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Abstract: This paper introduces a novel top-down approach to geospatially identify and distinguish
areas of mixed use from predominantly residential areas within urban agglomerations. Under the
framework of the World Bank’s Central American Country Disaster Risk Profiles (CDRP) initiative,
a disaggregated property stock exposure model has been developed as one of the key elements for
disaster risk and loss estimation. Global spatial datasets are therefore used consistently to ensure
wide-scale applicability and transferability. Residential and mixed use areas need to be identified
in order to spatially link accordingly compiled property stock information. In the presented study,
multi-sensor nighttime Earth Observation data and derivative products are evaluated as proxies to
identify areas of peak human activity. Intense artificial night lighting in that context is associated with
a high likelihood of commercial and/or industrial presence. Areas of low light intensity, in turn, can be
considered more likely residential. Iterative intensity thresholding is tested for Cuenca City, Ecuador,
in order to best match a given reference situation based on cadastral land use data. The results and
findings are considered highly relevant for the CDRP initiative, but more generally underline the
relevance of remote sensing data for top-down modeling approaches at a wide spatial scale.

Keywords: top-down modeling; urban areas; nighttime lights; DMSP; VIIRS; human activity;
residential use; mixed use; global spatial data; CDRP

1. Introduction

Issues of urban development are increasingly being addressed at the global scale, with
international non-governmental organizations (NGOs) and development institutions often setting
the path and moving the public agenda forward. Regularly published reports such as the United
Nations’ World Urbanization Prospects [1] or the World Bank’s World Development [2] and Global
Monitoring Reports [3] address fundamental issues and define key research questions to be tackled by
the scientific and international development community. In that context it has become more and more
evident that spatial data is playing a crucial role for consistent cross-regional analyses and unbiased
evaluation of locally implemented actions. Remote sensing data in particular provide a rich and
globally consistent source for analyses at multiple levels. At the global scale, different aspects have to
be considered than for local-level spatial analyses, including consistency, scalability, retraceability etc.
Several global project initiatives address these issues in various thematic domains. The World Bank’s
Global Urban Growth Data Initiative, for example, addresses pending issues of regional definition
and data incompatibilities and supports the international collaborative setup and development of
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a consistent data set of global urban extents and associated population distribution patterns. In
the same context, the Global Human Settlement Working Group, established under the umbrella of
the Group on Earth Observations (GEO) (www.earthobservations.org/ghs), aims at establishing a
new generation of global settlement measurements and products based on consistent high-resolution
satellite imagery analysis.

The presented study has been carried out within the framework of the World Bank’s Country
Disaster Risk Profiles (CDRP) project initiative which has been successfully implemented at the
continental scale for Central America [4] and is currently being expanded to the Caribbean Region.
With the clear aim at extending to other regions, global applicability and easy transferability are
considered crucial for the model setup. Global spatial datasets are therefore used throughout the
CDRP project, with the presented approach specifically developed to support implementation of a
disaggregated property stock exposure model, one of the key elements for subsequent disaster risk
and loss estimation. While focusing primarily on natural hazards and risks, urban-rural identification
and intra-urban classification aspects are highly relevant for setting the basic spatial framework for
analysis [5].

This paper introduces a novel approach to geospatially identify and distinguish areas of mixed
use from predominantly residential areas within urban agglomerations. After initial urban-rural
classification at a 1 km grid level, that urban mask needs to be classified in residential and mixed use
areas in order to spatially link accordingly compiled property stock information (e.g., from global
tabular databases such as PAGER-STR [6]). The distinct identification of urban residential and mixed
use areas serves as crucial input to define inventory regions for subsequent exposure assessment.
Impervious Surface Area (ISA) data [7] based on remotely sensed nighttime lights from the Defense
Meteorological Satellite Program’s (DMSP) OLS sensor (Operational Linescan System) are used as
proxy to identify areas of peak human activity, often associated with a high likelihood of commercial
and/or industrial presence. ISA is chosen due to its inherent correlation with built-up area (providing
an indication on the percentage of built-up per grid cell) and thus good suitability for building stock
related land use classification. Several ISA thresholds are tested for a case study in Cuenca City,
Ecuador, in order to best match a given reference situation on the ground, where local-level cadastral
land use data is used to identify the actual distribution ratio of residential vs. mixed use areas.
Furthermore, unaltered nightlight intensity data as provided by the VIIRS sensor (Visible Infrared
Imaging Radiometer Suite) [8] are evaluated as alternative to the ISA data. With the DMSP program
fading out VIIRS provides the option for successive nighttime Earth Observation analyses due to its
low light imaging capability. We apply the same methodological steps as for the ISA data in order
to determine best-matching thresholds for binary land use classification and subsequently perform
a comparative analysis of the results. Also scale effects are accounted for in that regard with VIIRS
featuring a higher spatial resolution than OLS-based data products.

Preliminary results of this study were presented at the ECRS-1 conference [9]. Extensive further
research and integration of alternative data sources then lead to the multi-sensor approach illustrated in
this paper, highlighting the relevance of global remote sensing data for top-down modeling approaches
at wide spatial scale. Outcome is considered relevant for global urban spatial modeling in a variety of
topical domains including urban monitoring, disaster risk management, and regional development.

2. Study Area and Data

Due to availability of detailed in situ reference data for comparative analysis and evaluation of the
proposed methodology, the city of Cuenca, Ecuador, was chosen as study area. Cuenca City is located
in the mountainous southern region of Ecuador at an elevation of around 2500 m above sea level and
is the capital of the Azuay province (Figure 1). The city stretches across an area of roughly 70 km2

and had an urban population of 329,928 inhabitants according to the census 2010. Latest figures of
the Ecuador National Statistical Office (INEC) estimate an urban population of approximately 400,000
in 2015.
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Figure 1. Study area Cuenca City, Ecuador. 

