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Abstract: Mangrove ecosystems help mitigate climate change, are highly biodiverse, and provide
critical goods and services to coastal communities. Despite their importance, anthropogenic activities
are rapidly degrading and deforesting mangroves world-wide. Madagascar contains 2% of the
world’s mangroves, many of which have undergone or are starting to exhibit signs of widespread
degradation and deforestation. Remotely sensed data can be used to quantify mangrove loss and
characterize remaining distributions, providing detailed, accurate, timely and updateable information.
We use USGS maps produced from Landsat data to calculate nation-wide dynamics for Madagascar’s
mangroves from 1990 to 2010, and examine change more closely by partitioning the national
distribution in to primary (i.e., >1000 ha) ecosystems; with focus on four Areas of Interest (AOIs):
Ambaro-Ambanja Bays (AAB), Mahajamba Bay (MHJ), Tsiribihina Manombolo Delta (TMD) and Bay
des Assassins (BdA). Results indicate a nation–wide net-loss of 21% (i.e., 57,359 ha) from 1990 to 2010,
with dynamics varying considerably among primary mangrove ecosystems. Given the limitations of
national-level maps for certain localized applications (e.g., carbon stock inventories), building on
two previous studies for AAB and MHJ, we employ Landsat data to produce detailed, contemporary
mangrove maps for TMD and BdA. These contemporary, AOI-specific maps provide improved
detail and accuracy over the USGS national-level maps, and are being applied to conservation and
restoration initiatives through the Blue Ventures’ Blue Forests programme and WWF Madagascar
West Indian Ocean Programme Office’s work in the region.
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1. Introduction

Found in over 120 countries and territories between 30˝N and 30˝S latitude, mangrove ecosystems
support high floral and faunal biodiversity and provide a diverse range of goods (e.g., food, fuel,
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building materials) and services (e.g., water filtration; storm protection) to coastal populations.
Furthermore, a growing number of studies report that mangroves possess similar or greater above- and
exceptionally larger below-ground carbon stocks as compared with their terrestrial peers [1–25],
meaning that intact mangrove ecosystems contribute to global climate change mitigation through
sequestering significant amounts of CO2. Despite their tremendous and diverse value, throughout
the world mangrove ecosystems are rapidly being degraded, deforested and converted for other
uses. Over the past several decades, annual global mangrove loss is estimated at 1%–2%, exceeding
rates in many inland tropical forests [6,26–30]. The primary drivers of loss include conversion for
agri- and aquaculture, coastal development, over-extraction of woody materials, and the ripple effects
of upstream terrestrial agriculture and deforestation (i.e., erosion, sedimentation and siltation) [31–40].
While anthropogenic activities are the primary drivers of loss, natural phenomena such as tropical
storms and rising ocean temperatures and sea-levels also play a significant role; the impacts of which
are expected to continue to increase based on current climate change projections [6,11,30,31,37,40–45].
Many of the world’s enduring mangrove ecosystems have already been degraded, and may
functionally collapse within this century without intervention [27,46,47].

To quantify dynamics and initiate effective management and decision-making, contemporary
information on the extent and status of mangrove ecosystems is required. Remotely sensed data can
be employed to map and monitor mangrove ecosystems, providing managers and decision makers
with detailed, accurate, timely and updateable information [15,48]. In particular, the Landsat archive,
which extends back >40 years, is well tested for identifying and quantifying mangrove distribution
and dynamics, and for mapping and monitoring specific mangrove ecosystems at the level of thematic
detail required for management strategies [25,49–65]. As described in [66], there is a growing need to
use remotely sensed data such as Landsat to monitor shifts in stable states in coastal wetlands, such as
mangroves. New techniques which go beyond single-date mapping and multi-date change detection
are needed to create evolutionary models of mangroves; pushing the boundaries of Landsat-like
remotely sensed data [66]. Along these lines, a recent study in the Mekong delta by [67] demonstrates
how to study the spatial and temporal evolution of mangroves using a time series of Landsat data
augmented by Shuttle Radar Topography Mission (SRTM) data. Factoring in the need for and benefit
of monitoring shifts in stable states, detailed, contemporary single-date maps are still required for
many management tasks and are unavailable for much of the world’s mangrove ecosystems [25,61].

The island nation of Madagascar contains extensive mangrove ecosystems, which as of 2005
totaled approximately 280,000 hectares (ha); Africa’s fourth largest amount and 2% of the global
distribution [10,57,68,69]. Many of Madagascar’s mangrove ecosystems have undergone or are starting
to show signs of wide-spread degradation and deforestation. To date, numerous studies have employed
remotely sensed data to produce single- or multi-date nation–wide mangrove maps (i.e., [68–72]).
However, national-level maps, while critical for country-wide overviews, do not provide the thematic
detail required for many localized (e.g., ecosystem-specific) applications. Prior to 2010, localized
mapping was undertaken for several specific mangrove ecosystems (i.e., Bombetoka Bay, Betsiboka
Estuary, Mahajamba Bay (MHJ), and Mangoky Delta) (i.e., [73–77]). However, these maps are either
out-of-date or lack the thematic detail required for certain management initiatives (e.g., carbon stock
inventories); and for many of Madagascar’s mangrove ecosystems, are simply non-existent.

Here, we inventory and compare existing national-level mangrove maps for Madagascar. Using
the most comprehensive and contemporary available data, we quantify nation-wide mangrove
dynamics from 1990 to 2010. To use these data to examine dynamics at a finer scale, we partition
Madagascar’s mangroves in to non-contiguous, primary (i.e., >1000 ha) mangrove ecosystems; with
focus on four distinct mangrove ecosystems representing areas of interest (AOIs): Ambaro-Ambanja
Bays (AAB), MHJ, Tsiribihina Manambolo Delta (TMD) and Baie des Assassins (BdA. Given the
limitations of national-level maps for certain localized applications, and the limitations of existing
and/or lack of ecosystem-specific maps for AOIs, we build on two previous studies for AAB and
MHJ [25,61] and employ Landsat data to produce detailed, contemporary, maps of TMD and BdA.



Remote Sens. 2016, 8, 106 3 of 31

The applications of existing (AAB; MHJ) and new (TMD; BdA) AOI-specific maps to mangrove
conservation initiatives through Blue Ventures’ Blue Forests programme are discussed.

2. Experimental Section

2.1. Study Area

The study area includes the entire distribution of Madagascar’s mangroves (Figure 1).
Madagascar’s ~5000 km coastline is one of the most extensive shallow marine areas in the Western
Indian Ocean (WIO), wherein mangrove ecosystems are located almost entirely along the west coast.
While not as species-rich as other regions, at least eight true mangrove species occur, supporting
unique flora and fauna, much of which is currently endangered or at-risk [12,68].
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Figure 1. The study area includes the entire distribution of Madagascar’s mangroves (shown in green, 
circa 2010, bottom right) (data obtained with permission from Giri [69]). The combined marine and 
terrestrial extent within 7 km from the coast in four primary mangrove ecosystems (i.e., Ambaro-Ambanja 
Bays (AAB), Mahajamba Bay (MHJ), Tsiribihina-Manambolo Delta (TMD) and the Baie des Assassins 
(BdA)) represent four specific areas of interest (AOIs). The location of each AOI is shown in the 
country-wide inset (bottom right). Mangrove extent (circa 2010) within each AOI is shown in green 
(data obtained with permission from Giri [69]). 
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forestry, land planning, fisheries and environmental laws [78–85]. The most relevant texts regarding 

Figure 1. The study area includes the entire distribution of Madagascar’s mangroves (shown in
green, circa 2010, bottom right) (data obtained with permission from Giri [69]). The combined
marine and terrestrial extent within 7 km from the coast in four primary mangrove ecosystems
(i.e., Ambaro-Ambanja Bays (AAB), Mahajamba Bay (MHJ), Tsiribihina-Manambolo Delta (TMD) and
the Baie des Assassins (BdA)) represent four specific areas of interest (AOIs). The location of each AOI
is shown in the country-wide inset (bottom right). Mangrove extent (circa 2010) within each AOI is
shown in green (data obtained with permission from Giri [69]).
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Madagascar’s mangrove ecosystems are governed by a complex legal framework involving
forestry, land planning, fisheries and environmental laws [78–85]. The most relevant texts regarding
mangrove management and use are found in the forestry and environmental sectors. Under forestry
laws, mangroves are within the public domain of the state, but local communities can be granted user
rights for their domestic use of related resources, including timber [78,80,82]. Under environmental
laws, mangroves fall within the sensitive area category, in which an environmental impact assessment
is compulsory prior to any type of investment, and where commercial timber extraction has been
forbidden since 2000 [79,81]. More recently, in 2014 a Decree was issued by the Government of
Madagascar to ban the extraction, transportation, stocking and sale of timber specifically in mangrove
ecosystems [85]. In practice, the Forestry Administration continues to grant communities user rights on
mangrove timber, despite the two-above mentioned bans. Local management rights can be established
through either Protected Areas or Natural Resource Management Transfer regulations; though this
process is complex, expensive and time consuming. Regardless of management rights, comprehensive
and effective management, which impedes mangrove degradation and loss, is lacking for almost
all mangrove ecosystems in Madagascar. Due to the lack of governance, an increasing demand in
fuel-wood and timber, as well as the expansion of agricultural land, the pressure on mangrove
ecosystems from anthropogenic activities continues to rise [25]. If degradation and conversion
continue unimpeded, biodiversity will be imperiled, greenhouse gas emissions will increase, and many
important services provided to coastal communities will be seriously compromised [86].

Owing to the lack of effective mangrove management in Madagascar and local people’s high
dependence on the numerous goods and services mangroves provide, the marine conservation NGO
Blue Ventures (www.blueventures.org) initiated its Blue Forests programme in 2011, to work with
coastal communities, partner NGOs, Malagasy and foreign Universities, and government bodies
at all levels to establish incentivized models for community-based sustainable mangrove forest and
fisheries management. The national-level mangrove dynamics data detailed herein and complementary
socioeconomic information highlighted three priority AOIs along the west coast of Madagascar for
Blue Ventures’ Blue Forest programme: Ambaro-Ambanja Bays (AAB), Mahajamba Bay (MHJ) and
the Baie des Assassins (BdA) (Figure 1). The Tsiribihina and Manambolo Deltas (TMD) form a fourth
AOI, where the localized mapping detailed herein is supporting WWF Madagascar West Indian Ocean
Programme Office’s work in the region. Each AOI encompasses the marine and terrestrial extent below
30 meters (m) elevation within 7 km of the coast.

AAB (centered at latitude 13˝261S, longitude 48˝301E) is comprised of two bays lined with
extensive mangroves, which in aggregate form a contiguous ecosystem. AAB is most influenced
by the Sambirano, Mananjeba, Mahavavy and Ifasy Rivers, with their headwaters in the Tsarantanana
Massif mountain range to the southeast, including Maromokotro, Madagascar’s highest peak at 2876 m.
Situated at the convergence of the Sofia and Mahajamba rivers (centered at latitude 15˝241S, longitude
47˝051E), the tidal plains of MHJ encompass an extensive mangrove ecosystem. MHJ experiences
a semidiurnal tidal range of 1.5–3 m (4–4.5 m during spring tide), an average surface water salinity
range of 25–45 parts per thousand, and a mean annual precipitation of 1500 mm [73,74]. TMD (centered
at latitude 19˝361S, longitude 44˝271E) is comprised of two deltas lined with extensive mangroves,
forming a contiguous ecosystem. TMD is fed by the Mahajilo, Sakay, Kitsamby, Mania and Sakeny
Rivers [87], with their headwaters in the Central Highlands (Ankaratra Massif [88]). The BdA (centered
at latitude 22˝121S, longitude 43˝171E) is comprised of a single bay with a comparatively modest
amount of mangroves, representing a contiguous ecosystem. A north-south rainfall gradient along the
west coast results in a comparative abundance of precipitation in the north (e.g., AAB, MHJ and TMD),
which contributes to higher stature mangrove trees than further south (e.g., BdA) [68,89].

