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Simple Summary:
- A novel algorithm delivering high resolution soil moisture maps is developed by merging active
(SAR) and passive microwave.
- MAPSM is based on the concept of Water Change Capacity.
- A case study using MAPSM is presented by using the RADARSAT-2 and SMOS retrieved soil
moisture data products over Berambadi watershed, Karnataka, India.
- The algorithm parameters show scalability from the spatial resolution of 20 m to 2000 m.

Abstract: Availability of soil moisture observations at a high spatial and temporal resolution is
a prerequisite for various hydrological, agricultural and meteorological applications. In the current
study, a novel algorithm for merging soil moisture from active microwave (SAR) and passive
microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil
Moisture—uses a spatio-temporal approach based on the concept of the Water Change Capacity
(WCC) which represents the amplitude and direction of change in the soil moisture at the fine
spatial resolution. The algorithm is applied and validated during a period of 3 years spanning
from 2010 to 2013 over the Berambadi watershed which is located in a semi-arid tropical region
in the Karnataka state of south India. Passive microwave products are provided from ESA Level
2 soil moisture products derived from Soil Moisture and Ocean Salinity (SMOS) satellite (3 days
temporal resolution and 40 km nominal spatial resolution). Active microwave are based on soil
moisture retrievals from 30 images of RADARSAT-2 data (24 days temporal resolution and 20 m
spatial resolution). The results show that MAPSM is able to provide a good estimate of soil moisture
at a spatial resolution of 500 m with an RMSE of 0.025 m3/m3 and 0.069 m3/m3 when comparing it to
soil moisture from RADARSAT-2 and in-situ measurements, respectively. The use of Sentinel-1 and
RISAT products in MAPSM algorithm is envisioned over other areas where high number of revisits
is available. This will need an update of the algorithm to take into account the angle sampling and
resolution of Sentinel-1 and RISAT data.
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1. Introduction

A high spatial (sub-kilometric) and temporal (less than 7 days) resolution surface soil moisture
product is required for various hydrological, agricultural and meteorological applications [1].
Several studies have demonstrated soil moisture estimation from space using passive microwave
(e.g., [2–5]) and active microwave (scatterometer) (e.g., [4,6,7]) at a coarse (25–150 km) spatial resolution.
On the other hand, active microwave SAR data have been successfully used to retrieve the soil moisture
at a finer (less than 100 m) spatial resolution but with a coarse (approximately 3 weeks) temporal
resolution [8–11]. These studies pointed out the degradation of the retrieval due to the impact of
surface roughness and vegetation. Several studies suggested spatial downscaling of passive microwave
soil moisture products using physical and statistical approaches (e.g., [12–17]) or by assimilating coarse
scale soil moisture into a Land Data Assimilation System (LDAS) (e.g., [18]). However, few studies have
demonstrated merging the active and passive microwave soil moisture [4,19] to improve the spatial
and temporal availability at a moderate spatial resolution. The spatial downscaling using physical
approaches are based on the assumption that the evaporative flux is controlled by the amount of water
available in the top surface layer [12,15]. The spatial distribution of evaporative flux is computed
using the visible/infrared satellite products available from the satellites such as MODIS and Landsat.
These approaches were tested in arid and semi-arid environments and were successfully able to
spatially downscale coarse scale soil moisture. However, in a humid environment, evaporative flux is
controlled by the amount of available energy rather than the amount of available water. In addition,
these approaches rely primary on visible/infrared remote sensing data and thus are not suited for
regions with low visibility due to cloud cover.

Statistical approaches are used to downscale the soil moisture by linking the statistical distribution
of the fine scale to the coarse scale soil moisture using the auxiliary information such as Land Surface
Temperature (LST), Leaf Area Index (LAI), Land Cover (LC), Vegetation Water Content (VWC),
Soil Texture (ST) and precipitation etc. [13,14,20]. As for the physically based approaches they
mainly use visible/infrared data (LST, LAI, VWC) to express the spatial distribution and thus suffer
from cloud cover. Further, these approaches suffer when surface characteristics are changing due to
irrigation and crop rotation. LDAS approaches provide downscaled soil moisture by assimilating
coarse resolution remote sensing data to fine scale land surface models (e.g., [18,21,22]). They can be
considered as an optimal temporal interpolator for soil moisture observations but require extensive
calibration of the land surface model and fine tuning of the assimilation system. In addition, they
might propagate errors arising from forcing variables and model parameters into the downscaled
soil moisture.

