limited column space). As expected, the third best method, mlENRC, with the
obtained OA, κ, and AA of 86.87%, 0.856 and 91.16%, respectively, which outperforms the single-layer
baselines (e.g., SRC, CRC, ENRC and kernelized versions) and SVM, and the increases of OA, κ, and
AA range from 3.02% to 17.13%, 0.034 to 0.178 and 1.51% to 11.56%, respectively. The top two best
methods are APSVM (91.23% at 120 training samples) and mlAPSRC (90.21% at the same training ratio)
respectively, and the reason is that the attribute profiles provide better discriminative features than the
globally-filtered features. To our best knowledge, this result is very competitive on this dataset, which
indicates the effectiveness of the proposed mlSR framework.
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As can be seen from Table 4, SVM is the fastest, and our proposed mlSRC, mlCRC and mlENRC
methods require a larger computational effort, but also achieve better classification accuracy than all
competitors. Nevertheless, a fusion strategy using multiple parameters instead of cross-validation for
regularization parameter selection at consequent layers can be utilized to reduce the computational
time. The classification maps of the Indian Pines generated using the proposed methods and baseline
algorithms are shown in Figure 5 to test the generalization capability of these methods. It is shown in
Figure 5 that the three proposed mlSRC, mlCRC and mlENRC methods result in more accurate and
“smoother” classification maps (with reduced salt-and-pepper classification noise) compared with
traditional SRC/CRC, even kernelized SRC/CRC and SVM, which further validates the effectiveness
and superiority of the proposed mlSR assignment framework for HSI classification. The results also
show that the single-layer SRC, CRC and ENRC always produce inferior performances on this test set,
most likely in part due to the instability of the single-layer SR. Our analysis also shows that the KSRC
and KCRC have a comparable performance compared with SVM, mlENRC and mlAPCRC, as well.
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Figure 4. Overall classification accuracy (%) of representation-based classifiers versus λ using
40 training samples per class, (a,b) λ for mlSRC, mlCRC and multi-layer elastic net representation-based
classification (mlENRC) at the first layer in the Indian Pines image; (c,d) λ for mlSRC, mlCRC and
mlENRC at the first layer in the University of Pavia image; (e,f) λ for mlSRC, mlCRC and mlENRC at
the first layer in the Salinas image.
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Table 3. Overall classification accuracy (%) and standard deviation as a function of the number of training samples per class for the Indian Pines image. KSRC,
kernelized SRC; AP, attribute profile.

Algorithm Training Samples per Class

5 10 20 40 60 80 100 120

SVM 49.47 ± 3.41 57.99 ± 3.77 66.22 ± 1.55 74.13 ± 1.27 78.11 ± 1.19 80.57 ± 0.97 81.93 ± 1.08 83.52 ± 0.78
SRC 46.56 ± 3.49 53.84 ± 2.85 60.01 ± 1.53 65.90 ± 1.17 68.53 ± 1.28 70.75 ± 1.15 72.44 ± 1.25 73.40 ± 0.63
CRC 46.01 ± 4.80 51.18 ± 3.00 60.63 ± 2.85 66.10 ± 0.84 67.52 ± 1.48 69.33 ± 1.03 69.49 ± 1.44 69.74 ± 1.12

ENRC 47.63 ± 0.20 56.55 ± 0.10 63.72 ± 0.54 67.66 ± 0.25 68.72 ± 3.60 71.54 ± 3.57 73.90 ± 1.56 75.42 ± 0.39
KSRC 47.71 ± 3.57 58.31 ± 3.20 66.68 ± 1.38 73.85 ± 1.59 77.82 ± 1.08 79.76 ± 0.84 81.87 ± 0.63 82.82 ± 0.77
KCRC 49.83 ± 3.72 57.50 ± 3.51 67.41 ± 1.79 75.20 ± 1.02 78.69 ± 0.84 81.06 ± 0.61 82.44 ± 0.98 83.85 ± 0.65
mlSRC 48.77 ± 5.93 65.50 ± 6.73 72.07 ± 8.41 78.44 ± 1.17 79.64 ± 2.62 81.25 ± 2.94 83.07 ± 3.53 84.81 ± 3.91
mlCRC 55.42 ± 1.55 70.02 ± 2.62 76.36 ± 1.08 80.21 ± 7.22 81.16 ± 2.34 83.60 ± 3.05 84.72 ± 3.55 85.19 ± 4.04