2.2. Inventory and Comparison of Existing Data-Sets

Several studies have resulted in single- or multi-date national-level mangrove distribution maps
for Madagascar (i.e., [68,70–72]). Mayaux et al. [70] delineated mangrove and five other vegetation cover
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types, circa 1998/1999, using 1 km Satellite Pour l’Observation de la Terre (SPOT) VEGETATION data.
The Critical Ecosystem Partnership Fund (CEPF) [71] Madagascar Mapping Project mapped mangroves
and 14 other vegetation types, circa 2001, with Moderate-resolution Imaging Spectroradiometer
(MODIS) and Landsat data. Harper et al. [72] employed Landsat data to map forest cover, including
mangroves, for 1973, 1990 and 2000. Giri and Muhlhausen [68] and Giri [69] utilized Landsat data
to map mangrove and non-mangrove for 1973, 1990, 2000, 2005 and 2010. National-level dynamics
calculated from these maps through 2005 are presented in Giri and Muhlhausen [68]). To date,
no studies have reported on the nation-wide dynamics of Madagascar’s mangroves beyond 2005.

Of the four specific AOIs, prior to 2014, AOI-specific maps existed for only MHJ and the BdA.
For MHJ, Rasolofoharinoro et al. [73] employed Satellite Pour l’Observation de la Terre (SPOT) data
to map seven intertidal vegetation zones for 1986 and 1993, which included four mangrove classes
(i.e., pioneering; dense mature; decaying; back (e.g., mangrove/terrestrial interface)). Pasqualini et al. [74]
combined SPOT and radar data to delineate 10 coastal ecosystem types, circa 1993, including four
morphologically (i.e., frontal; interfluvial) and dynamics (i.e., mature; recessive) related mangrove classes.
Guillet et al. [75] utilized Landsat and SPOT data to map 12 coastal ecosystem classes, circa 1973, 1989,
2000 and 2006, including four mangrove types (i.e., sparse Avicennia marina; average density Avicennia
marina; dense Avicennia marina; and dense Rhizophora mucronata). For BdA, Roy et al. [90] used Quickbird
(DigitalGlobe, Longmont, CO, USA) data to produce a map of mangrove and surrounding marine
classes, circa 2005. These maps (i.e., [73–75,90] are no longer contemporary and/or unable to provide the
thematic detail required for specific applications (e.g., carbon stock estimation).

As described in later sections, to improve upon the shortcomings associated with available maps
for MHJ, Jones et al. [61] used Landsat data acquired in 2011 to produce a detailed, contemporary
AOI-specific map of MHJ. Using similar methodologies, Jones et al. [25] produced an AOI-specific map
for AAB from Landsat data acquired in 2010. At the time of writing, detailed contemporary maps
existed for no other specific mangrove ecosystems in Madagascar; highlighting the need to produce
new maps for TMD and BdA to complement those produced for AAB and MHJ.

2.3. National-Level Mangrove Distribution and Dynamics; Ecosystem-Level Dynamics

National-level data-sets were compared to determine which offered the most comprehensive
(i.e., in terms of their coverage of actual known mangrove area) and contemporary (i.e., most recent)
mangrove distributional information. Contemporary Landsat data, finer spatial resolution imagery
viewable in Google Earth (Google, Mountain View, CA, USA) and extensive field observations were
used to guide qualitative comparisons (Figure 2). Building on Giri and Muhlhausen [68], who reported
mangrove extent circa 2005 and dynamics from 1990 to 2005, the maps deemed most comprehensive
and contemporary were employed to establish contemporary (i.e., beyond 2005) mangrove extent and
quantify national-level mangrove dynamics (i.e., loss, persistence and gain) from 1990 to 2010 using
the Idrisi Land Change Modeler; a land planning and decision support tool (Clark Labs, Worcester,
MA, USA). To investigate mangrove extent and dynamics at a finer scale, national-level mangrove
data-sets were partitioned in to primary mangrove ecosystems, defined herein as individual ecosystems
occupying at least 1000 ha and containing true mangroves: salt-tolerant halophytic trees and/or shrubs
occurring entirely in tidal and inter-tidal areas [91].
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Figure 2. Workflow. Blue boxes represent national-level processing including the entire distribution of
Madagascar’s mangroves. Green boxes represent ecosystem-level processing, including 30 primary
mangrove ecosystems, with focus on four AOIs (i.e., Ambaro-Ambanja Bays (AAB), Mahajamba May
(MHJ), Tsiribihina-Manambolo Delta (TMD) and Baie des Assassins (BdA)). The results of nation-wide
and ecosystem-specific dynamics from 1990 to 2010, and ecosystem-specific maps for TMD and BdA are
presented in this study for the first time. The production of ecosystem-specific maps builds on previous
studies which employed similar methods for AAB and MHJ (i.e., Jones et al. [25]; Jones et al. [61]).

2.4. AOI-Specific Ecosystem-Level Mapping

2.4.1. Acquisition and Pre-Processing of Remotely Sensed Data

Following the methodology described in Jones et al. [25] for AAB, and Jones et al. [61] for MHJ, for
mapping efforts in TMD and BdA, 30 m spatial resolution Landsat scenes were downloaded from the
United States Geological Survey (USGS) Earth Resources Observation and Science Center (Sioux Falls,
SD, USA) (Table 1). All Landsat scenes were orthorectified to a Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM). Atmospheric correction was undertaken using the Cos(t)
model [92], which estimates the impact of absorption by atmospheric gases and Rayleigh scattering,
minimizes systematic haze, and converts image units to at-surface reflectance.
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The bounding extent for all AOIs were established using distance to coastline (i.e., 7 km) as
an assumed mangrove habitat requirement [55,58,93]. Reducing the image extent based on habitat
requirement through masking can increase classification accuracy by decreasing spectral confusion
amongst target classes [57]. Emulating studies that establish the effectiveness of SRTM data to estimate
mangrove forest canopy height (e.g., [94–98]), an SRTM height mask further eliminated unnecessary
scene components based on a 30 m threshold, above which mangrove habitat were observed in each
AOI not to exist [25,61].

Table 1. Summary of single-date Landsat scenes used for detailed, contemporary mapping of the four
AOIs. Maps produced for Ambaro-Ambanja Bays (AAB) and Mahajamba Bay (MHJ) are originally
described in Jones et al. [25] and Jones et al. [61]; whereas maps produced for Tsiribihina-Manambolo
Delta (TMD) and Baie des Assassins (BdA) result from this study. Tide (m) indicates the average tidal
height above mean sea level in or near the AOI during image acquisition.

AOI Sensor Date Path/row Tide (m)

AAB Landsat 7 (L7) ETM 09/06/2010 159/69 1.9
MHJ Landsat 5 (L5) TM 29/07/2011 160/71 1.7
TMD Landsat 8 (L8) OLI 28/07/2014 161/73; 161/74 1.5
BdA Landsat 8 (L8) OLI 23/04/2014 161/75 2.3

2.4.2. Initial Mapping; Definition and Refinement of Mangrove and Surrounding
Land-Cover Categories

Adhering to the methods described in Jones et al. [25] for AAB, and Jones et al. [61] for MHJ,
to produce initial maps for TMD and BdA, an unsupervised iterative self-organizing classification
algorithm (i.e., ISOCLUST) was employed to group pixels in to dominant cover types based on shared
spectral properties in bands 1–5 and 7 (i.e., TM and ETM) or bands 2–7 (i.e., OLI). Unsupervised
classification for mapping mangroves and closely related ecosystem types is proven, and has
produced both preliminary and final maps described in numerous studies [25,57,59,61,68,96,97,99–102].
Unsupervised classification results further facilitated masking based on areas dominated by water,
cloud and/or shadow. Making reference to existing maps and finer spatial resolution imagery viewable
in Google Earth, aggregation and iterative labelling was used to define and refine mangrove and
surrounding land-cover types. Mangrove types varied slightly between AOIs, but were based on
spectral differences attributable to ecological properties such as canopy-cover, stature and density
(Table 2). All mangrove classes represent true mangroves and are assumed to be dominated by
salt-tolerant halophytic trees and/or shrubs occurring entirely in tidal and inter-tidal areas [91].
Mangrove classes dominated by trees are considered forested stands; whereas classes dominated by
shrubs/stunted trees do not meet international or national definitions for forest. Herein, the term
mangrove ecosystem refers to a contiguous ecological unit containing both forest and non-forest areas
of mangrove. Forested classes within a particular mangrove ecosystem are collectively referred to as
mangrove forest.

In accordance with the approach described in Jones et al. [25] for AAB, and Jones et al. [61] for MHJ,
to ensure the representativeness of and refine mangrove type and surrounding land-cover categories
for TMD and BdA maps, preliminary field surveys were conducted in all four AOIs. Stratified
random sampling was employed to target ha-sized reference plot locations within strata defined by
the unsupervised classification results. Within mangrove reference plots established within each strata
(Table 2), the height, diameter, canopy-cover, and crown dimensions were recorded for representative
examples of each mangrove species present. Within non-mangrove reference plots, field notes and
photographs recorded variability and confirmed representativeness. Within all reference plots, plot
center was established with a Garmin GPSmap 62sc GPS unit left recording during the duration
of measurements.
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Table 2. Mapped classes, descriptions and 3 ˆ 3 pixel calibration and validation reference areas for
each of the four AOIs. Mapped classes for TMD and BdA build on previously published studies for
AAB ([25]) and MHJ ([61]).