Since independently active microwave (SAR) and passive microwave fail to deliver soil
moisture maps at the required spatio-temporal resolution and accuracy, it is of interest to combine
both products to attain this objective. Approaches using simultaneous active and passive
acquisitions [23–25] where proposed in the context of the Soil Moisture Active Passive (SMAP).
The baseline algorithm [25] disaggregates the coarse scale radiometer brightness temperature using
the fine resolution radar back-scatter. The near surface soil moisture is retrieved from the fine scale
brightness temperature. These approaches are not delivering currently operational products due to
the loss of the active component in SMAP. The reported approaches are different from the current
study as here we use a spatio-temporal algorithm. Since the soil moisture from active microwave is
not available for each passive microwave satellite overpass, there is need to temporally transform the
spatial variability observed by the active microwave while merging active and passive soil moisture.
In the current study this is attempted using a novel approach: Merge Active and Passive Microwave
Soil Moisture (MAPSM).

The developed model is applied and validated by using SMOS (passive microwave) and
RADARSAT-2 (active microwave) retrieved soil moisture over Berambadi watershed. It is located in
the southern part of India in a semi-arid tropical region. SMOS satellite launched in November 2009 is
an L-band passive microwave 2D interferometer mission from the European Space Agency (ESA)
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with the collaboration of the french space agency (CNES) and the Spanish centre for the development
of industrial technology (CDTI). SMOS provides soil moisture at a temporal resolution of 3 days at
the equator and at a nominal spatial resolution of 40 km [26]. Several validation studies provided
insights into the reliability and robustness of the soil moisture estimates from SMOS [2,27–29] and
over India [30]. RADAR SATellite-2 (RADARSAT-2) is an active microwave satellite mission operating
in C-band, capable of retrieving surface soil moisture at a spatial resolution of less than 100 m and
with a temporal resolution of 24 days [31]. Launched in December 2007, RADARSAT-2 provides
a long term dataset for the validation studies. Since the MAPSM uses only microwave satellite data,
it can be applied in all weather conditions. In the following parts of the paper a description of the
study area and the used satellite datasets are provided. The MAPSM model is presented in Section 3
along with the validation strategy. Sections 4 and 5 contain the results and discussion, respectively.
Section 6 contains a summary of the conclusions of the study.

2. Study Area and Datasets

2.1. The Berambadi Watershed

The availability of extensive in-situ soil moisture and RADARSAT-2 (active microwave) data in the
Berambadi watershed (Figure 1) makes it suitable for the validation of soil moisture retrieval algorithms.
The watershed is located in the Chamrajnagar district of the Karnataka state in South India. An area
of 625 km2 (25 km × 25 km) covered by the RADARSAT-2 images is selected for the current study.
The study area is also part of the AMBHAS project (www.ambhas.com) and the environmental
observatory BVET (http://bvet.obs-mip.fr/). The climate is semi-arid and classified as AWh
(Equatorial, Desert/arid, Dry) according to the latest Köppen-Geiger world climate classification [32].
Elevation in the study area varies approximately from 700 m to 1300 m. Soil texture in the study area
is comprised of Sandy Clay, Clay, Sandy Clay Loam, Clay Loam, Sandy Loam and Loamy Sand soil
types (see Figure 1). The soil map was prepared by the Karnataka State Remote Sensing Application
Centre (KSRSAC) at a scale of 1:50,000 based on the panchromatic and Linear Imaging Self Scanner
(LISS) III, Indian Remote Sensing (IRS) satellite images [33]. The average rainfall provided by the
Indian Meteorological Department over the period from 2010 to 2013 is approximately 800 mm.

Figure 1. Soil map of the study area near Gundlupet city along with the position of the soil moisture
(SM) monitoring plots, the center of the SMOS grid point and the boundary of the Berambadi watershed.

www.ambhas.com
http://bvet.obs-mip.fr/
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Figure 2 shows the spatial distribution of the nominal (bare soil and low vegetation) and forest
land cover used in the SMOS Level 2 soil moisture retrieval algorithm [5]. The Western part of the
study area is covered by the forests of the Bandipur National park. The remaining part is mainly
agricultural land where crops such as sunflower, finger millet, maize, marigold, sorghum, lentils and
groundnut etc. are grown [34,35]. There are mainly two cropping seasons in the study area: (i) Rabi
(winter) from October-November to February–March; and (ii) Kharif (summer) from May–June to
September–October.

Figure 2. Land-cover map for the study area as considered in the SMOS retrieval algorithm. “NO” is
the nominal surface composed of bare soil and low vegetation and FO is for the forest land-cover.

2.2. Satellite Soil Moisture Datasets

For the active microwave, 30 RADARSAT-2 retrieved soil moisture maps were available over
the study area based on the previous study from [30]. Details of the RADARSAT-2 maps are given
in Table 1. They approximately cover the entire study area. Soil moisture was retrieved using the
Cumulative Density Function (CDF) transformation at a spatial resolution of 20 m. The details of
the CDF transformation along with the multi-scale validation of the retrieved soil moisture using
measured soil moisture in 50 plots (1262 data) and SMOS soil moisture are given in [30]. Comparison of
the retrieved soil moisture with the field data showed a Root Mean Squared Error (RMSE) ranging
from 0.02 to 0.06 m3/m3 for the majority of plots.