mlENRC 56.65 ± 6.27 68.19 ± 6.69 73.04 ± 5.70 80.30 ± 4.50 81.25 ± 4.24 84.53 ± 2.37 85.69 ± 3.49 86.87 ± 4.68
APSVM 62.57 ± 5.69 65.90 ± 3.61 80.78 ± 2.50 84.56 ± 0.62 87.19 ± 0.96 88.65 ± 0.89 90.22 ± 0.44 91.23 ± 0.38
APSRC 58.03 ± 3.37 66.25 ± 3.19 73.89 ± 2.26 78.65 ± 1.31 81.32 ± 1.58 83.27 ± 1.61 84.48 ± 0.84 85.62 ± 0.62
APCRC 56.83 ± 0.72 64.55 ± 1.93 68.75 ± 1.97 71.21 ± 1.22 71.93 ± 0.92 71.87 ± 0.54 72.28 ± 0.74 73.07 ± 1.70

mlAPSRC 66.10 ± 1.89 73.66 ± 3.87 81.37 ± 2.15 85.55 ± 0.75 87.97 ± 0.54 89.32 ± 0.88 89.34 ± 0.72 90.21 ± 0.83
mlAPCRC 64.62 ± 2.01 74.98 ± 2.67 81.29 ± 1.21 83.90 ± 0.86 84.76 ± 1.12 85.82 ± 0.57 86.48 ± 0.58 86.59 ± 0.88

Table 4. Class-specific accuracy (%), overall (OA), average (AA), kappa (κ), as well as computational time in seconds with 120 training samples per class for the Indian
Pines image.

Class SVM SRC CRC ENRC KSRC KCRC APSRC APCRC mlSRC mlCRC mlENRC

2 82.21 63.90 64.03 74.74 77.32 80.11 81.48 41.78 84.56 84.56 81.64
3 80.87 63.05 47.56 63.22 79.12 78.66 80.52 70.45 79.58 78.65 86.52
4 94.56 90.26 87.02 93.28 96.49 96.05 93.28 98.25 95.45 99.35 96.91
5 96.34 92.33 91.62 91.69 95.7 95.78 87.91 85.68 95.20 95.20 91.68
6 95.34 95.42 93.62 96.45 96.24 96.75 66.15 58.53 98.05 99.70 97.60
8 99.19 99.59 99.89 100.0 99.54 99.40 99.23 99.19 100.0 100.0 99.78

10 87.49 77.84 77.28 77.88 88.75 88.79 91.71 85.38 90.43 91.55 90.95
11 70.32 54.64 47.77 51.39 69.14 71.33 87.25 82.96 66.79 66.79 74.05
12 89.37 83.18 84.13 88.91 88.83 90.43 75.49 66.19 89.89 94.19 87.63
13 99.35 99.78 99.02 100.0 99.89 99.57 99.11 100.0 100.0 100.0 100.0
14 89.58 88.13 87.44 92.04 91.82 91.02 93.97 73.68 96.38 95.39 98.01
15 85.42 85.23 75.85 86.43 86.19 87.85 82.86 78.46 93.33 94.67 89.12

OA 83.52 73.40 69.74 75.42 82.82 83.85 85.62 73.07 84.81 85.19 86.87
AA 89.17 82.78 79.60 84.67 89.09 89.65 89.79 83.46 90.81 91.67 91.16

κ 0.819 0.715 0.678 0.736 0.812 0.822 0.839 0.707 0.834 0.838 0.856
Time (s) 455.6 ± 0.2 930.4 ± 1.3 903.7 ± 1.1 950.2 ± 0.9 2.7 × 103 ± 0.7 520.6 ± 1.0 941 ± 0.7 962 ± 0.6 3.7 × 103 ± 0.9 3.1 × 103 ± 0.8 4.0 × 103 ± 0.5



Remote Sens. 2016, 8, 985 14 of 24

The results in this experiment show that the proposed multi-layer assignment framework is
effective to boost classification performance with an improved accuracy of about 3% to 14% via a
multi-layer SR. The underlying mechanism of our methods accords with the observation that the
sparse coefficients obtained from the second layer lead to a total correct label assignment, where the
classes ranked within the top half of the minimal residuals are utilized to do dictionary assembling for
each test sample. As a result, the classification performance is guaranteed to increase, which clearly
denotes the effectiveness and superiority of the proposed mlSR assignment framework.
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Figure 5. Classification maps generated with 120 training samples per class on the Indian Pines image.
(a) Pseudocolor image (bands 50, 27 and 17); (b) ground truth; (c) training set; (d) test set, I SVM: 83.95%;
(f) SRC: 72.07%; (g) CRC: 69.73%; (h) ENRC: 75.42%; (i) KSRC: 82.49%; (j) KCRC: 82%; (k) APSRC:
86.21%; (l) APCRC: 72.88%; (m) mlSRC: 84.69%; (n) mlCRC: 85.26%; (o) mlENRC: 86.93%.