Area Class Description Calibration Validation Total

AAB

Savannah Dry grass, exposed soil, extremely
sparse trees/shrubs 10 6 16

Woodland Dry grass and scattered trees/shrubs;
canopy <30% closed 8 6 14

Active cultivation Dominated by pre-harvest agriculture
(e.g., rice; sugar cane) 10 6 16

Closed-canopy terrestrial forest Stands of trees with well-formed
canopies >60% closed 12 6 18

Open-canopy terrestrial forest Stands of trees/shrubs with canopies
30%–60% closed 8 6 14

Closed-canopy mangrove Tall, mature stands; canopy
>60% closed 20 10 30

Open-canopy mangrove I
Short-medium stands of trees/shrubs;
canopy 30%–60% closed; moderately
influenced by background soil/mud

15 9 24

Open-canopy mangrove II
Stunted/short stands,

shrub-dominant, very sparse; canopy
ě10% closed

11 6 17

Deforested mangrove Mosaic of stumps, scattered trees;
canopy <30% closed 8 6 14

Exposed soil
Inactive agri/aquacultural fields;

extremely patchy savannah;
extremely dry mud-flats

10 5 15

Exposed mud Mangrove/ocean interface; river
sediment; wet mud-flats 8 5 13

Total 120 71 191

MHJ

Active cultivation Dominated by pre-harvest agriculture
(e.g., rice) 14 7 21

Closed-canopy terrestrial forest Stands of trees with well-formed
canopies >60% closed 14 7 21

Open-canopy terrestrial forest Stands of trees/shrubs with canopies
30%–60% closed 16 8 24

Closed-canopy mangrove I Tall, mature stands; canopy
>80% closed 22 10 32

Closed-canopy mangrove II Tall, mature stands; canopy
>60% closed 22 10 32

Open-canopy mangrove I
Short-medium stands of trees/shrubs;
canopy 30%–70% closed; moderately
influenced by background soil/mud

14 7 21

Open-canopy mangrove II
Short-medium stands of trees/shrubs;
canopy 30%–70% closed; significantly
influenced by background soil/mud

12 7 19

Open-canopy mangrove III
Stunted/short stands,

shrub-dominant, very sparse; canopy
<30% closed

14 7 21

Exposed soil
Inactive agri/aquacultural fields;

sparsely vegetated, soil-dominated
areas; dry mud-flats

21 10 31

Exposed mud
Mangrove/ocean interface; river
sediment; wet mud-flats; inactive

aquaculture ponds
14 7 21

Total 163 80 243
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Table 2. Cont.

Area Class Description Calibration Validation Total

TMD

Dense mangrove Tall, mature stands; canopy
>70% closed 16 6 22

Sparse mangrove
Short-medium stands of trees/shrubs;
canopy 30%–70% closed; moderately
influenced by background soil/mud

12 5 17

Bare type I
Exposed soil; scrub mangrove;

mud-flats; fallow agriculture; patchy
grass/bushland

14 6 20

Dense terrestrial forest High-stature terrestrial trees with
well-formed canopies 12 6 18

Sparse terrestrial forest
Mixed-stature terrestrial trees with

relatively open canopies interspersed
with wooded grassland-bushland

10 5 15

Wooded grassland-bushland Grassland and/or bush-land 10 5 15

Active agriculture Dominated by pre-harvest agriculture
(e.g., rice) 3 1 4

Bare type II Typically dry soil and/or sand;
extremely dry patchy grass/bushland 10 5 15

Total 87 39 126

BdA

Spiny forest Moderate-high stature, relatively
closed-canopy stands 9 3 12

Barren/exposed Dominance of rock, sand, dry soil;
interspersed with sparse vegetation 9 3 12

Cultivated/degraded/woodland
Active or fallow cultivation; degraded

and/or sparse terrestrial forest;
woodland

9 3 12

Burnt Areas which have recently
experienced fire 9 3 12

Water dominated Water dominant; mud-flats 10 4 14

Closed-canopy mangrove Tall, mature stands; canopy
>60% closed 9 3 12

Open-canopy mangrove I
Short-medium stands of trees/shrubs;
canopy 30%–70% closed; influenced

by background soil/mud
9 3 12

Open-canopy mangrove II
Stunted/short stands;

shrub-dominant, very sparse; canopy
<30% closed

9 3 12

Total 73 25 98

2.4.3. Supervised Image Classification

As with previously reported mapping efforts in AAB and MHJ, for TMD and BDA, reference plots
facilitated both calibrating the spectral properties of different mangrove and surrounding land-cover
types for image classification (i.e., calibration) and assessing resulting map accuracy (i.e., validation).
By exploiting the familiarity gained with the appearance and location of target classes, supplemental
reference areas were located in finer spatial resolution imagery viewable in Google Earth for all
mapped categories. Reference areas were spread throughout and randomly partitioned to facilitate
both calibration and validation (Table 2). In adherence with methods described in Jones et al. [25]
for AAB, and Jones et al. [61] for MHJ, for TMD and BdA, supervised classification of Landsat
data was employed to produce maps of class distributions using the maximum likelihood (ML)
algorithm. Numerous studies have shown the effectiveness of ML for classifying mangrove habitat
with Landsat-like data [25,58,60,61,73,95,103–108]. The accuracies of resulting maps were quantified
using confusion matrices, which cross-tabulate independent validation data against mapped classes.
The Kappa index of agreement further assessed how much better than random each map was [109].
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3. Results and Discussion

3.1. Overview of Existing National-Level Maps and Data-Sets

A qualitative comparison of existing national-level mangrove data-sets (i.e., [68,70–72]) concluded
that those produced by the USGS (i.e., [69]) offered the most comprehensive historic and contemporary
areal estimates of Madagascar’s mangroves (Figure 3). Crucially, the USGS produced maps were the
only ones to provide relatively contemporary (i.e., 2010) distribution and focus solely on mangroves,
with all other national-level maps representing multiple forest types and time periods nearly or greater
than 10 years earlier. Thus, the USGS data-sets were utilized for all consequent dynamics analyses.
Additional details regarding comparisons between Madagascar’s existing national-level mangrove
data-sets are available in Giri and Muhlhausen [68], Jones et al. [25] and Jones et al. [61]. Further details
outlining loss calculated for Madagascar’s mangroves using USGS maps through to 2005 is available
in Giri and Muhlhausen [68].
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Figure 3. A Landsat TM Blue-Green-Red 354 false color composite from July, 2011 is shown in the
top left panel wherein mangroves appear primarily in shades of red. Mangrove coverage from three
national data-sets (i.e., Giri [69]; CEPF [71]; Harper et al. [72]) is overlain on the Landsat composite in
the three other panels. This comparison illustrates how data produced by Giri [69] provide the most
comprehensive (in terms of representing actual known mangrove area) and contemporary (in terms of
year) mangrove coverage; as is illustrated by the variably represented mangrove covered islands in the
middle-right of each panel. The area shown in all four panes is a portion of MHJ.
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3.2. Mangrove Distribution and Dynamics: 1990–2010

3.2.1. National-Level Distribution and Dynamics

According to the USGS-produced Landsat-derived maps of national-level mangrove coverage
from 1990, 2000 and 2010 [69], as of 2010 Madagascar contained approximately 213,000 ha of mangrove
ecosystems distributed primarily along the west coast, with scattered, isolated pockets found on the
north east coast (Figure 1). Analysis of the 1990, 2000 and 2010 USGS maps indicates that from 1990 to
2010, there was a country-wide net loss (i.e., loss-gain) of 21% (i.e., 57,359 ha).

3.2.2. Ecosystem-Level Dynamics

Considered independently, there are nearly 100 distinct, non-contiguous mangrove ecosystems in
Madagascar; however, over 200,000 ha (circa 2010) are represented by 30 primary ecosystems, each
greater than 1000 ha in size. Of these primary ecosystems, according to the USGS maps, as of 2010,
MHJ had the greatest extent (i.e., 26,667 ha), followed by AAB (i.e., 25,664) and TMD (i.e., 20,242 ha)
(Table 3; Figure 4). BdA, ranked as Madagascar’s 26th largest mangrove ecosystem, containing 1362 ha
as of 2010. The extent in ha for 1990, 2000 and 2010 according to USGS-produced maps as partitioned
by primary mangrove ecosystems are provided in Table 3 and Figure 4.

As previously reported in Jones et al. [25], and Jones et al. [61], in AAB, the analysis of USGS maps
suggest a loss of 7659 ha (23.7%) and gain of 995 ha (3.1%) from 1990 to 2010 (Figure 5). Deforestation
is mostly occurring on or near the peninsular base, which separates the two Bays. As described in
Jones et al. [61], for MHJ, analyzing the USGS maps indicate 1251 ha were lost (4.5%) and 150 gained
(0.5%) from 1990 to 2010 (Figure 5). As compared with other primary mangrove ecosystems in
Madagascar, notably AAB, MHJ’s mangroves have remained comparatively stable. Comparisons
with terrestrial data (i.e., [72]) also imply that from 2000 to 2005 alone, loss in the terrestrial forests
surrounding MHJ exceeded mangrove loss from 2000 to 2010. However, mangrove loss in MHJ does
appear to be increasing, particularly in the east. For TMD, the analysis of the USGS maps indicated a
net loss of 12,612 ha (38.4%) from 1990 to 2010 (Figure 5). For BdA, analyzing the USGS maps indicated
that from 1990 to 2010 there was a net loss of 360 ha (20.9%) (Figure 5).

Table 3. The extent in hectares for Madagascar’s primary mangrove ecosystems for 1990, 2000 and
2010, based on partitioning USGS-produced Landsat-derived national-level mangrove cover maps for
1990, 2000 and 2010 [69] in to primary (i.e., >1000 ha) mangrove ecosystems. Extents are ordered from
largest to smallest based on 2010 values.

Mangrove Extent (Hectares)

Mangrove ecosystem 1990 2000 2010
Mahajamba Bay (MHJ) 27778 27577 26677

Ambaro-Ambanja Bays (AAB) 32328 30321 25664
Tsiribihina and Manambolo Deltas (TMD) 32854 24651 20242

Antsohihy 17081 16065 13838
Tambohorano 21140 12781 13418
Sahamalaza 12107 11063 10956

Mahavavy su Sud 10615 10870 10654
Mahajanga 12375 11814 9574
Mangoky 14684 12247 9431

Morondava-Bosy 8743 7500 6123
Kamendriky-Tsilambana 6102 6102 5924

Mahabo-Andramy 4721 5939 5905
Maintirano 8937 4644 5900

Boeny 3870 3888 3867
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Table 3. Cont.

Mangrove Extent (Hectares)

Baly-Soalala 3687 3683 3507
Besalampy 6247 5097 3287

Rigny-Irody 3224 3232 3231
Morombe 3652 2952 3035
Mariarano 2472 2412 2330
Narinda 2249 2058 2036
Sohany 2470 1984 2025

Belo sur Mer 2603 2387 1917
Vilamatsa 1881 1881 1847

Kabatomena 2458 1882 1529
Reharaka 2229 1528 1406

Baie des Assassins (BdA) 1723 1301 1362
Manampatra 1405 1404 1327

Morovasa 1253 1199 1199
Mangolovo 1415 981 1172

Ambondrombe 1462 1349 1109
Total 253,765 220,792 200,492
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Figure 4. The extent in hectares for Madagascar’s primary mangrove ecosystems for 1990, 2000 and
2010, based on partitioning USGS-produced Landsat-derived national-level mangrove cover maps for
1990, 2000 and 2010 [69] in to primary (i.e., >1000 ha) mangrove ecosystems. Extents are ordered from
largest to smallest based on 2010 values.
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Figure 5. Dynamics from 1990 to 2010 for each of four AOIs calculated using the USGS-produced,
Landsat-derived mangrove cover maps for 1990, 2000 and 2010 [69]. Background images are Landsat
NIR bands from AOI-specific dates provided in Table 1.
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3.3. AOI-Specific Ecosystem-Level Mapping Results

3.3.1. Spectral Separability and Classification Results

As demonstrated through results initially presented in Jones et al. [25] for AAB, and
Jones et al. [61] for MHJ (Figure 6), for TMD and BdA, all mapped classes are spectrally separable
using specific portions of the electromagnetic spectrum as represented by certain Landsat bands.
In particular, the near-infrared (NIR) and short-wave infrared (SWIR) were useful for distinguishing
between mangrove types and differentiating mangroves from surrounding mapped categories. In the
NIR (0.76–0.90 micrometers (µm)), the spectral distinctiveness of mangrove classes was probably
driven by vegetative reflectance relating to the transitional red-edge, internal vegetation structure,
and leaf dry-matter content [15,69,99,110]. In the SWIR (1.55–1.75 and 2.08–2.35 µm), differences in
reflectance were driven by vegetation and soil moisture content, and canopy-level biogeochemical
constituents likely facilitated mangrove differentiation [100]. These results further support previous
studies, which demonstrate that SWIR wavelengths help distinguish mangroves from surrounding
terrestrial vegetation [25,111]. Mangroves types were also further differentiated in the visible bands
(i.e., blue: 0.45–0.52 µm, green: 0.53–0.61 µm, and red: 0.63–0.69 µm).