The use of satellite-observed nighttime lights has a long tradition in research dealing with 
monitoring urban areas and patterns of human and economic activity [10–16] as well as its impact on 
the environment [17–19]. As opposed to attempts of using nighttime lights for basic delineation of 
urban areas or as weights for population disaggregation, in this paper we rather aim at exploring the 
use and value in determining intra-urban characteristics. 

Public-domain applications of nighttime Earth Observation have long been restricted to one 
satellite sensor, namely the Operational Linescan system (OLS) onboard the Defense Meteorological 
Satellite Program (DMSP) platform [20]. More recently, data from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) sensor onboard the Suomi NPP satellite platform have become available, 
providing both higher spatial and radiometric resolution and being considered as natural successor 
to the fading-out DMSP-OLS series [21]. The commercial satellite EROS-B also offers nighttime 
acquisition capability, even at very high spatial resolution [22]. However, global-scale and 
temporally continuous open data availability remains restricted to DMSP-OLS and NPP-VIIRS, 
therefore the only reasonable choice given the scope of the above-outlined CDRP initiative. In the 
following, we briefly introduce the two data sources we use for the Cuenca City case study, (1) the 
Impervious Surface Area (ISA) product derived from DMSP-OLS; and (2) VIIRS Day/Night band 
light intensity data. 

2.1. Impervious Surface Area (ISA) Data, Derived from DMSP-OLS 

The OLS sensor onboard the DMSP satellite series is able to detect faint light on the Earth’s 
surface at night due to its high sensitivity in the visible spectrum. While initially designed to monitor 
cloud coverage, that low light imaging capacity allows identification of various light emitting 
sources including human settlements and associated human activity patterns [20]. The National 
Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration 
(NOAA) is processing and archiving OLS imagery, thereby also making certain derived products 
accessible to the public. DMSP-OLS data was first used to approximate impervious surface area 
(ISA) in the early 2000s in the development of a national-scale model for the conterminous United 
States [23]. The ISA approach was then consequently adjusted to global scale whereby a 
radiance-calibrated annual composite of nighttime lights is analyzed in conjunction with ancillary 
data such as population counts. Output is consistently provided at 30 arc-sec spatial resolution 

Figure 1. Study area Cuenca City, Ecuador.

The use of satellite-observed nighttime lights has a long tradition in research dealing with
monitoring urban areas and patterns of human and economic activity [10–16] as well as its impact on
the environment [17–19]. As opposed to attempts of using nighttime lights for basic delineation of
urban areas or as weights for population disaggregation, in this paper we rather aim at exploring the
use and value in determining intra-urban characteristics.

Public-domain applications of nighttime Earth Observation have long been restricted to one
satellite sensor, namely the Operational Linescan system (OLS) onboard the Defense Meteorological
Satellite Program (DMSP) platform [20]. More recently, data from the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor onboard the Suomi NPP satellite platform have become available,
providing both higher spatial and radiometric resolution and being considered as natural successor
to the fading-out DMSP-OLS series [21]. The commercial satellite EROS-B also offers nighttime
acquisition capability, even at very high spatial resolution [22]. However, global-scale and temporally
continuous open data availability remains restricted to DMSP-OLS and NPP-VIIRS, therefore the only
reasonable choice given the scope of the above-outlined CDRP initiative. In the following, we briefly
introduce the two data sources we use for the Cuenca City case study, (1) the Impervious Surface Area
(ISA) product derived from DMSP-OLS; and (2) VIIRS Day/Night band light intensity data.

2.1. Impervious Surface Area (ISA) Data, Derived from DMSP-OLS

The OLS sensor onboard the DMSP satellite series is able to detect faint light on the Earth’s
surface at night due to its high sensitivity in the visible spectrum. While initially designed to monitor
cloud coverage, that low light imaging capacity allows identification of various light emitting sources
including human settlements and associated human activity patterns [20]. The National Geophysical
Data Center (NGDC) of the National Oceanic and Atmospheric Administration (NOAA) is processing
and archiving OLS imagery, thereby also making certain derived products accessible to the public.
DMSP-OLS data was first used to approximate impervious surface area (ISA) in the early 2000s in the
development of a national-scale model for the conterminous United States [23]. The ISA approach
was then consequently adjusted to global scale whereby a radiance-calibrated annual composite of
nighttime lights is analyzed in conjunction with ancillary data such as population counts. Output is
consistently provided at 30 arc-sec spatial resolution giving indication on the distribution of manmade
surfaces including buildings, roads and related elements [7].
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Due to its relevance for a broad set of applications, global impervious surface or general built-up
area mapping has been in the focus of attention for a while with data from different satellite sensors
used and various approaches implemented (overview provided by [24]), recent efforts including high
resolution products such as the Global Urban Footprint (GUF) [25] and the Global Human Settlement
Layer (GHSL) [26]. The DMSP-derived ISA data set is unique in a sense that it does not directly extract
built-up from satellite imagery but uses artificial night lighting as proxy measure. While a detected
general correlation between night lights and impervious surfaces provides the basis for the global ISA
product, inherent patterns point to different human activities (e.g., commercial, industrial) rather than
mere built structures. Given the scope and purpose of the presented study this two-sided relation
to built-up with a specific weight on non-residential human activity patterns is particularly relevant.
Figure 2 shows the global ISA data set for the year 2010 extracted for the Cuenca City study area.
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2.2. VIIRS Day/Night Band Data

Since 2011 the VIIRS sensor onboard the Suomi NPP satellite platform provides a natural successor
to DMSP-OLS with its panchromatic Day/Night Band (DNB) detecting dim nighttime scenes in similar
manner. Using advanced processing schemes (e.g., excluding/correcting data impacted by stray light),
NOAA-NGDC is producing global monthly composite products featuring average radiance values at
15 arc-sec spatial resolution [27]. As supplementary product the number of cloud-free observations
that was used to create the average composite is reported for each cell.