4.4. Experiment 2: Results on the University of Pavia Classification

The classification results of the proposed methods and baseline algorithms for the University
of Pavia are summarized in Tables 5 and 6. We compare the classification accuracies of our
approaches with traditional SRC and CRC, kernelized SRC and CRC and SVM on this dataset. As in
the Indian Pines experiments, our proposed mlSRC, mlCRC and mlENRC methods yield higher
classification accuracies than any other baseline algorithms. Observing Table 5, we can find that
three proposed mlSRC, mlCRC and mlENRC approaches are consistently better than all baseline
methods (except AP-based and mlAP-based) from a small number of training samples (five and ten
per class) to a larger one (one hundred and twenty per class). Specifically, as provided in Table 6
(mlAP-based and APSVM are not presented due to the limited column space), the OA, κ and AA for
our best approach, mlENRC, can be improved from 1.4% to 21.93%, 0.016 to 0.251 and 0.12% to 22.49%,
respectively. More specifically, the increases for mlENRC in OA, κ and AA are about 1.4%, 0.016%
and 0.12% than that of the fourth best method, KSRC, respectively. Interestingly, the mlAP-based



Remote Sens. 2016, 8, 985 15 of 24

methods (i.e., mlAPSRC and mlAPCRC) achieve better accuracies than their counterparts (that is,
APSRC and APCRC), respectively. This can be due to the better stability of proposed mlSR assignment
framework. Moreover, we observe that our proposed methods require the largest time, mainly due
to the cross-validation again from the second layer, but the classification performance is improved in
spite of relatively slight improvements. In addition, CRC and KCRC are relatively lower than SRC and
KSRC. For this dataset, small spatial homogeneity in this image might cause the training samples from
other classes also to participate in the linear representation of the test samples, which leads to some
misclassification. Visualization of the classification map using 120 training samples per class is shown
in Figure 6. The effectiveness of classification accuracies can be further confirmed by carefully visually
checking the classification maps. The obvious misclassification among the class of asphalt and the
class of shadow by CRC illustrates the inadequacy of the single-layer SR, which is greatly alleviated in
Figure 5m–o, and the best result is achieved in Figure 5o. Therefore, the proposed mlSR framework in
the classifiers helps in the discrimination of different types of land cover classes.
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Figure 6. Classification maps generated with 120 training samples per class on the University
of Pavia image. (a) Pseudocolor image (bands 46, 27 and 10); (b) ground truth; (c) training set;
(d) test set; (e) SVM: 89.43%; (f) SRC: 79.28%; (g) CRC: 67.51%; (h) ENRC: 82.08%; (i) KSRC: 87.61%;
(j) KCRC: 87.27%; (k) APSRC: 95.74%; (l) APCRC: 90.24%; (m) mlSRC: 85.63%; (n) mlCRC: 86.28%;
(o) mlENRC: 90.47%.
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Table 5. Overall classification accuracy (%) and standard deviation as a function of the number of training samples per class for the University of Pavia image.

Algorithm Training Samples per Class

5 10 20 40 60 80 100 120

SVM 62.87 ± 8.69 67.09 ± 3.80 76.48 ± 4.42 82.37 ± 2.14 85.81 ± 1.24 86.80 ± 0.87 88.34 ± 0.76 88.57 ± 0.67
SRC 59.20 ± 4.09 64.80 ± 4.13 69.11 ± 1.97 72.75 ± 1.96 76.64 ± 1.14 78.27 ± 1.07 79.17 ± 0.99 79.64 ± 1.09
CRC 52.54 ± 6.74 61.00 ± 3.78 64.13 ± 2.00 64.99 ± 2.31 66.88 ± 2.33 67.59 ± 1.29 67.91 ± 1.08 68.39 ± 1.28

ENRC 61.90 ± 5.50 65.89 ± 3.79 72.97 ± 3.59 76.41 ± 3.79 78.65 ± 3.26 80.29 ± 3.82 81.01 ± 3.96 82.08 ± 2.99
KSRC 61.08 ± 6.44 68.87 ± 4.01 77.85 ± 2.46 82.83 ± 1.81 85.27 ± 1.18 87.55 ± 0.70 88.25 ± 0.83 88.92 ± 0.63
KCRC 64.00 ± 4.58 69.53 ± 4.06 76.80 ± 2.16 81.44 ± 1.97 85.59 ± 1.50 86.32 ± 1.02 87.95 ± 0.55 88.56 ± 0.55
mlSRC 61.78 ± 2.11 68.68 ± 9.44 76.84 ± 9.63 81.76 ± 7.41 85.94 ± 6.18 86.84 ± 4.78 87.64 ± 1.92 88.67 ± 1.55
mlCRC 65.44 ± 3.48 69.72 ± 5.01 77.65 ± 2.57 82.68 ± 0.84 85.82 ± 2.05 87.65 ± 3.59 88.51 ± 1.71 89.65 ± 4.02