Figure 6. The mean spectral reflectance (˘1 standard deviation) of mapped classes for Ambaro-Ambanja
Bays (AAB) and Mahajamba Bay (MHJ) (adapted from [25,61]).
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In support of results originally described in Jones et al. [25] for AAB, and Jones et al. [61] for
MHJ, ML classification for TMD and BdA resulted in highly accurate AOI-specific maps (Table 4;
Figure 7). Our results further indicate that while common as a source of classification error in mangrove
studies, confusion with other vegetation classes (e.g., terrestrial forest types) was mostly avoided.
As compared with single-class contemporary (i.e., 2010) mangrove coverage provided by the USGS
national-level map, it is clear that our classification results provide more detailed and comprehensive
representation of mangroves (Figure 8). In total, USGS maps imply 25,664, 26,677, 20,242 and 1362 ha
of mangroves for AAB, MHJ, TMD and BdA, respectively. In contrast, AOI-specific maps imply 45,680,
45,107, 28,513, and 1652 ha of mangrove ecosystem for AAB, MHJ, TMD and BdA, respectively. When
considering mangrove forest only and excluding classes dominated by shrub/scrub, the amount of
mangroves in each AOI is reduced but still markedly higher than USGS estimates (Figure 9). The USGS
map under-represents mangrove stands which are naturally lower stature and more open or highly
degraded, and completely omits most scrub/shrub-dominated areas and certain narrow linear strips.
The under-representation results in conservative distribution estimates, which in turn impacts ranking
primary mangrove ecosystems by extent, as undertaken in this study. This is exemplified by MHJ
being estimated as Madagascar’s largest mangrove ecosystem based on the USGS map; whereas our
AOI-specific map indicates that AAB was slightly larger.

Under-representation of lower stature or sparser mangrove areas associated with national-level
USGS maps can also exaggerate dynamics by indicating loss in areas that may actually represent
degradation or sparse areas of mangrove on the edge of the limits of detection by the automated
algorithms used to create the data. Field observations confirm that certain areas appearing as loss
in the USGS maps were in actuality occupied by sparse or degraded mangroves. In addition, given
that numerous Landsat images were mosaicked together for each temporal increment to create the
USGS maps, the influence of different dates and thus tidal conditions may have also exaggerated
dynamics. The potential for exaggerated dynamics in the USGS maps needs to be taken in to account
when considering the national-level dynamics presented in this study; though concerns of exaggerated
loss must be tempered with an acknowledgement of an under-representation of sparse and degraded
mangroves, which leads to initial under-estimates of mangrove distributions from which dynamics are
calculated. Bearing in mind the limitations of the single mangrove class represented by the USGS maps,
they also provide no context regarding surrounding land-cover categories, including extensive mud
flats that once were or could again become mangrove ecosystems. In aggregate, these shortcomings
highlight the importance of detailed, contemporary ecosystem-specific localized mapping; which is
bolstered by USGS maps being >four years old, providing outdated representation for ecosystems
which continue to experience increased and widespread degradation and deforestation.
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Table 4. (a–d) Classification accuracies, including overall accuracies, Kappa statistics and per-class user’s and producer’s accuracies. Results for AAB and MHJ were
previously reported in Jones et al. [25] and Jones et al. [61].

(a)

Area: Class: 1 2 3 4 5 6 7 8 9 10 11 Total User’s (%) Commission (%)

AAB:

Savannah (1) 54 3 0 0 0 0 0 0 0 1 0 58 93 7
Woodland (2) 0 39 0 0 0 0 0 0 0 0 0 39 100 0
Active cultivation (3) 0 0 51 0 0 0 0 0 0 0 0 51 100 0
Closed-canopy terrestrial forest (4) 0 0 0 54 0 0 0 0 0 0 0 54 100 0
Open-canopy terrestrial forest (5) 0 4 0 0 54 0 0 0 0 0 0 58 93 7
Closed-canopy mangrove (6) 0 0 0 0 0 79 9 0 0 0 0 88 90 10
Open-canopy mangrove I (7) 0 0 0 0 0 11 72 0 2 0 0 85 85 15
Open-canopy mangrove II (8) 0 0 0 0 0 0 0 52 0 0 0 52 100 0
Deforested mangrove (9) 0 0 0 0 0 0 0 0 60 0 0 60 100 0
Exposed soil (10) 0 8 3 0 0 0 0 2 1 53 0 67 79 21
Exposed mud (11) 0 0 0 0 0 0 0 0 0 0 54 54 100 0
Total 54 54 54 54 54 90 81 54 63 54 54 666
Producer’s (%) 100 72 94 100 100 88 89 96 95 98 100 Overall Accuracy = 93.4%
Omission (%) 0 28 6 0 0 12 11 4 5 2 0 Kappa = 0.9

(b)

Area: Class: 1 2 3 4 5 6 7 8 9 10 Total User’s (%) Commission (%)

MHJ:

Active cultivation (1) 63 0 0 0 0 0 0 0 0 0 63 100 0
Closed-canopy terrestrial forest (2) 0 62 0 0 0 0 0 0 0 0 62 100 0
Open-canopy terrestrial forest (3) 0 1 72 0 0 3 0 1 0 0 77 94 6
Closed-canopy mangrove I (4) 0 0 0 90 2 0 0 0 0 0 92 98 2
Closed-canopy mangrove II (5) 0 0 0 0 88 0 0 0 0 0 88 100 0
Open-canopy mangrove I (6) 0 0 0 0 0 60 0 0 0 0 60 100 0
Open-canopy mangrove II (7) 0 0 0 0 0 0 60 0 0 0 60 100 0
Open-canopy mangrove III (8) 0 0 0 0 0 0 0 62 0 0 62 100 0
Exposed soil (9) 0 0 0 0 0 0 0 0 90 0 90 100 0
Exposed mud (10) 0 0 0 0 0 0 3 0 0 63 66 95 5
Total 63 63 72 90 90 63 63 63 90 63 720
Producer’s (%) 100 98 100 100 98 95 95 98 100 100 Overall Accuracy = 98.6%
Omission (%) 0 2 0 0 2 5 5 2 0 0 Kappa = 0.9
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Table 4. Cont.

(c)

Area: Class: 1 2 3 4 5 6 7 8 Total User’s (%) Commission (%)

TMD:

Dense mangrove (1) 54 0 0 0 0 0 0 0 54 100 0
Sparse mangrove (2) 0 45 0 0 0 0 0 0 45 100 0
Bare type I (3) 0 0 52 0 0 0 0 0 52 100 0
Dense forest (4) 0 0 0 54 0 0 0 0 54 100 0
Sparse forest (5) 0 0 0 0 45 0 0 0 45 100 0
Wooded grassland-bushland (6) 0 0 0 0 0 45 0 0 45 100 0
Active agriculture (7) 0 0 0 0 0 0 9 0 9 100 0
Bare type II (8) 0 0 2 0 0 0 0 48 50 96 4
Total 54 45 54 54 45 45 9 48 354
Producer’s (%) 100 100 96 100 100 100 100 100 Overall Accuracy = 99.4%
Omission (%) 0 0 4 0 0 0 0 0 Kappa = 0.99

(d)

Area: Class: 1 2 3 4 5 6 7 8 Total User’s (%) Commission (%)

BdA:

Spiny forest (1) 27 0 0 0 0 0 0 0 27 100 0
Barren/exposed (2) 0 30 0 0 0 0 0 0 30 100 0
Cultivated/degraded/woodland (3) 0 0 27 0 0 0 0 0 27 100 0
Burnt (4) 0 0 0 27 0 0 0 0 27 100 0
Water dominated (5) 0 0 0 0 42 0 0 0 42 100 0
Closed-canopy mangrove (6) 0 0 0 0 0 27 0 0 27 100 0
Open-canopy mangrove I (7) 0 0 0 0 0 0 27 0 27 100 0
Open-canopy mangrove II (8) 0 0 0 0 0 0 0 27 27 100 0
Total 27 30 27 27 42 27 27 27 234
Producer’s (%) 100 100 100 100 100 100 100 100 Overall Accuracy = 100
Omission (%) 0 0 0 0 0 0 0 0 Kappa = 1



Remote Sens. 2016, 8, 106 18 of 31
Remote Sens. 2016, 8, 106 

1/29 

 

Figure 7. The results of detailed, contemporary, ecosystem-level mapping for four AOIs  
(i.e., Ambaro-Ambanja Bays (AAB), Mahajamba bay (MHJ), Tsiribihina Manambolo Delta (TMD), and 
Baie des Assassins (BdA)). The water dominated class is excluded for BdA and is excluded from the 
figure. For each AOI, the background image is a Landsat NIR band (i.e., band 4: Landsat 5 TM and 
Landsat 7 ETM+ ; band 5: Landsat 8 OLI) as described in Table 2. Mapping results for AAB and MHJ 
were originally presented in Jones et al. [25] and Jones et al. [61]. 

Figure 7. The results of detailed, contemporary, ecosystem-level mapping for four AOIs
(i.e., Ambaro-Ambanja Bays (AAB), Mahajamba bay (MHJ), Tsiribihina Manambolo Delta (TMD),
and Baie des Assassins (BdA)). The water dominated class is excluded for BdA and is excluded from
the figure. For each AOI, the background image is a Landsat NIR band (i.e., band 4: Landsat 5 TM and
Landsat 7 ETM+ ; band 5: Landsat 8 OLI) as described in Table 2. Mapping results for AAB and MHJ
were originally presented in Jones et al. [25] and Jones et al. [61].
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Figure 8. A Landsat OLI 465 false color composite from July, 2014, over the Tsiribihina-Manambolo 
Delta (TMD) AOI, is shown in the top left panel, wherein mangroves appear primarily in shades of 
red. The other panels compare USGS-produced national-level mangrove coverage circa 2010 (Giri [69]) 
to one of the detailed, contemporary, AOI-specific maps produced through this study. The comparison 
demonstrates how the USGS map (Giri [69]) underrepresents naturally lower stature, more open or 
highly degraded mangroves and at times omits scrub/shrub and narrow linear strips of mangroves. 