In addition to its superior spatial resolution, VIIRS offers a set of improvements over OLS-derived
nighttime lights. These include lower light detection limits, improved dynamic range as well as
quantification and calibration options previously unavailable [21]. One of the few disadvantages of
VIIRS, on the other hand, refers to the later overpass time (after midnight), when outdoor lighting is at
a significantly lower level as compared to early evening when OLS acquisitions are made. Figure 3
illustrates the VIIRS DNB data for the June 2015 monthly composite extracted for the Cuenca City
study area (left). For comparative purposes, we also aggregate that data to a 30 arc-sec grid (right),
thus matching the resolution of the ISA product.

2.3. Cadastral Data

Since 2010 the Municipality of Cuenca has intensified the efforts to collect specific information on
all buildings located in the urban area of Cuenca City enabling the construction of a complete cadastral
database including geo-localization and information on building characteristics.



Remote Sens. 2016, 8, 114 5 of 19
Remote Sens. 2016, 8, 114   5 of 19 

5 

 
Figure 3. VIIRS Day/Night Band (DNB) data for Cuenca City. 15 arc-sec grid (left). Aggregated 30 
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More specifically, this cadastral database contains detailed information on the use of each 
building, allowing for example the distinction of residential and nonresidential occupancy types. 
Data sources that served as input for the cadastral data base originate from different national entities 
such as the Municipality of Cuenca, the National Institute of Statistics and Census (INEC), the 
Telecommunications, Water and Sewage Service Company of Cuenca (ETAPA), the National 
Secretariat for Risk Management (SNGR) and the University of Cuenca. After a validation and 
filtering process, the cadastral building data base eventually comprises 65,436 records [28]. Each 
building footprint record is georeferenced and includes information on built-up area (in m2) and 
occupancy type (Figure 4). Residential buildings thereby cover an area of 12.9 km2, complemented 
by a 4.3 km2 non-residential built-up area. 
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For comparative purposes, we aggregate building footprint data to a 15 arc-sec and a 30 arc-sec 
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built-up area is visualized, whereby a main cluster in the center of the city is clearly depicted. 

Figure 3. VIIRS Day/Night Band (DNB) data for Cuenca City. 15 arc-sec grid (left). Aggregated
30 arc-sec grid (right).

More specifically, this cadastral database contains detailed information on the use of each building,
allowing for example the distinction of residential and nonresidential occupancy types. Data sources
that served as input for the cadastral data base originate from different national entities such as the
Municipality of Cuenca, the National Institute of Statistics and Census (INEC), the Telecommunications,
Water and Sewage Service Company of Cuenca (ETAPA), the National Secretariat for Risk Management
(SNGR) and the University of Cuenca. After a validation and filtering process, the cadastral building
data base eventually comprises 65,436 records [28]. Each building footprint record is georeferenced
and includes information on built-up area (in m2) and occupancy type (Figure 4). Residential buildings
thereby cover an area of 12.9 km2, complemented by a 4.3 km2 non-residential built-up area.
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Figure 4. Cadastral building footprints of Cuenca City, classified in residential and non-residential
occupancy types.

For comparative purposes, we aggregate building footprint data to a 15 arc-sec and a 30 arc-sec
grid respectively, thus matching the resolutions of the two analyzed nighttime lights data sets. Figure 5
illustrates the aggregated grids for the non-residential share of the built-up area. On top, non-residential
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built-up percentage is shown. At the bottom, each cell’s contribution to the total built-up area is
visualized, whereby a main cluster in the center of the city is clearly depicted.Remote Sens. 2016, 8, 114   6 of 19 
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3. Methods

As outlined in the introduction, the presented study was carried out under the framework of
the World Bank’s Central American Country Disaster Risk Profiles (CDRP) Initiative [4]. With that
kind of continental and global models, the implemented scale level plays an important role in defining
the basic spatial units of analysis. Working on a 30 arc-sec resolution grid level (i.e., approximately
1 km at the equator)—frequently used for global models—the spatial identification and distinction
of unique inventory regions is often not unambiguously possible at the grid cell level due to the
well-studied mixed pixel issue [29,30]. While large urban residential areas as well as certain dedicated
industrial zones are still often built in rather compact manner and can thus indeed cover entire grid
cells, particularly commercial areas are commonly intertwined with residences forming wider areas of
mixed use. In order to appropriately identify urban non-residential areas in a spatial top-down model
it is therefore considered reasonable to assume a certain share of residential occupancy throughout
and consider grid cells that also include a non-residential share as areas of mixed use.

For identification of those built-up urban areas that also feature a share of non-residential use,
we refer to the above-outlined nighttime Earth Observation data and derivative products as proxy
measure. The assumption hereby is that intense lighting in that context is associated with a high
likelihood of commercial and/or industrial presence, commonly clustered in certain parts of a city
(such as central business districts and/or peripheral commercial zones). Areas of low light intensity, in
turn, can be considered more likely residential.

The main objective of this study is thus to identify the light intensity thresholds that match best
the separated distribution of residential vs. mixed use areas on the ground. DMSP-OLS derived
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ISA data and VIIRS-DNB data are both evaluated and comparatively analyzed for that purpose. It
should be noted that the presented approach is proposed only for pre-identified urban areas [31], as
for rural regions coarse-scale lighting intensity has reduced spatial correlation with built-up and other
additional aspects come into play.

Referring to the Cuenca City cadaster data we distinguish purely residential areas from areas
of mixed use. Using the building footprint area data we obtain that 75% of the total built-up area of
Cuenca City features residential occupancy, complemented by 25% non-residential occupancy. At the
aggregated 15 arc-sec level, the top 25% mixed use cells (covering 25 km2 out of the total 98.75 km2)
account for 92% of the city’s total non-residential built-up area. We then use this bottom-up-determined
distribution ratio to identify the appropriate lighting intensity thresholds in the top-down model.