SMOS (ESA Level 2 User Data Product v 551) soil moisture products for ascending and descending
orbits are used for the passive microwave soil moisture data. The Discrete Global Grid (DGG) center
lying inside the study area (ID number—3160498) is shown in the Figure 1. The soil moisture data
are filtered for Radio Frequency Interferences (RFIs), data quality index (DQX) and Chi2 probability
by excluding data associated with higher than the specified threshold of 10%, 0.05 m3/m3 and
0.95 probability, respectively. This resulted in the exclusion of approximately 5% and 4% data due
to the RFIs and DQX/Chi2, respectively. As presented in Table 1, 18 (10 for Descending and 8 for
Ascending overpass) SMOS data were available concurrently with the RADARSAT-2 overpasses.
Though the impact of RFI is sensibly different between ascending and descending overpasses, all data
is used together to enhance the temporal availability. A good temporal behaviour between average
RADARSAT-2 soil moisture and SMOS soil moisture was observed with an RMSE of approximately
0.06 m3/m3 and Pearson’s correlation coefficient of approximately 0.9 [30].
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Table 1. Details of the used RADARSAT-2 and SMOS soil moisture products. The up-scaled
RADARSAT-2 SM is at a spatial resolution of 25 km.

No. Date
Mean

RADARSAT-2
SM (m3/m3)

SMOS
SM

(m3/m3)
No. Date

Mean
RADARSAT-2
SM (m3/m3)

SMOS
SM

(m3/m3)

1 22 December 2009 0.127 - 16 17 October 2011 0.192 0.228
2 15 January 2010 0.119 - 17 10 November 2011 0.134 -
3 8 February 2010 0.107 0.067 18 7 July 2012 0.095 0.123
4 4 March 2010 0.111 0.125 19 31 July 2012 0.096 0.014
5 21 April 2010 0.138 - 20 24 August 2012 0.105 -
6 15 May 2010 0.121 0.049 21 17 September 2012 0.125 0.045
7 12 September 2010 0.192 - 22 11 October 2012 0.127 -
8 6 October 2010 0.161 0.183 23 4 November 2012 0.191 0.298
9 30 October 2010 0.184 0.245 24 28 November 2012 0.151 0.165

10 26 May 2011 0.205 0.205 25 8 June 2013 0.142 0.154
11 19 June 2011 0.198 - 26 2 July 2013 0.162 0.176
12 13 July 2011 0.159 - 27 26 July 2013 0.199 0.219
13 6 August 2011 0.173 0.169 28 19 August 2013 0.167 0.107
14 30 August 2011 0.147 - 29 12 September 2013 0.174 -
15 23 September 2011 0.113 0.028 30 6 October 2013 0.130 -

3. Methodology

3.1. Merging Active and Passive Microwave Soil Moisture

This section contains the details of the Merging Active and Passive microwave Soil Moisture
(MAPSM) algorithm. Figure 3 shows the spatial and temporal resolution of soil moisture products
commonly available from active and passive microwave satellites. MAPSM attempts to combine the
strength (high spatial resolution) of active microwave with the strength (high temporal resolution)
of passive microwave to obtain a high spatio-temporal resolution soil moisture. Hereafter, the fine
(active microwave) and coarse (passive microwave) data are represented respectively by an A and a
P subscripts. The soil moisture at the fine scale at time t (SMt

M) can be expressed in terms of the most
recent fine scale soil moisture (SMt−1

A ), the WCC at time t (WCCt
A), the fine scale spatial heterogeneity

index (SHA), the coarse scale soil moisture at time t (SMt
P) and the most recent coarse scale soil

moisture (SMt−1
P ) in the following manner:

SMi,t
M = SMi,t−1

A +
WCCi,t

A
SHi

A

(
SMj,t

P − SMj,t−1
P

)
(1)

Here, the superscript i represents a RADARSAT-2 pixel within a SMOS pixel. The spatial
variability is represented by two distinct components: (WCCi,t

A ) the time variant and (SHi
A) the

time invariant. Note that the impact of the time interval between t and t − 1 is analysed in the Results
and discussion section. Equation (1) is applied independently to the each coarse scale (SMOS) grid point.

The time invariant SHi
A describes the intrinsic surface heterogeneity. It takes into consideration the

combined effect of three sources of spatial heterogeneity (soil texture, land cover and antenna footprint)
present within a SMOS pixel and that can be computed as in [28]:

SHi
A =

MAFi
ALCi

ACFi
A

MAFi
ALCi

ACFi
A

(2)

where, the overbar represents the average over space. MAFA is the mean antenna footprint, LCA is
the land cover value (1 for the nominal surfaces and 0 for the forest surfaces), CFA is the clay fraction,
which is used to account for soil texture variability. The mean antenna footprint for SMOS has a value
of 1 in the center of SMOS pixel, and decreases with distance based on the antenna pattern. It has
a value of around 0.5 at a distance of 20 km [5].
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Figure 3. Spatial and temporal resolution using a logarithmic scale for the active microwave (SAR),
passive microwave (SMOS, SMAP) and MAPSM soil moisture products.