mlENRC 61.91 ± 3.09 68.97 ± 4.10 77.93 ± 1.51 82.85 ± 1.00 86.11 ± 5.39 87.79 ± 3.94 88.45 ± 2.54 90.32 ± 1.26
APSVM 63.80 ± 9.43 79.43 ± 2.10 86.60 ± 0.46 89.55 ± 1.62 92.09 ± 0.35 93.08 ± 0.05 94.66 ± 0.38 95.08 ± 0.06
APSRC 74.08 ± 3.55 82.22 ± 3.63 88.89 ± 1.97 89.87 ± 1.41 93.78 ± 0.85 94.20 ± 0.51 94.50 ± 0.49 95.29 ± 0.32
APCRC 72.53 ± 4.16 85.27 ± 1.83 88.32 ± 2.18 88.43 ± 0.81 90.13 ± 0.98 90.27 ± 0.51 91.14 ± 0.17 92.22 ± 1.48

mlAPSRC 82.06 ± 2.99 88.40 ± 2.71 92.64 ± 1.76 93.68 ± 1.27 96.37 ± 0.60 95.89 ± 0.36 96.13 ± 0.42 96.45 ± 0.38
mlAPCRC 84.35 ± 2.39 90.62 ± 2.32 92.08 ± 1.94 93.36 ± 0.97 94.19 ± 0.49 94.49 ± 0.44 94.61 ± 0.74 95.39 ± 0.41

Table 6. Class-specific accuracy (%), overall (OA), average (AA), kappa (κ), as well as computational time in seconds with 120 training samples per class for the
University of Pavia image.

Class SVM SRC CRC ENRC KSRC KCRC APSRC APCRC mlSRC mlCRC mlENRC

1 83.14 76.53 24.52 75.66 79.57 76.89 98.84 97.73 81.91 80.19 82.53
2 88.58 77.50 83.23 82.91 90.21 90.04 92.62 86.88 93.08 92.73 93.50
3 83.23 79.61 85.26 71.55 85.47 86.20 96.73 92.30 88.25 85.96 90.65
4 95.75 95.33 95.37 94.80 96.38 96.20 99.66 97.44 95.11 97.98 95.99
5 99.61 99.79 99.98 99.59 99.52 99.75 99.68 99.52 99.92 99.92 99.92
6 89.11 82.66 53.96 80.77 91.39 91.93 96.42 98.34 89.70 83.04 90.73
7 93.98 88.69 86.64 87.11 95.06 95.52 99.76 99.67 94.88 93.18 93.74
8 83.81 64.91 48.64 74.96 83.39 83.63 92.39 90.12 74.68 76.88 76.10
9 99.94 98.80 42.04 98.91 99.99 99.99 100.0 99.88 98.35 97.79 98.94

OA 88.34 79.64 68.39 82.08 88.92 88.56 95.29 92.22 89.65 88.67 90.32
AA 90.79 84.87 68.85 85.14 91.22 91.13 96.37 93.74 90.65 89.74 91.34

κ 0.855 0.759 0.626 0.783 0.861 0.857 0.940 0.903 0.870 0.858 0.877
Time (s) 420.6 ± 1.1 5.4 × 103 ± 0.4 5.5 × 103 ± 0.8 6.0 × 103 ± 0.7 4.7 × 103 ± 0.6 820.4 ± 0.3 3.7 × 103 ± 1.2 3.8 × 103 ± 0.7 7.4 × 103 ± 1.2 6.5 × 103 ± 0.5 7.8 × 103 ± 0.6
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A similar phenomena can be observed that the multi-layer assignment framework achieves
improvements of about 1.2% to 14% to a great extent. The highest accuracy is achieved by mlAPSRC
in all training ratios (the second best method is mlAPCRC), which may be associated with the fact that
the highly related samples after AP-based processing are chosen to produce a more discriminative
power of SRC. Another interesting case is found that AP/mlAP-based methods are always better than
non-AP-based ones.