In order to define the relevant data value histograms for the threshold identification, we select
all cells of the respective ISA and VIIRS data sets that fall within the pre-defined urban test case area
of Cuenca City. In the case of the ISA data, the min-max value range is thereby identified as 5.7–77.8.
For the VIIRS data, the min-max value range is identified as 3.3–73.8. In order to factor out potential
effects generated by the mere difference in spatial resolution between ISA and VIIRS data we aggregate
the original 15 arc-sec VIIRS data to a 30 arc-sec grid, thus enabling direct spatial comparability to
the ISA grid. We iteratively apply several threshold cut-off points in the identified value ranges and
compare the resulting areas of relatively low and relatively high ISA and VIIRS values respectively to
the aggregated cadastral data. The eventually selected final cut-off point is that threshold value that
produces the best-matching output with regard to the 75:25 cadaster-based residential vs. mixed use
area distribution ratio.

4. Results

4.1. Identification of Residential vs. Mixed Use Areas Using ISA Data

Table 1 illustrates the various tested ISA threshold values and the corresponding building use
distribution ratios as derived from comparative spatial overlay with the aggregated cadastral data
at the 30 arc-sec grid level. ISA min-max range and respective threshold values are shown in the left
part of the table, with the percentile column indicating the relative value distribution. In mathematical
terms the percentile value is derived as follows: (Threshold–Min)/(Max–Min). Specifically, that means
that for the highlighted ID 4 the ISA value of 42 indicates the median value (50th percentile) in the
distribution histogram. Half of the values in the study area under consideration thus feature an ISA
value lower than 42 and the other half feature a higher value.

Table 1. ISA distribution thresholds and corresponding building use distribution ratios (grey indicating
selected best-matching threshold).

ID
ISA Distribution Built-Up Area Distribution

Min Threshold Max Percentile Residential Use Mixed Use

1 5.7 15 77.8 13% 32.00% 68.00%
2 5.7 22 77.8 23% 52.00% 48.00%
3 5.7 39 77.8 46% 70.00% 30.00%
4 5.7 42 77.8 50% 74.00% 26.00%
5 5.7 59 77.8 74% 96.00% 4.00%

Spatially overlaid on the aggregated cadastral building use density grid (at the 30 arc-sec level,
comparable to the ISA grid), that results in a 74% residential ratio and a 26% mixed use share, thus
best-matching the bottom-up-derived 75% residential share (ISA data is provided in integer numbers,
thus making it impossible to exactly match that 75% target value). Figure 6 maps the binary land use
classification (residential use vs. mixed use) for the 5 tested ISA thresholds respectively. The share of
mixed use area decreases thereby corresponding to the higher ISA cut-off points.
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Figure 6. Binary land use classification of Cuenca City based on ISA thresholds from Table 1. Blue
indicates residential and orange mixed use. Table record IDs are indicated in the figure as 1–5.

Having the building-level cadastral data at hand enables not only determination of the binary
land use distribution ratio, but furthermore allows us to consequently evaluate the degree of spatial
overlap as a measure of model output accuracy. Using the above-identified ISA threshold, thus best
matching the relative distribution of the two occupancy types (residential and mixed use), 82.8% of
the total non-residential building stock of Cuenca City (3.6 of 4.3 km2) is indeed captured within the
selected top-down-derived binary mixed use mask.

4.2. Identification of Residential vs. Mixed Use Areas Using VIIRS Data in Original Spatial Resolution

Applying the same approach of iterative thresholding as illustrated for the ISA data we use VIIRS
data to perform comparative analysis. As outlined above, VIIRS data is evaluated in that context first
at its original resolution level and furthermore at aggregated level matching the ISA resolution in order
to guarantee direct spatial comparability and factor out potentially biased scale effects.

4.2.1. Application of VIIRS Data in Original Spatial Resolution

As shown above with the ISA data, Table 2 relates the various tested VIIRS threshold values to
the corresponding cadastral building use distribution ratios. Several light intensity thresholds are
applied iteratively, approximating the occupancy-type-specific built-up area distribution shares on the
ground. Spatial overlay of the VIIRS data and the corresponding aggregated cadastral building use
density grid (at the 15 arc-sec level) indicates that the 53rd percentile threshold exactly matches the
land use distribution as derived from the cadastral information, i.e., 75% residential and 25% mixed
use share. Figure 7 maps the binary land use classification (residential use vs. mixed use) for 5 selected
thresholds respectively. The share of mixed use area decreases thereby corresponding to the higher
VIIRS cut-off points.

Table 2. VIIRS distribution thresholds (original 15 arc-sec grid) and corresponding building use
distribution ratios (grey indicating selected best-matching threshold, orange indicating 50% threshold
for comparison).

ID
VIIRS Distribution Built-up Area Distribution

Min Threshold Max Percentile Residential Use Mixed Use

1 3.2 16.0 73.8 18% 32.00% 68.00%
2 3.2 25.0 73.8 31% 52.00% 48.00%
3 3.2 38.5 73.8 50% 71.00% 29.00%
4 3.2 40.6 73.8 53% 75.00% 25.00%
5 3.2 57.0 73.8 76% 96.00% 4.00%
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as 1–5.

Results regarding the degree of spatial overlap between the binary classified VIIRS data and the
correspondingly aggregated cadastral grid indicate that 76% of the total non-residential building stock
of Cuenca City (3.27 of 4.3 km2) are captured within the selected top-down-derived mixed use mask
(using the identified best-matching 53rd percentile threshold).

4.2.2. Application of VIIRS Data Aggregated to a 30 arc-sec Grid

In order to perform comparative analysis at identical scale levels, VIIRS data is aggregated to a
30 arc-sec grid before iterative threshold determination. Table 3 illustrates the various tested threshold
values from the aggregated VIIRS data and the corresponding cadastral building use distribution ratios.
To guarantee direct comparability with the ISA-based analysis, the thresholds for the aggregated VIIRS
data are applied in such a way that the building use distribution ratios (shown in the right part of
Table 3) are identical to the tests carried out before using the ISA data.