Figure 8. A Landsat OLI 465 false color composite from July, 2014, over the Tsiribihina-Manambolo
Delta (TMD) AOI, is shown in the top left panel, wherein mangroves appear primarily in shades of red.
The other panels compare USGS-produced national-level mangrove coverage circa 2010 (Giri [69]) to
one of the detailed, contemporary, AOI-specific maps produced through this study. The comparison
demonstrates how the USGS map (Giri [69]) underrepresents naturally lower stature, more open or
highly degraded mangroves and at times omits scrub/shrub and narrow linear strips of mangroves.
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Figure 9. The extent of mangroves based on the 2010 national-level USGS-produced Landsat derived
mangrove cover map [69] versus the results of AOI-specific contemporary mapping is shown for each
AOI. For AOI-specific mapping results, extent is shown based on all mangrove classes including
shrub/scrub dominated (i.e., mangrove ecosystem) and based on only classes meeting the definition of
forest (i.e., mangrove forest).

3.3.2. Application of Mapping Results

The results of the national- and ecosystem-level dynamics analysis described in Section 3.2 have
supported Blue Venture’s Blue Forests programme in selecting areas in critical need of mangrove
conservation and restoration. The contemporary AOI-specific maps described in Section 3.3 are being
applied for ecological characterization and carbon stock estimation, to provide baselines for historical
mapping/future monitoring, and to support the establishment of carbon projects.

As described in Jones et al. [25] for AAB, and Jones et al. [61] for MHJ, localized mangrove maps
were used to stratify mangroves and systematically establish carbon plots based on adaptations
of methods proposed by the Centre for International Forestry Research (CIFOR) as outlined in
Kauffman and Donato [24]. In total, 55 and 51 carbon plots were established for AAB and MHJ,
respectively. Tree measurements summed at the plot-level allowed for summarizing the primary
ecological characteristics of each mapped mangrove type, and allowed breaking mangrove classes
in to sub-types based on dominant ecological traits (Table 5). Open-canopy areas were typically
comprised of sparse and mostly stunted/shrub, low stature mangroves with very open canopies
or moderately-dense stands of medium stature trees with relatively open canopies. In contrast,
closed-canopy areas were typified by higher stature trees of variable density with well-formed canopies.
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Exceptions to these typical ecosystem characteristics included, (1) areas dominated by extremely dense,
closed-canopy medium/near-tall trees and (2) mature stands which were either highly degraded
or naturally open, both of which can spectrally appear as open-canopy mangrove. This overlap
highlights a distinct limitation of our maps, which is the inability to reliably detect and distinguish
mangrove degradation. While field observations confirm that degradation exists in all AOIs, of both
natural and anthropogenic in origin, the full extent of degradation remains uncertain. While mangrove
conversion (i.e., deforestation) can be reliably mapped and monitored with moderate resolution data
(e.g., Landsat) using established methods, accurately detecting and tracking the subtle sub-pixel
modification (i.e., degradation) of mangrove ecosystems remains a vexing challenge. Finer spatial
resolution imagery can be employed to accurately detect tree-level degradation, but these data remain
prohibitively expensive for small or not-for-profit organizations. Directly incorporating other remotely
sensed data–sets, such as those representing forest structure (e.g., LiDAR; radar), into the classification
process could greatly increase explanatory power and help further sub-divide existing classes based on
degradation; though access to such complimentary data-sets remains limited. Even if able to accurately
detect degradation, it would remain difficult to confidently partition natural versus anthropogenic.
Despite the limitations of our mangrove classes, they are spectrally distinct and field observations
confirm that they are ecologically different and meaningful.

For AAB and MHJ, the tree diameter and height measurements collected in plots were used as input
in allometric equations to calculate above-ground biomass and estimate carbon stocks. Tree below-ground
biomass was calculated with a generalized equation presented in Komiyama et al. [112]. Equations found
in Kauffman and Donato [24] were used to estimate the biomass of standing dead wood. Soil samples
taken at the center of each plot allow for the determination of soil organic carbon (SOC), which is still
ongoing. For AAB, preliminary SOC was estimated using a modified Walkley-Black method [113–115]
from samples sent to the Laboratoire des Radio Isotopies (LRI) in Antananarivo, Madagascar. Estimates
of carbon calculated based on plot measurements in all AOIs were scaled to the ha-level.

As presented in Jones et al. [61,62], and representing the first total carbon stock estimates
for a mangrove ecosystem in Madagascar, total carbon stock estimates in AAB varied from
126.42 to 570.72 Mg¨ C¨ ha´1, with an overall mean of 356.36 (˘16.96) Mg¨ C¨ ha´1 (Figure 10).
Average vegetation carbon was highest within the tall-stature closed-canopy mangroves
(114.8 (˘9.3) Mg¨ C¨ ha´1). In comparison, open-canopy I and open-canopy II mangroves had average
vegetation C values of 43.6 (˘7.3) Mg¨ C¨ ha´1 and 19.3 (˘4.6) Mg¨ ha´1 respectively. Mean SOC values,
based on soil depth up to 100 cm, ranged from 165.2 (˘29.1) Mg¨ C¨ ha´1 for open-canopy II mangroves,
to 278.80 (˘20.99) Mg¨ C¨ ha´1 for open-canopy I mangroves, and 309.87 (˘19.36) Mg¨ C¨ ha´1 for
closed-canopy mangroves. Total carbon stock estimates of trees (i.e., above- and below-ground) in
MHJ varied from 2.97 to 279.49 Mg¨ C¨ ha´1, with an overall mean of 100.96 (˘10.49) Mg¨ C¨ ha´1

(Jones et al. [61,62]) (Figure 11). The closed-canopy I class, wherein tree stature was largest and tree
density highest, had the highest carbon values (166.82 (˘15.38) Mg¨ C¨ ha´1).

The differences in carbon stock estimates between closed- and open-canopy classes in AAB and
MHJ (Figure 11) reflect variable forest stature and density and supports that larger, taller, denser trees
contain significantly greater amounts of carbon. The difference in carbon stocks between the two AOIs
is influenced by disproportionate amounts of higher stature trees in MHJ as compared with AAB.
Collectively, these estimates support a growing body of evidence that mangroves are amongst the
most carbon-dense forests in the tropics, with similar above- and larger below-ground stocks than
terrestrial tropical upland systems [14,17,21–23,116–121].
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Table 5. Mangrove class, species dominance, average tree height (m) (˘ standard error (SE)), average dbh (cm) (˘SE) and average trees per hectare (ha´1) (˘ SE) for
mapped mangrove categories. Adapted from Jones et al. [25] and Jones et al. [61].

Class Code Description Species
Dominance N Average Tree

Height (m)
Average dbh

(cm)
Average Number

of Trees (ha´1)

(a) Ambaro-Ambanja Bays (AAB)

Closed-canopy
mangrove CC

Intact, tall, mature stands

A. marina 1 8.6 14.9 1250
C. tagal 3 7.3 (˘ 1.2) 10.1 (˘ 0.5) 2625 (˘ 318)

R. mucronata 14 7.0 (˘ 1.3) 10.1 (˘ 3.0) 4719 (˘ 1133)
S. alba 1 5.6 10.6 5300

Mixed species 2 6.7 (˘ 1.6) 11.3 (˘ 2.5) 1825 (˘ 248)
Very dense medium-tall stands R. mucronata 2 4.8 (+ 0.1) 7.8 (˘ 1.1) 5600 (˘ 1838)

C. tagal 7 4.6 (˘ 0.8) 7.5 (˘ 1.6) 3300 (˘ 8.49)
Medium stands R. mucronata 6 4.2 (˘ 0.6) 7.3 (˘ 1.3) 2160 (˘ 498)

Open-canopy OC I Mixed species 2 4.8 (˘ 0.1) 9.5 (˘ 2.0) 1800 (˘ 141)
mangrove I Naturally open/very degraded tall Mixed species 4 5.7 (˘ 0.3) 10.1 (˘ 1.2) 1525 (˘ 35)

very dense short stands C. tagal 5 2.5 (˘ 0.3) 5.1 (˘ 0.9) 2780 (˘ 750)

Open-canopy
mangrove II OC II Stunted, scrub ecosystems A. marina 4 1.7 (˘ 0.5) 4.6 (˘ 0.2) 1306 (˘ 554)

(b) Mahajamba Bay (MHJ)

Closed-canopy
mangrove I CC I Tall, mature stands; canopy >80% closed

A. marina 7 10.24 (˘ 0.52) 13.68 (˘ 1.01) 1571 (˘ 255)
R. mucronata 2 5.62 (˘ 0.55) 7.27 (˘ 1.69) 4900 (˘ 1500)

S. alba 1 9.39 8.31 5100
Mixed species 3 12.48 (˘ 1.40) 18.18 (˘ 1.56) 1108 (˘ 208)

Closed-canopy A. marina 10 7.68 (˘ 0.56) 12.95 (˘ 1.26) 895 (˘ 102)
mangrove II CC II Tall mature stands; canopy >60% closed

Mixed species 2 7.74 (˘ 0.04) 12.45 (˘ 0.08) 1412 (˘ 12)

Open-canopy
mangrove I OC I Short-medium stands; canopy 30%–70% closed;

moderately influenced by background soil/mud A. marina 6 3.32 (˘ 0.16) 4.85 (˘ 0.43) 1417 (˘ 226)

R. mucronata 1 3.21 7.39 2200
X. granatum 1 5.41 10.84 1300

Mixed species 5 4.33 (˘ 0.44) 7.62 (˘ 0.86) 1185 (˘ 237)

C. tagal 2 3.39 (˘ 0.18) 6.18 (˘ 0.12) 963 (˘ 238)Open-canopy
mangrove II OC II

Short-medium stands; canopy 30%–70% closed;
significantly influenced by background soil/mud R. mucronata 4 4.63 (˘ 0.30) 7.85 (˘ 1.66) 1388 (˘ 449)

Open-canopy
mangrove III OC III Stunted, short stands, very sparse; canopy < 30% closed;

dominated by exposed soil/mud A. marina 7 2.31 (˘ 0.17) 3.96 (˘ 0.18) 1089 (˘134)
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Figure 11. Above- and below-ground mangrove vegetation carbon estimates for the Ambaro-Ambanja
Bays (AAB) [62] and Mahajamba Bay (MHJ) [61], Madagascar. Error bars represent ˘ SE of total
vegetation carbon stocks. Adapted from Jones et al. [61].
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Mapping and modelling of historical ecosystem loss is a critical element in both the assessment
of feasibility and the development of carbon projects. The generation of carbon credits through the
conservation, restoration and reduced-impact use of mangroves has the potential to catalyze and
fund sustainable mangrove management in coastal communities, augmenting existing livelihoods,
preparing for climate change and safeguarding biodiversity. While national-level datasets are very
valuable for the initial selection of potential project sites, the limitations outlined in Section 3.3.1
prevent them from being suitable for ecosystem-specific/project-scale historical deforestation analysis
in Madagascar. The existing (i.e., AAB and MHJ) and new (i.e., TMD and BdA) AOI-specific maps
presented in here can be used as a starting point for more detailed project-scale deforestation analysis,
and also as a baseline for future project monitoring.

Working with local communities, the University of Antananarivo and other partners in
AAB, the Blue Forests programme is using the data described above to assess the feasibility of
a community-centered mangrove carbon project validated under the VCS standard (www.v-c-s.org),
which focusses on the locally-led conservation and sustainable use of AAB’s mangrove resources.

In TMD, in addition to supporting WWF Madagascar West Indian Ocean Programme Office’s
broader work in the region, the mapping detailed herein was also central to assessing the feasibility of
a mangrove carbon project in the region].