4.5. Experiment 3: Results on the Salinas Classification

To validate the performance of the proposed mlSR, mlCRC and mlENRC with both
under-complete and over-complete dictionaries, we have tested over a wide range of numbers of
training samples, varying from five samples per class to 120 samples per class and the classification
results for this dataset are shown in Tables 7 and 8. Likewise, it can be observed from the results
that the proposed mlSRC, mlCRC and mlENRC give a consistently better performance than other
non-AP-based algorithms. It is obvious from Table 8 (mlAP-based and APSVM are not presented due
to the limited column space) that almost all of the class-specific accuracies are improved and hold for
interpreting the consistency of the three proposed mlSRC, mlCRC and mlENRC algorithms. Overall,
the OA, κ and AA for this dataset can be improved from 2.35% to 6.91%, 0.026 to 0.074 and 0.88% to
5.19%, respectively. Specifically, the increases in OA, κ and AA for the overall best method mlENRC
over the fourth best method KCRC are 2.35%, 0.026 and 0.88%, respectively. The best approach is
mlAPCRC, which reaches 97.67% when the training ratio is 120 per class. The proposed multi-layer
assignment framework and large structure in this HSI may account for this. The classification maps
shown in Figure 7 are generated using the proposed algorithms and baselines. Based on the visual
inspection in Figure 7, the maps generated from classification using the multi-layer SR framework are
less noisy and more accurate than those from using single-layer SR. For example, the classification map
of mlENRC (Figure 7o) is more accurate than the map of SVM (Figure 7e). The misclassification of SVM
mostly occurred between the class of grapes-untrained and vineyard-untrained. This is explained by
the fact that most of the classes in the image represent large structures, and less spatial features could
not well capture local structures. Similarly, the proposed methods are computationally intensive during
testing. In this case, multiple parameter fusion instead of cross-validation can be employed in order to
decrease the computational time. Therefore, the conclusion is that the classification performance of the
proposed approaches can be greatly improved via a novel multi-layer SR framework.

As the previous two HSI datasets, the multi-layer assignment framework can obtain an increase
of about between 2% and 11% by the introduction of multi-layer SR in the Salinas image, the proposed
multi-layer framework accumulates the classification results from different layers, which results in a
greater accuracy and is superior to the single-layer hard assignment due to unstable coefficients based
on the minimal residual alone. Therefore, the proposed mlSR framework is competent to improve
classification performance.
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Table 7. Overall classification accuracy (%) and standard deviation as a function of the number of training samples per class for the Salinas image.

Algorithm Training Samples per Class

5 10 20 40 60 80 100 120

SVM 80.46 ± 1.28 84.24 ± 2.66 86.32 ± 1.29 88.42 ± 1.30 89.64 ± 0.94 90.47 ± 0.68 90.82 ± 0.68 90.92 ± 0.52
SRC 80.12 ± 2.01 82.74 ± 1.58 83.84 ± 1.61 86.21 ± 0.64 86.50 ± 0.73 87.04 ± 0.47 87.50 ± 0.48 88.11 ± 0.54
CRC 76.10 ± 2.27 79.33 ± 1.75 83.45 ± 1.41 85.72 ± 0.90 86.21 ± 0.71 86.89 ± 0.55 87.28 ± 0.51 87.33 ± 0.35

ENRC 79.35 ± 2.79 83.50 ± 1.55 84.51 ± 1.42 86.57 ± 1.49 86.89 ± 1.28 87.78 ± 1.61 87.92 ± 1.51 88.70 ± 1.59
KSRC 81.16 ± 2.45 83.67 ± 2.14 85.11 ± 1.39 85.20 ± 1.12 85.51 ± 0.89 85.65 ± 2.25 86.67 ± 2.61 86.84 ± 2.06
KCRC 81.47 ± 1.66 85.79 ± 1.83 87.40 ± 1.51 89.20 ± 1.01 90.23 ± 0.88 90.74 ± 0.72 90.65 ± 1.00 91.40 ± 0.40
mlSRC 81.54 ± 2.78 86.37 ± 4.03 87.98 ± 1.87 89.42 ± 1.62 90.65 ± 2.17 91.09 ± 2.29 91.28 ± 1.92 91.57 ± 1.43
mlCRC 83.33 ± 1.55 86.84 ± 1.15 88.58 ± 0.56 90.35 ± 1.75 91.43 ± 2.61 91.87 ± 2.71 92.22 ± 2.50 93.05 ± 1.57

mlENRC 84.21 ± 2.77 87.31 ± 2.85 89.22 ± 1.57 89.79 ± 1.58 91.59 ± 1.67 92.03 ± 1.92 92.37 ± 1.30 93.75 ± 1.52
APSVM 82.88 ± 2.18 88.76 ± 1.46 93.81 ± 0.40 93.57 ± 0.74 94.75 ± 0.37 95.55 ± 0.26 96.61 ± 0.55 97.01 ± 0.15
APSRC 80.97 ± 2.09 86.30 ± 2.19 89.80 ± 1.06 91.70 ± 0.72 92.11 ± 0.83 93.25 ± 0.81 94.31 ± 0.28 94.54 ± 0.38
APCRC 80.35 ± 1.27 83.71 ± 4.19 87.42 ± 1.36 89.16 ± 0.99 90.28 ± 0.79 90.77 ± 0.30 91.47 ± 0.39 91.76 ± 0.40