Table 3. VIIRS distribution thresholds (aggregated 30 arc-sec grid) and corresponding building use
distribution ratios (grey indicating selected best-matching threshold, orange indicating 50% threshold
for comparison).

ID
VIIRS Distribution Built-up Area Distribution

Min Threshold Max Percentile Residential Use Mixed Use

1 2.7 12.2 65.1 15% 32.00% 68.00%
2 2.7 19.3 65.1 27% 52.00% 48.00%
3 2.7 34.1 65.1 50% 70.00% 30.00%
4 2.7 36.9 65.1 55% 75.00% 25.00%
5 2.7 57.1 65.1 90% 96.00% 4.00%

Figure 8 maps the binary land use classification (residential use vs. mixed use) for the 5 tested
thresholds in the aggregated VIIRS data respectively. As with the previous tests, the share of areas
with mixed occupancy decreases thereby corresponding to the higher cut-off points.

Spatial overlay of the aggregated VIIRS data and the corresponding cadastral building use density
grid indicates that the 55th percentile threshold best matches the target value of 75% residential and
25% mixed use shares (as derived from the in situ cadaster data), thus slightly higher than for the
original-resolution VIIRS data. Evaluating the degree of spatial overlap between the aggregated VIIRS
data and the corresponding cadastral grid, we detect that 79% of the total non-residential building
stock of Cuenca City (3.4 of 4.3 km2) is captured within the selected top-down-derived binary mixed
use mask.
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5. Discussion

The application of ISA and alternatively VIIRS data to identify intra-urban occupancy type
distribution patterns that we outline in this paper and the corresponding findings include several
interesting aspects for further discussion. In the following we highlight three relevant points at
different stages in the model setup. First, we provide some background information on selection
criteria of VIIRS data. Then, we discuss the actual differences in the outcome of the proposed binary
land use classification approach when implemented using ISA vs. VIIRS data. Finally, we highlight the
impact that proper urban spatial delineation has on the model outcome by applying a spatially shrunk
urban mask for the Cuenca City test case.

5.1. VIIRS Data Selection

Initial nightlights data selection has a big influence on the model outcome and is particularly
important in a sense that VIIRS data is provided by NOAA-NGDC as basic monthly average light
intensity composites whereas ISA data comes as a fully-processed product derived from annual
DMSP-OLS composites and calibrated with ancillary built-up reference information. The number
of cloud-free observations is a crucial factor for producing average composites as excessive cloud
cover can obscure light-emitting sources on the ground. In monthly products fewer observations are
potentially available to compute composite grids as compared to yearly products and average values
can therefore more easily turn out to be skewed and non-representative in case of extended cloud
cover in the respective month. There are obviously other influencing parameters that can impair light
identification such as obscuring factors like smoke or fog and misleading reflections from snow cover,
lightning or the aurora. However, cloud cover is clearly considered the most relevant parameter in the
context of the compositing process, particularly in equatorial regions such as the study area of Ecuador.
For our study we evaluated the 6 most recent available readily-processed monthly composites (at
the time of writing) covering January–June 2015 (other monthly composites were only available as
preliminary beta versions having lower quality). For the Cuenca City study area the monthly VIIRS
composites of May and June 2015 feature the highest average number of cloud-free observations (see
Table 4), thus providing best data reliability.

Figure 9 illustrates the light intensity values for the 6 analyzed monthly composites as well as the
corresponding number of cloud-free observations at a pixel-by-pixel basis. For the light intensity grids,
darker blue tones indicate higher intensity. For the cloud-free observation grids, dark blue would
represent the best situation (no cloud cover at any day during the month) whereas green, yellow and
red colors indicate decreasing data reliability (due to fewer cloud-free observations).
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Table 4. Average number of cloud-free observations in VIIRS 2015 monthly composites for the Cuenca
City study area (grey indicating eventually selected monthly composite).

Month
Number of Cloud-Free Observation Day/Night Band (DNB) Value

Min Max Average Min Max

January 2 9 5.47 3.8 86.9
February 2 6 4.52 3.52 129.1

March 0 4 1.98 0.0 92.3
April 3 8 5.37 3.9 55.8
May 6 11 8.97 3.5 55.7
June 6 11 8.81 3.3 73.8

Theoretically, just a couple of high-quality observations can be sufficient to produce an appropriate
composite product. While the monthly composites of May and June have the highest number of
cloud-free observations, other months’ composites can thus feature very similar light intensity value
distributions (as it is the case for example for the April composite). We therefore explicitly refer to data
reliability as an indicator as opposed to general data quality.
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Although the May composite has the highest number of cloud-free observations on average, that
value is almost identical to the June composite (see Table 4). In that case, an additional parameter
should be identified to justify selection. On the one hand visual inspection of the cell-level distribution
of cloud-free observations could give an extra indication on potential data quality. If, for example,
more cloud-free observations are found in the city center (where non-residential activity is expected),
that could be beneficial given the context of the presented study. Another parameter could be the
detected light intensity range, with detection of higher intensities (i.e., likely non-obscured) being
potentially favorable. Following the latter criterion, higher intensity levels are identified in the June
composite as compared to the May data set (see Table 4). Other secondary selection criteria could take
into account influencing parameters that impair light identification (as mentioned above). Data on
those parameters is usually not publicly available though. As intra-urban cloud-free observations at
cell-level are similarly distributed for the May and June composites, the higher detected light intensity
range was eventually the determining factor in selecting the June data set for the test study.

To further highlight the differences in spatial patterns between the 6 available monthly composites,
cell-by-cell light intensity deviations of every grid to the eventually selected June composite are
computed as illustrated in Figure 10. In line with the observations described above, the May composite
matches the June dataset most closely also in that regard. Besides, the overall patterns of those
cell-by-cell deviations align adequately with the corresponding grids showing the number of cloud-free
observations (see Figure 9). The February and March composites, for example, show the largest
deviations to the June grid on a cell-by-cell basis, thus assumingly confirming the poorer reliability of
those grids when referring to the low number of cloud-free observations. Specifically the March grid
can be considered unusable, while there may be additional reasons for the extreme light intensities
observed during the month of February (e.g., night parades and other associated carnival celebration
activities in the middle of the month).