The time variant WCC combines two information that need to be identified: the direction
(drying/wetting) and the magnitude of change. When the soil at coarse scale goes into wetting
(or drying) state over time, it does not imply that all the fine scale pixels lying within will follow
the same magnitude and direction of change. We propose to model the number of pixel following
the opposite sign of change as a function of the magnitude of change at coarse scale by assuming
a generalised logistic function in the following way:

Fwet = FPW +
1 − FPW − FPD

1 + exp
(
−k(SMt

P − SMt−1
P )

) (3)

Fdry = 1 − Fwet (4)

where, Fwet is the fraction of pixel at fine scale undergoing wetting, Fdry is the fraction of pixel at fine
scale undergoing drying, FPW is the fraction of permanently wet pixel (e.g., perennial water bodies),
FPD is the fraction of permanently dry pixel (e.g., urban sealed surface), and k is a calibration coefficient
that represents the heterogeneity of temporal change at fine scale. Theoretically, parameter k could
vary between 0 to ∞. This impact of k on Fwet is shown in Figure 4 for three values (0, 70, 1000) of
parameter k. The value of k equal to 0 means that irrespective of the magnitude and direction of change
in the coarse scale soil moisture (SMt

P − SMt−1
P ), a constant number of pixels (= 0.5(1 − FPW − FPD))

undergo drying and wetting state. A very large value of k means that all the pixels will endure drying
when soil is drying at coarse scale and vice versa. A value of k between 0–∞ ensures that even when
no change in the coarse scale soil moisture is observed heterogeneity of the change at fine scale can
be modeled.

The group of pixels that will undergo wetting is identified using the value of Fwet and the CDF of
the relative soil moisture (RSM) defined in:

RSMi,t =
SMi,t − SMi

min
SMi

max − SMi
min

(5)

where, SMi
min and SMi

max are the minimum and maximum observed soil moisture for a pixel i.
A schematic of the identification process of pixels undergoing wetting is shown in Figure 5.
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First, the CDF of the relative soil moisture (RSM) is computed. Then, a threshold of the relative soil
moisture for the pixels undergoing drying/wetting (τrsm) is computed by the following equation,

τrsm = F−1
RSM(Fwet) (6)

where, F−1
RSM is the inverse CDF transformation of relative soil moisture. The pixels having a relative

soil moisture less than τrsm will then undergo wetting and rest of the pixels will undergo drying.

Figure 4. Conceptual relationship between the fraction of surface undergoing wetting at fine scale
(Fwet) and the temporal change in the coarse scale soil moisture (SMt

P − SMt−1
P ) for three different k

values (0, 70, 1000).

Two constraints for WCC are needed and can be written as follows:

• Mean of the WCCi,t
A over space is equal to one

WCCi,t
A = 1 (7)

• WCCi
A is 0 when the soil moisture is equal to the threshold of the relative soil moisture for the

pixels undergoing drying/wetting (τrsm)

WCCi
A = 0 when SMi

A = τrsm (8)

A linear model is proposed to model the WCCi,t
A as a function of RSMi,t−1

A

WCCi,t
A = a + bRSMi,t−1

A (9)

This equation can be solved for these two unknowns by using the two constraints mentioned in
the Equations (7) and (8). The resulting solution is:

WCCi,t
A =

RSMi,t−1
A − τrsm

RSMi,t−1
A − τrsm

(10)

where, overbar represents the mean over space. Note that even though the relationship between WCC
and RSM is assumed to be linear, the overall model is non-linear due to τrsm.
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Figure 5. Computation process of the threshold of the relative soil moisture (τrsm) to identify pixels
undergoing wetting based on the CDF of relative soil moisture and Fwet.

A schematic showing the behaviour of WCC with respect to the RSM is shown in Figure 6.
Two scenarios are depicted: (i) assuming that soil is undergoing drying at the coarse scale; and (ii) the
soil is undergoing wetting at the coarse scale. A threshold (τrsm) of 0.7 and 0.3 was assume for the
wetting and drying state respectively. The behaviour of one dry (assuming RSM = 0.15) and one wet
pixel (assuming RSM = 0.9) is also shown in the figure. It can be seen that for both the drying and
wetting state, the WCC shows a value of 0 when RSM is equal to the τrsm. Further, the pixels show
different magnitude of change for drying and wetting events, e.g., a relatively wet pixel (RSM = 0.9)
show the magnitude of WCC equal to 1.0 for wetting and 3.0 for drying. This is consistent with the
fact that the equilibrium soil moisture at a given suction is greater in desorption (drying) than in
absorption (wetting). Therefore, a pixel having higher water content in soil will have more capacity to
loose water under a drying event and will have a less capacity to gain water under a wetting event.
Similarly, a relatively dry pixels shows a higher capacity to gain water under a wetting event and lesser
capacity to loose water under a drying event. The fact that the change of soil moisture depends not
only on the previous state but also on its direction chows similarities with the phenomena of hysteresis
observed in unsaturated soil [36], even though the process itself is not modelled in MAPSM.