mlAPSRC 87.23 ± 3.53 89.98 ± 2.81 93.92 ± 0.94 94.72 ± 0.72 95.54 ± 1.49 96.11 ± 0.88 96.31 ± 0.32 96.70 ± 0.20
mlAPCRC 89.61 ± 1.71 93.90 ± 1.10 95.26 ± 0.81 95.49 ± 0.49 96.50 ± 0.88 97.04 ± 0.20 97.32 ± 0.34 97.67 ± 0.19

Table 8. Class-specific accuracy (%), overall (OA), average (AA), kappa (κ), as well as computational time in seconds with 120 training samples per class for the
Salinas image.

Class SVM SRC CRC ENRC KSRC KCRC APSRC APCRC mlSRC mlCRC mlENRC

1 99.49 99.83 99.2 99.58 95.67 99.72 98.48 98.57 99.95 100 100
2 99.68 98.36 99.73 99.42 99.12 99.84 99.78 99.67 99.95 99.92 99.92
3 99.59 91.42 98.46 98.81 97.93 99.81 99.20 93.32 97.09 99.43 99.28
4 99.51 98.55 94.24 99.14 98.99 99.55 100.0 99.37 99.56 99.63 99.70
5 98.48 98.54 98.12 98.63 96.87 99.04 99.22 98.83 98.83 99.05 98.26
6 99.81 99.45 99.96 99.79 99.40 99.8 99.84 99.61 99.92 99.95 99.92
7 99.5 99.06 99.76 99.07 99.07 99.66 99.31 98.29 99.63 99.52 99.58
8 78.42 74.12 79.22 71.90 68.70 79.73 95.58 89.81 81.46 83.02 83.30
9 99.33 98.81 99.97 98.90 96.84 99.49 99.13 99.00 99.79 99.97 100
10 94.27 93.59 90.41 93.73 91.12 95.49 97.67 92.75 94.17 97.13 94.60
11 98.67 94.78 96.22 99.26 89.25 98.69 91.74 88.19 97.71 99.81 99.90
12 99.69 97.1 83.81 99.89 96.48 100 100.0 94.96 99.16 99.63 99.58
13 99.46 95.04 86.34 99.75 92.13 99.07 100.0 100.0 98.66 99.66 98.86
14 97.61 92.57 93.55 96.63 90.26 97.91 99.07 96.74 97.90 98.64 97.96
15 72.67 65.62 54.23 67.64 68.00 72.85 71.32 66.96 71.87 77.60 84.14
16 99.01 97.16 97.71 99.53 96.77 99.26 100.0 99.82 98.77 99.55 98.87

OA 90.92 88.11 87.33 88.70 86.84 91.40 94.54 91.76 91.57 93.05 93.75
AA 95.95 93.38 91.93 95.10 92.29 96.24 96.82 94.32 95.90 97.03 97.12

κ 0.901 0.871 0.863 0.878 0.858 0.906 0.940 0.910 0.908 0.924 0.932
Time (s) 487.2 ± 0.3 1.1 × 104 ± 0.4 0.9 × 104 ± 0.2 1.2 × 104 ± 0.6 7.3 × 104 ± 0.1 5.4 × 104 ± 0.4 0.8 × 104 ± 0.1 0.9 × 104 ± 0.1 2.2 × 104 ± 0.2 1.3 × 104 ± 0.6 2.4 × 104 ± 0.4
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scenes cannot be well measured by the single-layer SR. In the design of the SR-based model, we 
propose a multi-layer SR framework to produce discriminative SR for the test samples and achieve 
stable assignment distributions via the adaptive atoms’ selection in a multi-layer manner, then three 
proposed approaches, mlSRC, mlCRC and mlENRC, are developed. The proposed mlSRC, mlCRC 
and mlENRC are based on the same idea, but adopt different sparse optimization criteria. The 
different criteria bring out the difference among them for HSI classification, and the difference of the 
three proposed methods is related to the constructing manner of the sparse optimization solver. In 

Figure 7. Classification maps generated with 120 training samples per class on the Salinas image.
(a) Pseudocolor image (bands 47, 27 and 13); (b) ground truth; (c) training set; (d) test set; (e) SVM:
90.53%; (f) SRC: 88.73%; (g) CRC: 87.95%; (h) ENRC: 88.70%; (i) KSRC: 87.76%; (j) KCRC: 89.98%;
(k) APSRC: 92.51%; (l) APCRC: 91.29%; (m) mlSRC: 90.56%; (n) mlCRC: 91.35%; (o) mlENRC: 92.61%.