In BdA, Blue Ventures is supporting communities to develop a Plan Vivo mangrove carbon project.
Plan Vivo initiatives differ from other types of forest carbon projects. Whilst they are still measured
and valued according to their impact on greenhouse gas emissions, Plan Vivo project design must be
community-led. Fifty-two Plan Vivo projects have been initiated throughout the world to date, yet in
only three countries (i.e., Kenya, Columbia and Madagascar) are there projects focusing specifically
on mangroves.

By piloting and developing mangrove carbon projects in close contact with in-country government
institutions, the Blue Forests programme is supplying robust greenhouse gas emissions reductions
estimates and helping to integrate mangroves into Madagascar’s national REDD+ strategy.

4. Conclusions

This study presents, for the first time, national-level and mangrove ecosystem specific dynamics
for Madagascar from 1990 to 2010, providing an unprecedented overview of mangrove loss. While not
without their limitations, our AOI-specific contemporary maps offer numerous improvements over
national-level USGS data-sets, providing detailed and accurate coverage of spectrally and ecologically
distinct mangrove types and surrounding land-cover categories for two new specific Madagascan
mangrove ecosystems (i.e., TMD and BdA); building on and complementing similar maps for AAB
and MHJ. Taken as a whole, these maps are the first of their kind for AAB and TMD, and provide
updated information and improved thematic detail for MHJ and BdA. The methods used are easily
replicable and employ freely available Landsat data. Factoring in their strengths, the primary weakness
of our AOI-specific maps is their inability to represent degradation. The ability to accurately detect
degradation would be greatly augmented through the incorporation of complementary remotely
sensed data-sets (e.g., LiDAR; radar; finer spatial resolution optical imagery) in further mapping
and monitoring.

A continuation and acceleration of modification and deforestation of Madagascar’s mangrove
ecosystems will jeopardize if not halt key ecosystem services. The extent and consequences of the
ripple effects from continued loss and degradation in to surrounding ecosystems is unknown. To help
safeguard the long-term status of Madagascar’s mangrove forests, improved resource management
is required. The AOI-specific maps described in this study are being applied through Blue Ventures’
Blue Forests programme towards standardizing replicable methods for improved, community-led
mangrove resource management throughout Madagascar’s mangroves and beyond. Resulting carbon
stock estimates for AAB and MHJ include the first total (i.e., above- and below-ground including soil)
estimates published for Madagascar (i.e., [25]), and the first total-tree estimates published for MHJ
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(i.e., [61]. While carbon stock estimates for MHJ are limited to trees, they are still high, consistent with
regional estimates, and highlight the importance of this ecosystem towards climate change mitigation.
Ongoing soil analysis will also finalize SOC values for AAB and MHJ, and total carbon stock estimates
for MHJ, TMD and BdA, resulting in comprehensive carbon stock estimates for all four AOIs.

AOI-specific maps are directly helping to explore the feasibility of mangrove carbon projects in
AAB and TMD and support the establishment of a Plan Vivo project in BdA. In addition to carbon
projects, the results presented in this study provide an invaluable updated scientific baseline for policy
makers and civil society to identify efficient mangrove conservation strategies at the ecosystem or
national scale.

Acknowledgments: This research was funded by the Global Environmental Facility’s Blue Forest project and
grants from the Western Indian Ocean Marine Science Association, the John D. and Catherine T. MacArthur
Foundation and the Darwin Initiative. All TMD analysis was done in collaboration with the World Wildlife
Fund’s Madagascar West Indian Ocean Programme Office. The authors greatly appreciate the logistical support
for field work in MHJ provided by AQUALMA. Many thanks to Raymond Raherindray, Zo Andriamahenina,
Ismael Ratefinjanahary, Jaona Ravelonjatovo, Ferdinand Botsy, Tina Haingonirina and Holy Andriamitantsoa
for assisting with field missions. Thanks also to Kate England, Bienvenue Zafindrasilivonona, Sylvia Paulot,
Pierre-Francois Roy and Rado Rakotomanana for contributions to socio-economic research and analysis. Special
thanks to community members from within all AOIs for their guidance, hospitality and assistance with field work.
Additional thanks to extremely helpful anonymous reviewers.

Author Contributions: Trevor Jones took the lead on designing and undertaking the dynamics assessment,
AOI-specific mapping, and writing the manuscript. Leah Glass assisted with the dynamics assessment and
AOI-specific mapping and helped provide oversight for the manuscript, contextualizing loss. Samir Gandhi
assisted with geospatial data pre-processing, the dynamics assessment, AOI-specific mapping and formatting the
manuscript. Lalao Ravaoarinorotsihoarana helped design, and lead field missions, summarize resulting data, and
further helped with carbon stock estimates. Aude Carro provided specific input regarding contextualizing
mangrove loss. Lisa Benson assisted with calculating, compiling and presenting carbon stock estimates.
Harifidy Rakoto Ratsimba helped design and provided oversight of field missions, and assisted with the
dynamics assessment and AOI-specific mapping. Chandra Giri assisted with the dynamics assessment and
AOI-specific mapping. Dannick Randriamanatena assisted with all logistics, field work and mapping related to
TMD. Garth Cripps helped provide overall oversight on design and implementation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [CrossRef]
2. Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the extent of floods in Bangladesh—Using SPOT data.

Remote Sens. Environ. 1992, 39, 167–178. [CrossRef]
3. Marshall, N. Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 1994,

285, 303–309. [CrossRef]
4. Primavera, J.H. Socio-economic impacts of shrimp culture. Aquac. Res. 1997, 28, 815–827. [CrossRef]
5. Kathiresan, K.; Bingham, B. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40,

81–251.
6. Alongi, D.M. Present state and future of world’s mangrove forest. Environ. Conserv. 2002, 29, 331–349.

[CrossRef]
7. Mumby, P.J.; Edwards, A.J.; Arias-Gonzáles, E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.;

Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangrove enhance the biomass of coral reef fish communities
in the Caribbean. Nature 2004, 427, 533–536. [CrossRef] [PubMed]

8. Dahdouh-Guebas, F.; Jayatissa, L.P.; di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were
mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [CrossRef] [PubMed]

9. Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after tsunami. Front. Ecol. Environ.
2006, 4, 124–131. [CrossRef]

10. Food and Agricultural Organization (FAO). The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO:
Rome, Italy, 2007.

11. Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change.
Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [CrossRef]

http://dx.doi.org/10.1146/annurev.es.05.110174.000351
http://dx.doi.org/10.1016/0034-4257(92)90083-V
http://dx.doi.org/10.1007/BF00005677
http://dx.doi.org/10.1111/j.1365-2109.1997.tb01006.x
http://dx.doi.org/10.1017/S0376892902000231
http://dx.doi.org/10.1038/nature02286
http://www.ncbi.nlm.nih.gov/pubmed/14765193
http://dx.doi.org/10.1016/j.cub.2005.06.008
http://www.ncbi.nlm.nih.gov/pubmed/15964259
http://dx.doi.org/10.1890/1540-9295(2006)004[0124:NBTNDR]2.0.CO;2
http://dx.doi.org/10.1016/j.ecss.2007.08.024


Remote Sens. 2016, 8, 106 26 of 31

12. Nagelkerken, I.; Blaber, S.J.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.;
Penrose, H.M.; Sasekumar, A.; et al. The habit function of mangroves for terrestrial and marine fauna:
A review. Aquat. Bot. 2008, 89, 155–185. [CrossRef]

13. Alongi, D.M. Carbon payments for mangrove conservation: Ecosystem constraints and uncertainties of
sequestration potential. Environ. Sci. Policy 2011, 14, 462–470. [CrossRef]

14. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kumianto, S.; Stidham, M.; Kanninen, M. Mangroves among
the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]

15. Kuezner, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems:
A review. Remote Sens. 2011, 3, 878–928.

16. Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.;
Kauffman, J.B.; Marba, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation
of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [CrossRef] [PubMed]

17. Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions
arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [CrossRef] [PubMed]

18. Thompson, B.S.; Clubbe, C.P.; Primavera, J.H.; Curnick, D.; Koldeway, H.J. Locally assessing the economic
viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 2014, 8, 128–140.
[CrossRef]

19. Giri, C.; Long, J.; Abbas, S.; Mani Murali, R.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of
mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [CrossRef] [PubMed]

20. Huxham, M.; Emerton, L.; Kairo, J.; Munyi, F.; Abdirizak, H.; Muriuki, T.; Nunan, F.; Briers, R.A. Applying
Climate Compatible Development and economic valuation to coastal management: A case study of Kenya’s
mangrove forests. J. Environ. Manag. 2015, 157, 168–181. [CrossRef] [PubMed]

21. Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem carbon stocks of Micronesian
mangrove forests. Wetlands 2011, 31, 343–352. [CrossRef]

22. Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A.
Carbon stocks of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE
2013, 8, e56569. [CrossRef] [PubMed]

23. Wang, G.; Dongsheng, G.; Peart, M.R.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in
Yingluo Bay, Guangdon Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [CrossRef]

24. Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and
Carbon Stocks in Mangrove Forests; Working Paper 86; CIFOR: Bogor, Indonesia, 2012.

25. Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Cripps, G.; Bey, A. Ecological Variability and Carbon
Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar. Forests 2014, 5, 177–205. [CrossRef]

26. Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical
environments. Bioscience 2001, 51, 807–815. [CrossRef]

27. Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.;
Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [CrossRef] [PubMed]

28. Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010.
29. Friess, D.A.; Webb, E.L. Variability in mangrove change estimates and implications for the assessment of

ecosystem provision. Glob. Ecol. Biogeogr. 2013, 23, 715–725. [CrossRef]
30. Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39.

[CrossRef]
31. Farnsworth, E.J.; Ellison, A.M. The global conservation status of mangroves. Ambio 1997, 26, 328–334.
32. Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ.

2000, 35, 91–106. [CrossRef]
33. Dahdouh-Guebas, F. The use of remote sensing and GIS in the sustainable management of tropical coastal

ecosystems. Environ. Dev. Sustain. 2002, 4, 93–112. [CrossRef]
34. Primavera, J.H. Mangroves, fishponds, and the quest for sustainability. Science 2005, 310, 57–59. [CrossRef]

[PubMed]
35. Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat. Sci.