Figure 6. Conceptual relationship showing the behaviour of WCC with respect to the RSM for a dry
and a wet pixel.
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Note that prior to merging the active and passive microwave soil moisture, they need to be
compared and corrected for bias [19]. The quantile matching approach has been used in the literature
to correct the bias [19,37]. It has been applied in the current study to adjust the SMOS soil moisture
against the RADARSAT-2 soil moisture.

Figure 7 shows the schematic of the MAPSM algorithm. The step of the MAPSM model can be
summarized as follows:

1. correct the bias in SMOS soil moisture using the up-scaled RADARSAT-2 soil moisture,

2. compute the bias corrected change in soil moisture at coarse scale
(

SMt
P − SMt−1

P

)
,

3. calibrate the parameter k using the entire SMi,t
A data,

4. compute Fwet and Fdry from Equations (3) and (4) respectively,
5. compute τrsm from Equation (6),
6. compute WCCi,t

A from the Equation (10) for each RADARSAT-2 pixel and time t, and

7. compute SMi,t
A from the Equation (1) for each RADARSAT-2 pixel and time t.

Steps 1–3 are required only once for a SMOS pixel, while the remaining steps need to be performed
iteratively for each time step t.

Figure 7. Schematic of the MAPSM algorithm. Subscript A and P are for active and passive
microwave, respectively. Numerals represent the step described in the text.

3.2. Design of the Experiments

Four soil moisture disaggregation experiments are performed to evaluate the impact of the
mismatch between soil moisture obtained from active and passive sensors at the coarse scale (P)
spatial resolution. The description of these experiments is given Table 2. The arithmetic mean of the
fine scale soil moisture (SMA) is assumed to be representative of the coarse scale soil moisture (SMP) in
the experiments denoted by an “F” as first letter (experiments No. 1 and 2 in the table). And, first letter
is denoted by “C” when the actual coarse scale soil moisture is used (experiments No. 3 and 4 in
the table). Two scenarios of estimation of WCCt

A are considered:
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1. WCCt
A equal to one. In this case the change in the coarse scale soil moisture is equally

redistributed across the fine scale pixels (F-Linear and C-Linear).
2. WCCt

A computed using the calibrated k parameter (F-Cal and C-Cal). The k is calibrated using
the time series of soil moisture from active microwave at fine scale.

Table 2. Description of the soil moisture disaggregation experiments.

No. Experiment Name SMP k

1 F-Linear Mean of SMA –
2 F-Cal Mean of SMA Calibrated
3 C-Linear SMP –
4 C-Cal SMP Calibrated

3.3. Validation Strategy

Validation strategy for the MAPSM model is shown in Figure 8. MAPSM is applied when data
from both RADARSAT-2 and SMOS are available, but without using the SMi,t

A . Then, the model is
tested by comparing the computed SMi,t

M with the RADARSAT-2 retrieved soil moisture (SMi,t
A ) at the

same date. Performance of the model output is assessed in terms of correlation coefficient and RMSE.

Figure 8. Validation strategy for the MAPSM model. Subscript A, P and M stands for the active
microwave, passive microwave and MAPSM respectively.

4. Results

4.1. Bias Correction at Coarse Scale

The comparison of soil moisture at coarse scale from the two sensors showed a negligible
bias, however there was a significant difference in the range i.e., soil moisture is varying from
approximately 0.10 to 0.21 m3/m3 for RADARSAT-2 while it is varying from 0.01 to 0.3 m3/m3

for SMOS. This difference in range is corrected using the quantile matching. A total of 18 soil moisture
data are available concurrently from SMOS and RADARSAT-2 data (see Table 1). Twelve data are used
for the calibration and the remaining six are used for the validation. The comparison for the calibration
and validation period is shown in the Figure 9. The RMSE was 0.021 m3/m3 and 0.018 m3/m3 for the
calibration and validation period, respectively, which is much lower when compared to the uncorrected
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values of approximately 0.06 m3/m3. After correction, the RMSE was quite low given the fact that
SMOS and RADARSAT-2 apperate at different frequencies and technologies (passive L-Band and
active C-Band).

Figure 9. Comparison of the bias corrected SMOS soil moisture with upscaled RADARSAT-2 soil
moisture for the calibration and validation period.