5. Discussion

The design of a proper SR-based classification framework is the first important issue we are
facing, as HSI datasets are complex, and the within-class variation and spatial details in complex
scenes cannot be well measured by the single-layer SR. In the design of the SR-based model, we
propose a multi-layer SR framework to produce discriminative SR for the test samples and achieve
stable assignment distributions via the adaptive atoms’ selection in a multi-layer manner, then three
proposed approaches, mlSRC, mlCRC and mlENRC, are developed. The proposed mlSRC, mlCRC and
mlENRC are based on the same idea, but adopt different sparse optimization criteria. The different
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criteria bring out the difference among them for HSI classification, and the difference of the three
proposed methods is related to the constructing manner of the sparse optimization solver. In order to
balance the classification performance and complexity of the framework, the three-layer SR is adopted.
Meanwhile, a filtering rule is heuristically exploited to identify the obviously misclassified samples
for the next layer SR; moreover, dictionary assembling and new cross-validation on the parameter
searching for each test sample are conducted. These enhancements lead to a substantial improvement
in performance and saves computational time during testing. Another important observation is that
our proposed methods are computationally intensive; this is mainly due to the fact that the optimal
regularization parameter for each test sample is searched via cross-validation again from the second
layer. Thus, the multiple parameter fusion is expected to be a good alternative to cross-validation in
computationally efficiency. Nevertheless, our proposed mlSR framework has another nice property that
can be easily plugged into any representation-based classification model using different HSI features
(e.g., spectral feature, spatial features and spatial-spectral features). Last, but not least, a structural
dictionary consisting of globally-spatial and spectral information is constructed to further boost the
classification performance.

Overall, by comparing the classification performances of Experiment 1, Experiment 2 and
Experiment 3, it is clear that the proposed multi-layer assignment framework is superior to the
single-layer competitors in terms of classification accuracy; this is expected. The improvements mainly
come from the proposed multi-layer SR framework, which confirms our former statement. It is
interesting to note that for small considered class, such as wheat (C13) in the Indian Pines image and
metal sheets (C5) in the University of Pavia, and for difficult class, for instance, grapes (C8) in the
Salinas image, the proposed methods exhibit very good generalization performance with an OA of
100% or of remarkable increase, which validates our observation well that mlSRC, mlCRC, mlENRC
and mlAP-based methods can improve the performance of the learnt model for a specific class.

In order to further assess the performance of the proposed method, we select some methods
that use joint/spectral-spatial sparse representation classification for comparison. Reference results
were provided in [34] for fused representation-based classification, sparse representation-based
nearest neighbor classifier (SRNN), the local sparse representation-based nearest neighbor classifier
(LSRNN), simultaneous orthogonal matching pursuit (SOMP) and the joint sparse representation-based
nearest neighbor classifier (JSRNN) proposed in [33]. Additionally, the reported accuracies from [28]
for joint sparse representation classification (JSRC), collaborative representation classification
with a locally-adaptive dictionary (CRC-LAD) and nonlocal joint CR classification with a
locally-adaptive dictionary (NJCRC-LAD) and from [36] for pixel-wise learning sparse representation
classification with spatial co-occurrence probabilities estimated point-wise without any regularization
(suffi-P, i.e., LSRC-P) and the patch-based version (pLSRC-P) are shown. Finally, logistic regression
via variable splitting and augmented Lagrangian-multilevel logistic (LORSAL-MLL), joint sparse
representation model (JSRM) and multiscale joint sparse representation (MJSR) in [29] are compared.

Tables 9–11 illustrate the classification overall accuracy of mlSRC, mlCRC, mlENRC, mlAPSRC
and mlAPCRC in comparison with the above methods for the Indian Pines, University of Pavia and
Salinas datasets, respectively. For a fair comparison, the same number of training samples in the
same image is kept. As can be seen from Tables 9–11, the classification accuracies in our approaches
are comparable or better than the accuracies of the other compared methods in the same image.
For the Indian Pines, the OA of mlENRC is 2.11% higher than CRC-LAD. For the Pavia University,
the OA of mlAPSRC is 3.71% higher than NJCRC-LAD and 5.74% higher than JSRNN, respectively.
For the Salinas, the improvement in OA of mlAPCRC over JSRM is 1.31%. The reason is that we use a
multi-layer sparse representation framework with methods that are different from each other, and the
classification performances are consistently improved.
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Table 9. Comparison of the methods, denoted as mlSRC, mlCRC, mlENRC, mlAPSRC and mlAPCRC,
with the results reported in (1) [34], (2) to (3) [33] and (4) to (5) [28], for the Indian Pines image.
The best OA results are marked in bold. FRC, fused representation-based classification; SRNN, sparse
representation-based nearest neighbor classifier; LSRNN, local sparse representation-based nearest
neighbor classifier; SVM, support vector machine; CRC-LAD, collaborative representation classification
with a locally-adaptive dictionary.