2006, 68, 338–354. [CrossRef]
36. Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49,

531–545. [CrossRef]

http://dx.doi.org/10.1016/j.aquabot.2007.12.007
http://dx.doi.org/10.1016/j.envsci.2011.02.004
http://dx.doi.org/10.1038/ngeo1123
http://dx.doi.org/10.1371/journal.pone.0043542
http://www.ncbi.nlm.nih.gov/pubmed/22962585
http://dx.doi.org/10.1890/13-0640.1
http://www.ncbi.nlm.nih.gov/pubmed/24834737
http://dx.doi.org/10.1016/j.ecoser.2014.03.004
http://dx.doi.org/10.1016/j.jenvman.2014.01.020
http://www.ncbi.nlm.nih.gov/pubmed/24735705
http://dx.doi.org/10.1016/j.jenvman.2015.04.018
http://www.ncbi.nlm.nih.gov/pubmed/25909441
http://dx.doi.org/10.1007/s13157-011-0148-9
http://dx.doi.org/10.1371/journal.pone.0056569
http://www.ncbi.nlm.nih.gov/pubmed/23457583
http://dx.doi.org/10.1016/j.foreco.2013.08.045
http://dx.doi.org/10.3390/f5010177
http://dx.doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
http://dx.doi.org/10.1126/science.317.5834.41b
http://www.ncbi.nlm.nih.gov/pubmed/17615322
http://dx.doi.org/10.1111/geb.12140
http://dx.doi.org/10.1007/s40641-015-0002-x
http://dx.doi.org/10.1016/S0921-8009(00)00170-1
http://dx.doi.org/10.1023/A:1020887204285
http://dx.doi.org/10.1126/science.1115179
http://www.ncbi.nlm.nih.gov/pubmed/16210520
http://dx.doi.org/10.1007/s00027-006-0868-8
http://dx.doi.org/10.1016/j.ocecoaman.2006.06.018


Remote Sens. 2016, 8, 106 27 of 31

37. Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation
options: A review. Aquat. Bot. 2008, 89, 237–250. [CrossRef]

38. Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.;
Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review.
Aquat. Bot. 2008, 89, 220–236. [CrossRef]

39. Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in
the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar.
Glob. Environ. Chang. 2014, 24, 321–333. [CrossRef]

40. Sitoe, A.A.; Mandlate, L.J.C.; Guedes, B.S. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests.
Forests 2014, 5, 1967–1981. [CrossRef]

41. Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [CrossRef]
42. Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; Lopez-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental

drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127.
[CrossRef]

43. Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the
Asia-Pacific Region; International Society for Mangrove Ecosystems (ISME) and International Tropical Timber
Organization (ITTO): Okinawa, Japan, 2009; p. 66.

44. Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer
schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [CrossRef]

45. Di Nitto, D.; Neukermans, G.; Koedman, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F.
Mangroves facing climate change: Landward migration potential in response to projected scenarios of sea
level rise. Biogeosciences 2014, 11, 857–871. [CrossRef]

46. Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.;
Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. Mangrove extinction risk and geographic areas of
global concern. PLoS ONE 2010, 5, e10095. [CrossRef] [PubMed]

47. Daru, B.H.; Yessoufou, K.; Mankga, L.T.; Davies, J. A Global Trend towards the Loss of Evolutionarily Unique
Species in Mangrove Ecosystems. PLoS ONE 2013, 8, 1–9. [CrossRef] [PubMed]

48. Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities.
Prog. Phys. Geogr. 2011, 35, 87–108. [CrossRef]

49. Manson, F.J.; Loneragan, N.R.; McLeod, I.M.; Kenyon, R.A. Assessing techniques for estimating the extent of
mangroves: Topographic maps, aerial photographs, and Landsat TM images. Mar. Freshw. Res. 2001, 52,
787–792. [CrossRef]

50. Ruiz-Luna, A.; Berlanga-Robles, C.A. Land use, land cover changes and coastal lagoon surface reduction
associated with urban growth in northwest Mexico. Landsc. Ecol. 2003, 18, 159–171. [CrossRef]

51. Cornejo, R.H.; Koedam, N.; Luna, A.R.; Troell, M.; Dahdouh-Guebas, F. Remote sensing and ethno-botanical
assessment of the mangrove forest changes in the Navachiste-San Ignacio-Macapule lagoon complex, Sinaloa,
Mexico. Ecol. Soc. 2005, 10, 16.

52. Beland, M.; Goita, K.; Bonn, F.; Pham, T.T.H. Assessment of land-cover changes related to shrimp aquaculture
using remote sensing data: A case study in the Giao Thuy District, Vietnam. Int. J. Remote Sens. 2006, 27,
1491–1510. [CrossRef]

53. Giri, C.; Pengra, B.; Zhu, Z.L.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the
Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast.
Shelf Sci. 2007, 73, 91–100. [CrossRef]

54. Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and
dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [CrossRef]

55. Liu, K.; Li, X.; Shi, X.; Wang, S.G. Monitoring mangrove forest changes using remote sensing and GIS data
with decision-tree learning. Wetlands 2008, 28, 336–346. [CrossRef]

56. Paling, E.I.; Kobryn, H.T.; Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance
in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 2008, 77, 603–613. [CrossRef]

57. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution
of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159.
[CrossRef]

http://dx.doi.org/10.1016/j.aquabot.2007.12.009
http://dx.doi.org/10.1016/j.aquabot.2008.02.009
http://dx.doi.org/10.1016/j.gloenvcha.2013.10.007
http://dx.doi.org/10.3390/f5081967
http://dx.doi.org/10.1007/BF00029113
http://dx.doi.org/10.1016/j.aquabot.2007.12.014
http://dx.doi.org/10.1016/j.coastaleng.2011.07.006
http://dx.doi.org/10.5194/bg-11-857-2014
http://dx.doi.org/10.1371/journal.pone.0010095
http://www.ncbi.nlm.nih.gov/pubmed/20386710
http://dx.doi.org/10.1371/journal.pone.0066686
http://www.ncbi.nlm.nih.gov/pubmed/23805263
http://dx.doi.org/10.1177/0309133310385371
http://dx.doi.org/10.1071/MF00052
http://dx.doi.org/10.1023/A:1024461215456
http://dx.doi.org/10.1080/01431160500406888
http://dx.doi.org/10.1016/j.ecss.2006.12.019
http://dx.doi.org/10.1111/j.1365-2699.2007.01806.x
http://dx.doi.org/10.1672/06-91.1
http://dx.doi.org/10.1016/j.ecss.2007.10.019
http://dx.doi.org/10.1111/j.1466-8238.2010.00584.x


Remote Sens. 2016, 8, 106 28 of 31

58. Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; KoBayashi, T.; Hoan, N.T. Mangrove forests mapping in the
southern part of Japan using Landsat ETM+ with DEM. J. Geogr. Inf. Syst. 2013, 5, 369–377. [CrossRef]

59. Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.I. Change and fragmentation trends of Zhanjiang mangrove
forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013,
130, 111–120. [CrossRef]

60. Nguyen, H.; McAlpine, C.; Pullar, D.; Johansen, K.; Duke, N. The relationship of spatial-temporal changes in
fringe mangrove extent and adjacent land-use: Case study of Ken Giang coast, Vietnam. Ocean Coast. Manag.
2013, 76, 12–22. [CrossRef]

61. Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Glass, L.; Benson, L.; Teoh, M.; Carro, A.; Cripps, G.;
Giri, C.; Gandhi, S.; et al. The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves
in Mahajamba Bay, Madagascar. J. Mar. Sci. Eng. 2015, 3, 793–820. [CrossRef]

62. Jones, T.G.; Ratsimba, H.R.; Carro, A.; Ravaoarinorotsihoarana, L.; Glass, L.; Teoh, M.; Benson, L.; Cripps, G.;
Giri, C.; Zafindrasilivonona, B.; et al. The mangroves of Ambanja and Ambaro Bays, northwest Madagascar:
Historical dynamics, current status and deforestation mitigation strategy. In Estuaries: A Lifeline of Ecosystem
Services in Western Indian Ocean; Diop, S., Scheren, P., Eds.; Springer International Publishing: Cham,
Switzerland, 2016; in press.

63. Giri, S.; Mukhopadhyay, A.; Hazra, S.; Mukherjee, S.; Roy, D.; Ghosh, S.; Ghosh, T.; Mitra, D. A study on
abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique.
J. Coast. Conserv. 2014, 18, 359–367. [CrossRef]

64. Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random Forest Classification for
Mangrove Land Cover Mapping Using Landsat 5 TM and Alos Palsar Imageries. Procedia Environ. Sci. 2015,
24, 215–221. [CrossRef]

65. Ramdani, F.; Rahman, S.; Setiani, P. Inexpensive Method to Assess mangroves Forest through the Use of
Open Source Software and Data Available Freely in Public Domain. J. Geogr. Inf. Syst. 2015, 7, 43–57.
[CrossRef]

66. Moffett, K.B.; Nardin, W.; Silvestri, S.; Wang, C.; Temmerman, S. multiple stable states and catastrophic shifts
in coastal wetlands: Progress, challenges, and opportunities in validating theory using remote sensing and
other methods. Remote Sens. 2015, 7, 10184–10226. [CrossRef]

67. Nardin, W.; Locatelli, S.; Pasquarella, V.; Rulli, M.C.; Woodcock, C.E.; Fagherazzi, S. Dynamics of a fringe
mangrove forest detected by Landsat images in the Mekong delta, Vietnam. Earth Surf. Process. Landf. 2015,
in press.

68. Giri, C.; Muhlhausen, J. Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors
2008, 8, 2104–2117. [CrossRef]

69. Giri, C. National-Level Mangrove Cover Data-Sets for 1990, 2000 and 2010; United States Geological Survey:
Sioux Falls, SD, USA, 2011.

70. Mayaux, P.; Gond, V.; Bartholome, E. A near-real time forest-cover map of Madagascar derived from SPOT-4
VEGETATION data. Int. J. Remote Sens. 2000, 21, 3139–3144. [CrossRef]

71. Critical Ecosystem Partnership Fund (CEPF). Madagascar Vegetation Mapping Project; CEPF: Arlington, VA,
USA, 2007.

72. Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty years of deforestation and forest
fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [CrossRef]

73. Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based
methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [CrossRef]

74. Pasqualini, V.; Iltis, J.; Dessay, N.; Lointier, M.; Guelorget, O.; Polidori, L. Mangrove mapping in
North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologia 1999, 413, 127–133.
[CrossRef]

75. Guillet, M.; Renou, E.; Robin, M.; Debaine, F.; Ratsivalaka, S. Suivi et analyse de l’evolution de la mangrove de
Mahajamba (Nord-ouest de Madagascar). In Proceedings of the International Pluridisciplinary Conference,
Lille, France, 16–18 January 2008.

76. Raharimahefa, T.; Kusky, T.M. Environmental monitoring of Bombetoka Bay and the Betsiboka Estuary,
Madagascar, using multi-temporal satellite data. J. Earth Sci. 2010, 21, 210–226. [CrossRef]

77. Rakotomavo, A.; Fromard, F. Dynamics of mangrove forests in the Mangoky River delta, Madagascar, under
the influence of natural and human factors. For. Ecol. Manag. 2010, 259, 1161–1169. [CrossRef]

http://dx.doi.org/10.4236/jgis.2013.54035
http://dx.doi.org/10.1016/j.ecss.2013.03.023
http://dx.doi.org/10.1016/j.ocecoaman.2013.01.003
http://dx.doi.org/10.3390/jmse3030793
http://dx.doi.org/10.1007/s11852-014-0322-3
http://dx.doi.org/10.1016/j.proenv.2015.03.028
http://dx.doi.org/10.4236/jgis.2015.71004
http://dx.doi.org/10.3390/rs70810184
http://dx.doi.org/10.3390/s8042104
http://dx.doi.org/10.1080/01431160050145018
http://dx.doi.org/10.1017/S0376892907004262
http://dx.doi.org/10.1080/014311698215036
http://dx.doi.org/10.1023/A:1003807330375
http://dx.doi.org/10.1007/s12583-010-0019-y
http://dx.doi.org/10.1016/j.foreco.2010.01.002


Remote Sens. 2016, 8, 106 29 of 31

78. Law No. 97–017 on the Revision of Forestry Legislation; Articles 2 & 41. Government of Madagascar (GoM):
Antananarivo, Madagascar, 1997.