Remote Sens. 2016, 8, 114   12 of 19 

12 

Although the May composite has the highest number of cloud-free observations on average, 
that value is almost identical to the June composite (see Table 4). In that case, an additional 
parameter should be identified to justify selection. On the one hand visual inspection of the cell-level 
distribution of cloud-free observations could give an extra indication on potential data quality. If, for 
example, more cloud-free observations are found in the city center (where non-residential activity is 
expected), that could be beneficial given the context of the presented study. Another parameter 
could be the detected light intensity range, with detection of higher intensities (i.e., likely 
non-obscured) being potentially favorable. Following the latter criterion, higher intensity levels are 
identified in the June composite as compared to the May data set (see Table 4). Other secondary 
selection criteria could take into account influencing parameters that impair light identification (as 
mentioned above). Data on those parameters is usually not publicly available though. As intra-urban 
cloud-free observations at cell-level are similarly distributed for the May and June composites, the 
higher detected light intensity range was eventually the determining factor in selecting the June data 
set for the test study. 

To further highlight the differences in spatial patterns between the 6 available monthly 
composites, cell-by-cell light intensity deviations of every grid to the eventually selected June 
composite are computed as illustrated in Figure 10. In line with the observations described above, 
the May composite matches the June dataset most closely also in that regard. Besides, the overall 
patterns of those cell-by-cell deviations align adequately with the corresponding grids showing the 
number of cloud-free observations (see Figure 9). The February and March composites, for example, 
show the largest deviations to the June grid on a cell-by-cell basis, thus assumingly confirming the 
poorer reliability of those grids when referring to the low number of cloud-free observations. 
Specifically the March grid can be considered unusable, while there may be additional reasons for 
the extreme light intensities observed during the month of February (e.g., night parades and other 
associated carnival celebration activities in the middle of the month). 

 
Figure 10. Cell-by-cell deviations to the selected June grid. 

Table 5 illustrates a set of tested VIIRS threshold values using the May data as alternative in 
order to demonstrate potential model output variation in case a different monthly composite was 
selected. When applying the 53rd percentile threshold (highlighted in green in Table 5) that 
delivered the best match to the cadastral data in the June composite, a 65:35 building use 
distribution split was obtained for the May composite, thus significantly overestimating the 
non-residential share. In the May data the 64th percentile is identified as fitting threshold 
(highlighted in grey in Table 5) best approximating the aggregated cadastral grid. 

Figure 10. Cell-by-cell deviations to the selected June grid.

Table 5 illustrates a set of tested VIIRS threshold values using the May data as alternative in order
to demonstrate potential model output variation in case a different monthly composite was selected.
When applying the 53rd percentile threshold (highlighted in green in Table 5) that delivered the best
match to the cadastral data in the June composite, a 65:35 building use distribution split was obtained
for the May composite, thus significantly overestimating the non-residential share. In the May data the
64th percentile is identified as fitting threshold (highlighted in grey in Table 5) best approximating the
aggregated cadastral grid.
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Table 5. VIIRS distribution thresholds (original 15 arc-sec grid) and corresponding building use
distribution ratios using the monthly composite for May ratios (grey indicating selected best-matching
threshold, green indicating previously identified June threshold for comparison).

ID
VIIRS Distribution Built-up Area Distribution

Min Threshold Max Percentile Residential Use Mixed Use

1 3.5 16.0 55.6 24% 32.00% 68.00%
2 3.5 29.5 55.6 50% 62.00% 37.00%
3 3.5 31.1 55.6 53% 65.00% 35.00%
6 3.5 37.0 55.6 64% 75.00% 25.00%
9 3.5 50.6 55.6 90% 96.00% 4.00%

5.2. Comparative Analysis of ISA- and VIIRS-Based Results of the Binary Land Use Classification

The second aspect to be discussed is a comparison of the model output when using ISA and
VIIRS-DNB data respectively. This is relevant in several aspects, most specifically (1) in terms of
evaluating feasibility of continued applicability of the presented approach with the DMSP program
fading out as well as (2) to assess the impact and examine expected multisided improvements due to
VIIRS’ improved spatial and radiometric resolution as compared to OLS.

To factor out potential influences caused by the higher spatial resolution we first compare the
findings of the ISA-based analysis to those using a correspondingly aggregated 30 arc-sec VIIRS
grid. Results prove to be similar in fact, with a 55th percentile threshold identified as best fit to
distinguish residential and mixed occupancy areas in the VIIRS data as compared to the 50% threshold
in the ISA data. In case of applying the same 50% threshold to the aggregated VIIRS composite, the
obtained occupancy distribution in the correspondingly aggregated cadastral data would show a
70:30 residential-mixed split as compared to the targeted 75:25 ratio. When evaluating the degree of
spatial overlap as a measure of model output accuracy, applying the respectively identified best-fitting
thresholds to both data sets results in a slightly better capturing of non-residential built-up area in the
binary mixed use mask that is derived from the ISA data (83%) as compared to the aggregated VIIRS
data based mask (79%). If again the 50% threshold was applied to the VIIRS composite instead of the
identified 55th percentile threshold, approximately 84% of the non-residential built-up area would be
captured. While thereby a marginally better result is achieved in terms of capturing non-residential
built-up area, the residential-mixed distribution ratio would be skewed and mixed use areas would
actually be overrepresented spatially.