4.2. Estimation of Parameter k

Since there is no major water body or major urban area in the study area, FPW and FPD are assumed
to be equal to 0. Parameter k is computed by least square fitting the objective function in terms of
RMSE using the soil moisture retrieved from the RADARSAT-2. To avoid the effect of discrepancy in
the soil moisture from two different sensors, the soil moisture at coarse scale is computed by upscaling
the fine scale soil moisture. Since a pair of consecutive RADARSAT-2 images are required to compute
Fwet, 29 data values are available for the estimation of parameter k. Out of 29 data values, 18 are used
for the calibration and the remaining 11 are used for the validation. The k parameter is estimated
at the spatial resolution varying from 20 m to 2000 m. No significant difference is observed in the
RMSE for the calibration and validation periods at all the studied spatial resolutions. As an example,
the relationship at a spatial resolution of 1000 m along with the fitted sigmoid model is shown in
the Figure 10. The estimated value of k is found to be 96.8 with a standard error of 12.98 at a spatial
resolution of 1000 m. Based on the result obtained in Figure 10, it can be inferred that not all fine scale
pixels follow the same sign of change (drying/wetting) observed at the coarse scale. The fraction
of area is dependent on the magnitude of change at the coarse scale. A higher magnitude shows
a larger fraction.

The behaviour of the k parameter with respect to the spatial resolution is shown in Figure 11.
Parameter k showed an exponential behaviour with the spatial resolution. The fitted exponential curve
is also shown in the figure. Parameter k was also estimated using the soil moisture data measured
in the field plots. The value of k for the field data is found to be 31.38 with a standard error of 3.27,
which is close to the value obtained using RADARSAT-2 soil moisture at a spatial resolution of 50 m
(approximate spatial resolution of the field plots).
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Figure 10. Computed and observed Fwet (fraction of surface area undergoing wetting at fine scale) at
a spatial resolution of 1000 m from the retrieved RADARSAT-2 soil moisture as a function of the change
in the soil moisture at coarse scale.

Figure 11. Observed variation of the parameter k with the spatial resolution. Fitted exponential curve
is also shown.

5. Discussion

5.1. Validation Using RADARSAT-2 SM

First the coherency of the soil moisture spatial patterns at fine scale is evaluated by analysing
the auto-correlation between two consecutive SMA images obtained from RADARSAT-2, which is
shown in Figure 12. The figure shows also the auto-correlation at a spatial resolution of 1000 m.
The behaviour of the auto-correlation is observed to be similar at the spatial resolution varying
from 20 m to 2000 m, with the difference in the relative magnitude of the auto-correlation function
(not shown here). In most of the cases the auto-correlation is observed to be significant (higher
than 0.368, exp(−1)). The auto-correlation is observed to be insignificant when the gap between
two consecutive image is higher than 24 days (marked by 1, 2, 4 and 7 in the figure) or when there is a
change in the cropping season (marked by 3, 5, 6 and 8 in the figure). The impact of the change in soil
roughness from farming practices could be a possible reason for the low correlation during change
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of cropping season. It can be inferred that the use of a time invariant spatial variability over a longer
period as in Blöschl et al. [13] is insufficient, and that a time variant spatial variability is required.
Here it is estimated by using the recently available active microwave soil moisture data. In the case
of a change in the cropping season, once a RADARSAT-2 image becomes available, it can be used
to obtain the merged soil moisture for the remaining cropping season, and hence only for a short
(less than the temporal resolution length) duration the model may not work. A total of 20 RADARSAT-2
images are found to be suitable and are selected for the F-Linear and F-Cal experiments. Out of these
20 images, only 8 images have the SMOS and RADARSAT-2 soil moisture concurrently available.
This gives 7 pair of images suitable for the C-Linear and C-Cal experiments.

Figure 12. Auto-correlation among two consecutive SM images of RADARSAT-2 at a spatial resolution
of 1000 m.

For each of the experiments, MAPSM is run at the spatial resolution of 20 m, 50 m, 100 m, 250 m,
500 m and 1000 m. RMSE is computed for each of these experiments for every spatial resolution and
mean of the RMSE is used to analyse the effect of the spatial resolution on the retrieval accuracy of
MAPSM at different spatial resolutions. The mean RMSE for the spatial resolution of 20 m, 50 m, 100 m,
250 m, 500 m and 1000 m is shown in the Figure 13 for all the four experiments. For all the experiments,
RMSE showed a monotonically decreasing behaviour. RMSE showed a relatively stable behaviour at
higher resolution than 250 m. Merlin et al. [38] assessed the relation between spatial resolution and
RMSE in the Dispatch algorithm and found same behavior as MAPSM. The application of Dispatch
over the current site was hampered by cloud cover. There was difference in the mean RMSE of F
and C experiments for all the spatial resolution tested, which showed the impact of difference in the
soil moisture retrieved using active and passive microwave satellites. In the current study, the active
and passive satellites have different (C for active and L for passive) bands. Use of a similar band for
both the active and passive microwave might bring them closer. Das et al. [25] showed lower RMSE
(0.01–0.02 m3/m3) values when using simultaneous radar and radiometer L-Band acquisition. In the
current status of existing space platforms it is not possible to test such exercise. Since, there is no
significant difference in the mean RMSE obtained at a spatial resolution of 500 m and 1000 m from
MAPSM, henceforth only the results for the spatial resolution of 500 m are presented.
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Figure 13. Behaviour of the observed mean RMSE for all the four experiments of MAPSM with the
spatial resolution.

The comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at
a spatial resolution of 500 m for the F-Linear experiment is shown in the Figure 14. The merged soil
moisture showed a good behaviour with the RADARSAT-2 retrieved soil moisture having a median
(over time) RMSE of 0.023 m3/m3 and a median (over time) correlation of 0.68. The comparison for
the F-Cal experiment is shown in the Figure 15. The median (over time) of the RMSE and correlation
for this experiment is found to be 0.019 m3/m3 and 0.66, respectively. The F-Cal approach is found to
be moderately superior to the F-Linear in terms of RMSE, while correlation is observed to be nearly
same. Availability of only 20 images hinder the identification of the superiority of one experiments
over another in terms of seasonality. Since mean of the fine scale soil moisture is assumed as the proxy
of coarse scale soil moisture for these two experiments, the bias is found to be 0.

The comparison of the observed and estimated Fwet from F-Linear and F-Cal experiments is shown
in the Figure 16. F-Linear experiment fails to capture the percentage of pixels undergoing drying or
wetting state, which is expected. The fraction of pixels undergoing drying or wetting state are captured
quite well by the F-Cal experiment. Though the difference in terms of RMSE is lesser, the improvement
in terms of capturing the change in the state of pixels is significant.

Comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at a spatial
resolution of 500 m for the C-Linear experiment is shown in the Figure 17. The comparison for the
C-Cal experiment is shown in the Figure 18. The median (over time) of the RMSE is observed to be
approximately same for both the experiment having a value of 0.026 m3/m3. The median (over time) of
correlation is also observed to be approximately same having a value of 0.63 and 0.70 for the C-Linear
and C-Cal experiments, respectively. Since MAPSM conserves the mean irrespective of the value of
parameter k, the same bias is observed in both the experiments. Since, the RSM has the lower limit of
0 and upper limit of 1, the model output is bounded by observed SMi

min and SMi
max, as observed in

the results presented in two subfigures of the Figure 18.
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Figure 14. Comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at a
spatial resolution of 500 m for the F-Linear experiment.

The comparison of the observed and estimated Fwet from C-Linear and C-Cal experiments is
shown in the Figure 19. F-Linear experiment fails to capture the percentage of pixels undergoing
drying or wetting state. They are well captured in the C-Cal experiment. This suggests that though
there is minor improvement in the RMSE in the C-Cal experiment over the C-Linear experiment,
the improvement in terms of capturing the dynamics of the pixels state is significant. Among the C and
F experiments, overall the Cal showed similar to moderate improvement of RMSE, and a significant
improvement of Fwet.



Remote Sens. 2016, 8, 990 16 of 23

Figure 15. Comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at a
spatial resolution of 500 m for the F-Cal experiment.

Figure 16. Comparison of the observed and estimated Fwet for the F-Linear and F-Cal experiments at
a spatial resolution of 500 m.
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Figure 17. Comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at
a spatial resolution of 500 m for the C-Linear experiment.

Figure 20 shows the spatial distribution of the observed soil moisture along with the
that of C-Linear and C-Cal experiments for two events (19 June 2011–13 July 2011 and
29 September 2011–17 October 2011). Both the experiments are able to clearly identify the wet
valley region. C-Cal showed relatively smoother spatial behaviour compared to C-Linear for the
two events. Since the first event is a systematic dry event, C-Linear showed a relatively better
spatial distribution compared to the observed spatial distribution, while for the second event
better performance is shown by the C-Cal experiments. Comparison of the spatial distribution
for the F-Linear and F-Cal experiment for the two events (6 October 2011–30 October 2011 and
2 July 2013–26 July 2013) with the observed data is shown in the Figure 21. Here also Cal experiments
showed smoother spatial behaviour as was the case for F experiments. While comparing to
the observed spatial distribution, a relatively better comparison is observed in the case of first
event than the second event. This is because the bias was relatively low for the first event
(19 June 2011–13 July 2011).
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Figure 18. Comparison of the merged soil moisture with the RADARSAT-2 retrieved soil moisture at
a spatial resolution of 500 m for the C-Cal experiment.