79. Inter-Ministerial Order No. 4355/97 on the Definition of the Sensitize Areas; Articles 2 & 3. Government of
Madagascar (GoM): Antananarivo, Madagascar, 1997.

80. Decree No. 98–781 Defining The Conditions of Application of the National Forest Policy; Articles 34 & 35.
Government of Madagascar (GoM): Antananarivo, Madagascar, 1998.

81. Prohibiting Any Extractive Activity of Wood Resources in Sensitive Areas; Order No. 12.704/2000 of 20 November,
2000. Government of Madagascar (GoM): Antananarivo, Madagascar, 2000.

82. Decree No. 2005–849 of 13 December 2005 Revising the General Conditions of Application of Law No. 97–017 of 8
August 1997, Revising Forestry Legislation; Government of Madagascar (GoM): Antananarivo, Madagascar,
2005; Chapter 4.

83. Law No. 2008–013 on the Public Domain, Government Gazette of 2008; Article 3(a). Government of Madagascar
(GoM): Antananarivo, Madagascar, 2008.

84. Government of Madagascar (GoM). Order No. 2055–2009 Creating Biologically Sensitive Shrimp Zones in Zone
A in Ambaro Bay; Government of Madagascar (GoM): Antananarivo, Madagascar, 2009.

85. Prohibiting Any Exploitation of Mangrove Wood on the National Territory; Inter-Ministerial Order No. 32.100/2014
of 24 October, 2014; Government of Madagascar (GoM): Antananarivo, Madagascar, 2014.

86. Jones, T.G. Shining a light on Madagascar’s mangroves. Madag. Conserv. Dev. 2013, 8, 4–6.
87. Hughes, R.H.; Hughes, J.S. Region 6: Madagascar. In A Directory of African Wetlands, 1st ed.; IUCN: Gland,

Switzerland; Cambridge, UK; UNEP: Nairboi, Kenya; WCMC: Cambridge, UK, 1992; pp. 793–806.
88. Vences, M.; Andreone, F.; Glaw, F.; Raminosoa, N.; Randrianirina, J.E.; Vieites, D.R. Amphibians and reptiles

of the Ankaratra Massif: Reproductive diversity, biogeography and conservation of a montane fauna in
Madagascar. Ital. J. Zool. 2002, 69, 263–284. [CrossRef]

89. Rasofolo, M.V. Use of mangroves by traditional fishermen in Madagascar. Mangroves Salt Marshes 1997, 1,
243–253. [CrossRef]

90. Roy, R.; Purkis, S.; Dunn, S. Mapping Velondriake: The Application of Bathymetric and Marine Habitat Mapping to
Support Conservation Planning, Southwest Madagascar; Blue Ventures Internal Report; Blue Ventures: London,
UK, 2009.

91. Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Melbourne, Australia, 1986.
92. Chavez, P.S. Image-based atmospheric corrections: Revisited and improved. Photogramm. Eng. Remote Sens.

1996, 62, 1025–1036.
93. Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove

forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83,
19–24. [CrossRef]

94. Simard, M.; Zhang, K.Q.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castaneda-Moya, E.; Twilley, R.R.;
Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM
elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [CrossRef]

95. Fatoyinbo, T.E.; Simard, M.; Washington-Allen, R.A.; Shugart, H.H. Landscape-scale extent, height,
biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar
Topography Mission elevation data. J. Geophys. Res. Biogeosci. 2008, 113. [CrossRef]

96. Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castaneda-Moya, E.; Twilley, R.R. A systematic
method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data,
ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia.
Remote Sens. Environ. 2008, 112, 2131–2144. [CrossRef]

97. Fatoyinbo, T.E.; Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J.
Remote Sens. 2013, 34, 668–681. [CrossRef]

98. Aslan, A.; Rahman, A.F.; Warren, M.; Robeson, S.M.; Darusman, T. Combined use of active and passive
remote sensing for mapping distribution and biomass of coastal mangroves. In Proceeding of American
Geophysical Union Fall Meeting, San Francisco, CA, USA, 15–19 Decomber 2014.

99. Sinclair, T.T.; Hoffer, R.M.; Schreiber, M.M. Reflectance and internal structure of leaves from several crops
during a growing season. Agron. J. 1971, 63, 864–868. [CrossRef]

100. Elvidge, C.D. Visible and near-infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens.
1990, 11, 1775–1795. [CrossRef]

http://dx.doi.org/10.1080/11250000209356469
http://dx.doi.org/10.1023/A:1009923022474
http://dx.doi.org/10.1016/j.ocecoaman.2011.12.004
http://dx.doi.org/10.14358/PERS.72.3.299
http://dx.doi.org/10.1029/2007JG000551
http://dx.doi.org/10.1016/j.rse.2007.10.012
http://dx.doi.org/10.1080/01431161.2012.712224
http://dx.doi.org/10.2134/agronj1971.00021962006300060012x
http://dx.doi.org/10.1080/01431169008955129


Remote Sens. 2016, 8, 106 30 of 31

101. Bhattarai, B.; Giri, C. Assessment of mangrove forests in the Pacific region using Landsat imagery. J. Appl.
Remote Sens. 2011, 5, 053509. [CrossRef]

102. Long, J.B.; Giri, C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 2011, 11,
2972–2981. [CrossRef] [PubMed]

103. Aschbacher, J.; Ofren, R.; Delsol, J.P.; Suselo, T.B.; Vibulsresth, S.; Charrupat, T. An integrated comparative
approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies:
Preliminary results. Hydrologica 1995, 295, 285–295.

104. Gao, J.A. Hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT
Multispectral data. Int. J. Remote Sens. 1998, 19, 1887–1899. [CrossRef]

105. Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove
mapping. Int. J. Remote Sens. 1998, 19, 935–956. [CrossRef]

106. Gao, J.A. Comparative study on spatial and spectral resolutions of satellite data in mapping mangrove
forests. Int. J. Remote Sens. 1999, 20, 2823–2833. [CrossRef]

107. Saito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal ecosystem
studies with SPOT-4 HRVIR and TERRA ASTER in Arabian Gulf. Int. J. Remote Sens. 2003, 24, 4073–4092.
[CrossRef]

108. Tong, P.H.; Auda, Y.; Populus, J.; Aizpura, M.; Habshi, A.A.; Blasco, F. Assessment from space of mangroves
evolution in the Mekong Delta, in relation to extensive shrimp farming. Int. J. Remote Sens. 2004, 25,
4795–4812. [CrossRef]

109. Jensen, L.S.; Mueller, T.; Tate, K.R.; Ross, D.J.; Magid, J.; Nielsen, N.E. Soil surface CO2 flux as an index of soil
respiration in situ: A comparison of two chamber methods. Soil Biol. Biochem. 1996, 28, 1297–1306. [CrossRef]

110. Comley, B.W.T.; McGuinness, K.A. Above- and below-ground biomass, and allometry, of four common
northern Australian mangroves. Aust. J. Bot. 2005, 53, 431–436. [CrossRef]

111. Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [CrossRef]
112. Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimate the tree weight of

mangroves. J. Trop. Ecol. 2005, 21, 471–477. [CrossRef]
113. Schumacher, B. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; Ecological

Risk Assessment Support Center, Office of Research and Development, US Environmental Protection Agency:
Washington, DC, USA, 2002.

114. De Vos, B.; Letterns, S.; Muys, B.; Deckers, J.A. Walkley-Black analysis of forest soil organic carbon: Recovery,
limitations and uncertainty. Soil Use Manag. 2007, 23, 221–229. [CrossRef]

115. Meersmans, J.; van Wesemael, B.; van Molle, M. Determining soil organic carbon for agricultural
soils: A comparison between the Walkley & Black and the dry combustion methods (North Belgium).
Soil Use Manag. 2009, 25, 346–353.

116. Ray, R.; Ganguly, D.; Chowdhury, C.; Dey, M.; Das, S.; Dutta, M.K.; Mandal, S.K.; Majumder, N.; De, T.K.;
Mukhopadhyay, S.K.; et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest.
Atmos. Environ. 2011, 45, 5016–5024. [CrossRef]

117. Chen, L.; Zeng, X.; Tam, N.F.Y.; Lu, W.; Luo, Z.; Du, X.; Wang, J. Comparing carbon sequestration and stand
structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern
China. For. Ecol. Manag. 2012, 284, 222–229. [CrossRef]

118. Donato, D.C.; Kauffman, J.B.; Mackenzie, R.A.; Ainsworth, A.; Pfleeger, A.Z. Whole-island carbon stocks in
the tropical Pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manag. 2012,
97, 89–96. [CrossRef] [PubMed]

119. Fujimoto, K.; Imaya, A.; Tabuchi, R.; Kuramoto, S.; Utsugi, H.; Murofushi, T. Belowground C storage of
Micronesian mangrove forests. Ecol. Res. 1999, 14, 409–413. [CrossRef]

120. Jardine, S.L.; Siikamäki, J.V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 2014,
9, 104013. [CrossRef]

121. Liu, H.; Ren, H.; Hui, D.; Wang, W.; Liao, B.; Cao, Q. Carbon stocks and potential carbon storage in the
mangrove forests of China. J. Environ. Manag. 2014, 133, 86–93. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1117/1.3563584
http://dx.doi.org/10.3390/s110302972
http://www.ncbi.nlm.nih.gov/pubmed/22163779
http://dx.doi.org/10.1080/014311698215045
http://dx.doi.org/10.1080/014311698215801
http://dx.doi.org/10.1080/014311699211813
http://dx.doi.org/10.1080/0143116021000035030
http://dx.doi.org/10.1080/01431160412331270858
http://dx.doi.org/10.1016/S0038-0717(96)00136-8
http://dx.doi.org/10.1071/BT04162
http://dx.doi.org/10.1016/0034-4257(89)90069-2
http://dx.doi.org/10.1017/S0266467405002476
http://dx.doi.org/10.1111/j.1475-2743.2007.00084.x
http://dx.doi.org/10.1016/j.atmosenv.2011.04.074
http://dx.doi.org/10.1016/j.foreco.2012.06.058
http://dx.doi.org/10.1016/j.jenvman.2011.12.004
http://www.ncbi.nlm.nih.gov/pubmed/22325586
http://dx.doi.org/10.1046/j.1440-1703.1999.00313.x
http://dx.doi.org/10.1088/1748-9326/9/10/104013
http://dx.doi.org/10.1016/j.jenvman.2013.11.037
http://www.ncbi.nlm.nih.gov/pubmed/24374165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Experimental Section 
	Study Area 
	Inventory and Comparison of Existing Data-Sets 
	National-Level Mangrove Distribution and Dynamics; Ecosystem-Level Dynamics 
	AOI-Specific Ecosystem-Level Mapping 
	Acquisition and Pre-Processing of Remotely Sensed Data 
	Initial Mapping; Definition and Refinement of Mangrove and Surrounding Land-Cover Categories 
	Supervised Image Classification 


	Results and Discussion 
	Overview of Existing National-Level Maps and Data-Sets 
	Mangrove Distribution and Dynamics: 1990–2010 
	National-Level Distribution and Dynamics 
	Ecosystem-Level Dynamics 

	AOI-Specific Ecosystem-Level Mapping Results 
	Spectral Separability and Classification Results 
	Application of Mapping Results 


	Conclusions 