Applying the VIIRS data in its original spatial resolution (15 arc-sec), the best-fitting threshold
value to approximate the targeted 75:25 residential-mixed distribution pattern is identified at the 53rd
percentile. This is slightly below the threshold value identified for the aggregated VIIRS composite
(55th percentile). 76% of the total non-residential building stock of Cuenca City (3.27 of 4.3 km2) is
captured within the derived mixed use mask. That value is below both the 79% value when using the
aggregated VIIRS data and the 83% value when using the ISA data. In case of applying the initial 50%
threshold for the binary classification, 79% of the non-residential building stock would be captured at
a 71:29 occupancy type ratio distribution.

Checking those numbers it therefore appears that using ISA data renders a better model
performance than using VIIRS data both in original and aggregated form, inasmuch as more
non-residential built-up area is detected in the binary masks that were derived using optimized
thresholding to match residential-mixed occupancy distribution ratios. However, while a higher
percentage of the non-residential built-up area is captured, ISA-derived mixed use areas are slightly
more scattered. Taking VIIRS as input data source clusters the detection more in a sense that the
average cell-level non-residential built-up density is higher in those binary occupancy type mask
derivatives. Using the original-resolution composite, 76% of the total non-residential building stock
(3.27 km2) is captured within 25.75 km2, thus featuring an average non-residential built-up density
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of 12.7% per km2. When using ISA data, 83% of the total non-residential building stock (3.57 km2) is
captured within 32 km2, thus an average density of 11.1% per km2.

With the threshold values and associated parameters are obviously rather similar for the
VIIRS- and ISA-based approaches, another interesting evaluative perspective is to derive a
corresponding binary mask from the aggregated cadastral data and then check spatial pattern
concurrence to the nightlights products. Figure 11 shows the binary classification of the aggregated
cadastral data (top), both for the 15 arc-sec (left) and the 30 arc-sec (right) aggregate. The binary mask
separates cells that contribute strongly to the total non-residential area from cells that only have a
marginal share. This approach is congruent to the nightlights thresholding approach in a sense that it
aims at separating high-intensity from low-intensity cells (referring to “non-residential” as observed
parameter). The thresholds are determined in a way that, as for the nightlights data thresholding,
the 75:25 residential-mixed occupancy type reference ratio split is matched best-possible. For the
15 arc-sec grid the threshold is identified at 0.25% (i.e., cells that have a percent-contribution to the total
non-residential area of less or equal than 0.25%), while for the 30 arc-sec grid the derived threshold
value is 1%. Interestingly, the difference in fact exactly reflects the scale difference between the two
datasets (i.e., factor of 4). The binary 15 arc-sec classification results in a non-residential mask (in
dark blue) that captures 88.3% of the total non-residential building area of Cuenca City on an area of
25.5 km2, thus an average density of 14.9% per km2 (compared to the 12.7%/km2 average density in
the VIIRS-derived 15 arc-sec binary mask). The 30 arc-sec mask on the other hand captures 86%.
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Figure 11. Binary classification of the non-residential cadastral built-up area aggregated to 15 arc-sec
(top-left) and 30 arc-sec grids (top-right) based on the percent-contribution to the total non-residential
area of Cuenca City. Best-matching binary classifications as derived from 15 arc-sec VIIRS (bottom-left)
and 30 arc-sec ISA (bottom-right) data.

For comparative purposes, the bottom two illustrations in Figure 11 show the above-presented
best-matching binary masks derived from the 15 arc-sec VIIRS and the 30 arc-sec ISA data. Visually
evaluating spatial distribution and extent of the non-residential class in the two maps reveals interesting
patterns. The VIIRS-derived mask covers the south-western corner of the corresponding cadaster-based
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non-residential mask well and misses out on the north-eastern corner whereas it is the other way around
with the ISA-derived mask. VIIRS in that context seems not to detect above-average light intensities
from the Cuenca City Airport (Aeropuerto Mariscal La Mar), whereas it is a major contributing factor
in the ISA data. The latter could be explained with the inherent data configuration of ISA, which per
se is more correlated with built-up area rather than pure light intensity.

5.3. Evaluating Model Sensitivity via Application of Different Spatial Urban Delineation

For further evaluation of the model sensitivity we re-run the implemented approach with a
geospatially shrunk urban mask. While in the above-outlined implementations all the ISA and VIIRS
grid cells were considered that fall within a pre-defined urban area of Cuenca City, now a more central
part of the urban agglomeration is selected. Two tests are carried out in that context. For the first
one, we keep the same built-up area occupancy type distributions (75% residential vs. 25% mixed use
for VRIIS original resolution and 74% residential vs. 26% mixed use for the aggregated grid). In the
second test, we keep the same threshold values identified above as the best match, respectively, for
each dataset (50th percentile for the ISA data and 53rd percentile for the VIIRS data).

For the first test, the derived best-matching thresholds are now higher for both datasets. For
the ISA data the 55th percentile and for the VIIRS-original and aggregated grids the 63rd and 65th
percentile are identified respectively. This was expected as predominantly residential areas in the
periphery of the city are now not included in the newly-defined urban mask and those cells (featuring
lower ISA and light intensity values) are thus missing in the histograms. The threshold increment
is higher for the VIIRS data application (roughly 10%–12%-increase) as compared to the ISA data
application (5%-increase). This aspect can be associated with different sensitivity of the identified
VIIRS and ISA thresholds due to varying histogram distributions (see Figure 12). Given the purpose
of the presented modeling, a more even histogram distribution could imply less sensitivity in the
threshold determination.
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Figure 12. VIIRS-DNB (aggregated) and ISA histograms for the Cuenca city case study.