Method 10% Training Samples per Class

(1) FRC † 70.46
(2) SRNN 78.08

(3) LSRNN 80.69
(4) SVM 81.63

(5) CRC-LAD 84.47
mlSRC 84.70 ± 3.56
mlCRC 85.13 ± 4.11

mlENRC 86.58 ± 4.42
mlAPSRC 90.66 ± 0.77
mlAPCRC 86.72 ± 0.90

† FRC, here, is calculated using 10% training samples per class.

Table 10. Comparison of methods, denoted as mlSRC, mlCRC, mlENRC, mlAPSRC and
mlAPCRC, with results reported in (1) [34], (2) to (4) [33], (5) to (6) [36] and (7) to (9) [28]
for the University of Pavia image. The best OA results are marked in bold. FRC, fused
representation-based classification; LSRNN, local sparse representation-based nearest neighbor
classifier; SOMP, simultaneous orthogonal matching pursuit; JSRNN, joint sparse representation-based
nearest neighbor classifier; LSRC-P, pixel-wise learning sparse representation classification with
spatial co-occurrence probabilities estimated point-wise without any regularization (suffix-P) and the
patch-based version, pLSRC-P; JSRC, joint sparse representation classification; CRC-LAD, collaborative
representation classification with a locally-adaptive dictionary; NJCRC-LAD, nonlocal joint CR
classification with a locally-adaptive dictionary.

Method Training Samples per Class

50 120

(1) FRC 86.03
(2) LSRNN 80.90
(3) SOMP 87.53
(4) JSRNN 90.71

(5) LSRC-P * 88.66
(6) pLSRC-P * 90.14

(7) JSRC 83.29
(8) CRC-LAD 81.56

(9) NJCRC-LAD 91.21
mlSRC 83.77 ± 6.55 88.67 ± 1.55
mlCRC 84.23 ± 1.72 89.65 ± 4.02

mlENRC 84.45 ± 2.03 90.32 ± 1.26
mlAPSRC 94.92 ± 0.90 96.45 ± 0.38
mlAPCRC 93.51 ± 0.60 95.09 ± 0.41

* LSRC-P and pLSRC-P use far more than 120 training samples per class.
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Table 11. Comparison of methods, denoted as mlSRC, mlCRC, mlENRC, mlAPSRC and mlAPCRC,
with results reported in (1) to (4) [29] for the Salinas image. The best OA results of each table are marked
in bold. SVM, support vector machine; LORSAL-MLL, logistic regression via variable splitting and
augmented Lagrangian-multilevel logistic; JSRM, joint sparse representation model; MJSR, multiscale
joint sparse representation.

Method 1% Training Samples per Class

(1) SVM 89.33
(2) LORSAL-MLL 93.75

(3) JSRM 93.96
(4) MJSR 93.46
mlSRC 89.36 ± 1.54
mlCRC 90.16 ± 1.80

mlENRC 89.57 ± 1.61
mlAPSRC 94.53 ± 0.70
mlAPCRC 95.27 ± 0.48

6. Conclusions

In this paper, a novel multi-layer spatial-spectral sparse representation (mlSR) classification
framework and three mlSR methods, that is mlSRC, mlCRC and mlENRC, have been proposed for
HSI classification. In the proposed mlSR assignment framework, a test sample is represented in a
selective multi-layer manner that exploits the potentially multiple class label assignments and adaptive
selection of the sub-dictionary atoms. Furthermore, the mlSR assignment framework is integrated with
the filtering rule for the obviously misclassified samples to be selected to perform a multi-layer SR for
classification, which results in better performance and less computational complexity. The proposed
methods of mlSRC, mlCRC, mlENRC and AP/mlAP-based are tested on three real HSI datasets
and can achieve comparable or higher classification accuracy over several state-of-the-art methods
both quantitatively and qualitatively. The novelty of our proposed methods lie in the multi-layer
sparse representation framework and the effectiveness in modeling the discriminative information for
representation-based classification. As we know, the performance can be further improved. In our
future work, we will explore the multiple kernel SR assignment framework to enhance its performance.
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