Figure 19. Comparison of the observed and estimated Fwet for the C-Linear and C-Cal experiments.
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Figure 20. Comparison of the spatial distribution for the observed and MAPSM soil moisture at
a spatial resolution of 500 m for the C-Cal and C-Linear experiments for two events. Observed spatial
distribution on 19 June 2011 is used to retrieve the soil moisture for 13 July 2011 and 23 September 2011
is used for 17 October 2011.

Figure 21. Comparison of the spatial distribution for the observed and MAPSM soil moisture at
a spatial resolution of 500 m for the F-Cal and F-Linear experiments. Observed spatial distribution on
6 October 2010 is used to retrieve the soil moisture for 30 October 2010 and 2 July 2013 is used for the
26 July 2013.

5.2. Validation Using Field Measured SM

The MAPSM soil moisture is compared with the averaged field measured soil moisture at
the spatial resolution of 500 m. The number of plots falling into the grids varies from 1 to 3.
The comparison for the entire study period is presented in the Figure 22. MAPSM showed a reasonable
estimation of soil moisture at a spatial resolution of 500 m, with an RMSE of 0.069 m3/m3 and
a correlation coefficient of 0.76. A slight overestimation (0.03 m3/m3 for the lower range of soil moisture,
and an important underestimation for the higher range of soil moisture is observed. In this case the
MAPSM data presents a plateau at relatively low soil moistures (0.22), this may be due to saturation
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effect observed in the SAR retrievals [39] and the propagation of this saturation to SMOS data by the
CDF matching.

Figure 22. Comparison of the MAPSM soil moisture with the field measured soil moisture at the spatial
resolution of 500 m for the entire study period.

6. Conclusions

In the current paper, an algorithm for Merging Active and Passive microwave Soil Moisture
(MAPSM) is developed. The algorithm merges the soil moisture retrieved from active (fine spatial
scale and coarse temporal resolution) and passive (coarse spatial scale and fine temporal resolution)
microwave satellites. The algorithm relies on temporally transforming the fine scale information based
on the innovative concept of water change capacity. This concept expresses the magnitude at which
the soil at fine scale is impacted by a soil moisture change at the coarser scale.

From the RADARSAT-2 retrieved and field measured soil moisture data, it was observed that
when the soil moisture at a coarse scale undergoes wetting, not all the pixels at fine scale will endure
wetting and vice-versa. The fraction of pixels following the similar trend as of coarse scale is observed
to be dependent on the magnitude of change at the coarse scale. A sigmoid curve based model
is found to be suitable to model this behaviour. This model is parsimonious, it requires only one
calibration parameter. The effect of the spatial resolution on this parameter is also studied.

The scale parameter (k) in MAPSM model showed an exponential behaviour with the spatial
resolution, suggesting the applicability of MAPSM over a wide range of spatial resolutions. A value of
k = 80 was obtained for a spatial resolution of 500 m for the Berambadi watershed. MAPSM model is
applied and validated using the retrieved soil moisture maps from the RADARSAT-2 data for different
spatial resolutions. The model is able to estimate the fine scale soil moisture quite reasonably. A mean
RMSE of around 0.02 m3/m3 is observed when there was no difference in the soil moisture from active
and passive microwave, while it increased to 0.03 m3/m3 when differences were present. As the model
is parsimonious, it has the potential to be applied globally in merging soil moisture from active and
passive microwave satellites. A potential shortcoming of the MAPSM model is that it cannot model the
impact of forcing if applied only over a fraction of area e.g., if irrigation is applied over only a small
portion of the watershed. However, as after some time (24 days in the case of RADARSAT-2) a new
spatial information would be available, the impact of the irrigation is mitigated afterwards. Work is
in progress to apply the MAPSM methodology to Sentinel-1 and RISAT missions. RISAT presents
a low revisit frequencies which increases the interest for MAPSM. It is the case also for Sentinel-1
mission outside the European continent. The algorithm can also be used to merge SMOS / SMAP and
Sentinel-1 data. Nevertheless these applications will need specific updates of the algorithm to take into
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account for example the angle sampling and resolution of Sentinel-1 and RISAT data or the mismatch
between SMOS and SMAP.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF Cumulative Density Function
CF Clay Fraction
CNES Centre National d’Etudes Spatiales
DQX data quality index
ESA European Space Agency
LAI Leaf Area Index
LC Land Cover
LDAS Land Data Assimilation System
LST Land Surface Temperature
MAF Mean antenna footprint
MAPSM Merging Active and Passive microwave Soil Moisture
RADARSAT-2 RADAR SATellite-2
RFI Radio Frequency Interference
RISAT Radar Imaging SATellite
RMSE Root Mean Squared Error
RSM Relative Soil Moisture
SAR Synthetic Aperture Radar
SH Spatial heterogeneity index
SM Soil Moisture
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
ST Soil Texture
VWC Vegetation Water Content
WCC Water Change Capacity
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