In fact, using the ISA composite, it only takes an increment of 24% (raising the threshold from
50% to 74%) to change the building occupancy type distribution ratio from 74:26 to 96:4. Regarding
the aggregated DNB-VIIRS it would require a 35% increment (raising the threshold from 55% to
90%) to achieve the same theoretic change of the built-up area distribution. Small threshold shifts
therefore have a bigger impact when using ISA as compared to VIIRS. To illustrate and emphasize this
statistically, we use a sample of 10 value pairs each for ISA, original-resolution VIIRS, and aggregated
VIIRS as compared to the cadastral building use distribution, and run a linear regression (see Figure 13).
Considering all the value pairs, in fact the original-resolution VIIRS data shows the steepest slope in
the regression (1.2468) whereas the aggregated VIIRS data indeed show the flattest slope (1.0341) with
ISA in between (1.1613). The aggregated VIIRS would thus be the least sensitive to threshold shifting
in a sense that the building use distribution ratios would accordingly deviate less from the target value
(see dashed line in Figure 13). While steepest when considering all value pairs, the slope of the original
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VIIRS graph matches ISA almost identically around the relevant target value (dashed line). Threshold
shifts in the nightlights products would therefore have a similar impact on the resulting building use
distribution ratios.
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Figure 13. Plot of residential building use ratio vs. data percentile from histogram distribution for ISA
(extended data sample of Table 1), original-resolution VIIRS (extended data sample of Table 2), and
aggregated VIIRS (extended data sample of Table 3). The dashed line shows the residential building use
ratio for Cuenca City (75%) as derived from cadastral data. Regression equations are colored according
to the respective graphs.

In the second test using the best-matching thresholds identified with the initial urban mask (50th
percentile for ISA and 53rd and 55th percentile respectively for VIIRS) the newly obtained built-up area
occupancy type distribution for the ISA data now corresponds to a 50% residential and 50% mixed use
share while for the VIIRS data the distribution now shows a pattern of 56% residential and 44% mixed
use considering the original resolution and a 48:52 ratio taking in account the aggregated 30 arc-sec
grid. These newly derived built-up area occupancy type distribution patterns are similar for both
data sources (ISA and VIIRS) and clearly overestimate the share of mixed use area. This, again, was
expected in the same way than the first test result inasmuch as in the selected central part of the urban
area there are a decreased number of residential buildings as compared to the sub-urban periphery.

Both tests are correlated in a sense that they give indication on higher light intensity values being
clustered in central core urban areas of Cuenca City whereas sub-urban areas feature dimmer lights
(and consequently also lower ISA values) on average as a result of higher residential densities. This
exercise basically highlights the importance of correct spatial pre-identification of the urban area for
subsequent intra-urban analysis. If the urban mask is spatially over- or under-defined, the appropriate
nightlights threshold values would de- or increase respectively.
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6. Conclusions and Outlook

The presented result of the ISA data application is very interesting as it in fact backs up the prior
non-evaluated assumption implemented in the Central American CDRP model to use ISA median
values as a threshold for the binary land use classification of residential and mixed use areas. At the
continental scale, without ground reference data as are available for the presented Cuenca City test
case study, the use of the median value seemed most appropriate as it introduces the least possible
subjectivity and merely separates a certain data set in high and low according to its histogram without
additionally induced statistical skew.

With that initially assumed median value (50%) threshold for the binary ISA classification
confirmed through comparative in situ data analysis for an accurately defined urban agglomeration,
the presented case study is considered very beneficial for the overall implementation process of the
CDRP initiative. Also, the second re-run of the model with a geospatially shrunken, more central
urban mask that showcased the correspondingly expected threshold upward shifts provides another
back-up for the model validity as well as underlining the importance of accurate urban delineation in
the first place.

It has to be noted that with the presented Cuenca City test case, those findings have to date just
been evaluated for that one particular city and caution is advised when it comes to directly transferring
those conclusions to other cities. With the CDRP exposure and subsequent risk and loss models already
implemented for all of Central America, further test studies can be carried out to increase the sample
size of the model evaluation and also test the approach in different regional settings. Cuenca City is
considered a rather typical Latin American city with regular patterns of clustered land use within
the urban agglomeration. Though, in Central America, basically no major deviations are expected
with regard to model applicability, it will be interesting to see testing results when extending to the
Caribbean and across as well as to cities of much larger spatial urban extent. Analysis of areas further
from the equator may furthermore be influenced by varying seasonal day duration as well as different
cloud cover patterns, two parameters which directly affect the nighttime lights compositing.

Testing VIIRS-DNB data as alternative to the DMSP-OLS-based ISA data is considered a crucial
step towards a continued applicability of the model. With the DMSP program fading out, VIIRS-DNB
is considered the natural successor to the OLS-based nightlights products. With certain visual
improvements expected due to VIIRS’s higher spatial and radiometric resolution as compared to
OLS, it is still highly valuable to get a clear idea about how these improvements eventually transfer
to the binary land use classification output. One specific finding in that context refers to the stronger
clustering and thus higher non-residential built-up density in VIIRS-derived binary classification
as compared to the ISA-based approach. A major and often-stated benefit of VIIRS with regard
to intra-urban pattern analysis is the much-improved radiometric resolution which eliminates the
restricting light intensity saturation issues in urban centers in OLS data [21]. For the purpose of the
presented study, however, this is not of major relevance as the OLS-derived ISA data refer to a specific
radiance-calibrated nightlights product where such saturation issues have already been addressed [32].
Only two ISA datasets are publicly available, however, for the years 2000 and 2010, thus limiting
potential direct applicability of the proposed approach in continuous time series analyses. Anyway,
even using the annually produced and publicly available OLS stable lights-product would likely not
result in a major deterioration of the binary classification as the high intensity values would still
be correctly identified irrespective of their relative lower displacement in the histogram due to the
saturation issue.

For future studies as well as potential longer-term time series analyses, the finding is very positive
in indicating that the DMSP-OLS-based ISA data and the more recent VIIRS data seem to be applicable
in very similar fashion as input data sources for the residential-mixed identification model. Two
main differences found using VIIRS data concern the varying threshold sensitivity and the amount of
built-up detected per square kilometer of land use. The procedure of binary land use classification
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using VIIRS is considered more flexible than using ISA, and has the potential to give a finer-scale
classification of residential and mixed used in urban areas.
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