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Abstract: High spatial resolution (HSR) image scene classification is aimed at bridging the semantic
gap between low-level features and high-level semantic concepts, which is a challenging task due
to the complex distribution of ground objects in HSR images. Scene classification based on the
bag-of-visual-words (BOVW) model is one of the most successful ways to acquire the high-level
semantic concepts. However, the BOVW model assigns local low-level features to their closest visual
words in the “visual vocabulary” (the codebook obtained by k-means clustering), which discards
too many useful details of the low-level features in HSR images. In this paper, a feature coding
method under the Fisher kernel (FK) coding framework is introduced to extend the BOVW model
by characterizing the low-level features with a gradient vector instead of the count statistics in the
BOVW model, which results in a significant decrease in the codebook size and an acceleration of the
codebook learning process. By considering the differences in the distributions of the ground objects
in different regions of the images, local FK (LFK) is proposed for the HSR image scene classification
method. The experimental results show that the proposed scene classification methods under the
FK coding framework can greatly reduce the computational cost, and can obtain a better scene
classification accuracy than the methods based on the traditional BOVW model.

Keywords: fisher kernel; scene classification; Gaussian mixture model; feature coding; bag of visual
words; high spatial resolution imagery

1. Introduction

A large amount of high spatial resolution (HSR) images are now available for precise
land-use/land-cover investigation. The improvement of the spatial resolution of remote sensing
images (less than 1 m) enables the analysis of the structure of ground objects. A lot of research has been
undertaken on accurate ground object recognition (e.g., trees, buildings, roads) in HSR images [1–8].
However, the high-level semantic concepts, such as residential areas or commercial areas, cannot be
acquired by these methods because of the so-called “semantic gap” between the low-level features and
the high-level semantic concepts [9–12].

To bridge the semantic gap, scene classification methods based on the bag-of-visual-words (BOVW)
model [13–18], part detectors [19,20], and neural networks [21–23] have been proposed, among which the
BOVW model is one of the most popular approaches. In scene classification based on the BOVW model, the
low-level features are extracted from the image by a local feature extraction method, e.g., mean/standard
deviation statistics [9], the gray-level co-occurrence matrix [24], or scale invariant feature transform [25],
and the low-level features are then assigned to their closest visual words in a “visual vocabulary”, which is
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a codebook learned from a large set of local low-level features with k-means clustering. The BOVW scene
classification method then employs the statistical histogram of the visual words in the image to describe
the image, and classifies it by a non-linear support vector machine (SVM) classifier [14,26]. Instead of
classifying the histogram of visual words, the scene classification methods based on the probabilistic topic
model [27,28], such as latent Dirichlet allocation (LDA) [9,27,29–31], are used to generate the latent topics
of the visual words, and they then use the topics to represent the HSR image. To consider the spatial
arrangement of the visual words in the images, different scene classification methods have been proposed
with different spatial organization methods, such as the spatial pyramid matching (SPM) method [32,33],
the pyramid of spatial relations method [15], and the concentric circle-structured multi-scale method [16].
The spatial relationship between visual words has also been taken into account by designing a spatial
co-occurrence kernel for SVM [33,34]. However, all of these methods are designed based on the BOVW
histogram description of HSR images, which loses a lot of details of the low-level features during the hard
assignment to visual words.

To overcome this shortcoming, feature coding methods, e.g., sparse coding [35–40], use a coding
vector to characterize each low-level feature. The coefficients of the low-level features are then
reconstructed using multiple visual words instead of only one visual word. However, due to the
complexity of HSR scene images, the feature coding methods all need a large codebook to code the
complex low-level features precisely and obtain a satisfactory performance, which is computationally
expensive. In order to decrease the size of the codebook, scene classification under the Fisher kernel
(FK) coding framework [41,42] has been introduced for HSR images to characterize the low-level
features with a gradient vector instead of a coding vector derived according to the distance.

Under the FK coding framework, a probabilistic generative model, such as the Gaussian mixture
model (GMM), is employed to estimate the distribution of the low-level features, and the low-level
features are then converted into mid-level features given the distribution of the low-level features
by the gradient of the log-likelihood, which is called the FK coding procedure. The parameter space
learned by the probabilistic generative model can be functionally viewed as the codebook of the
low-level features. By converting the low-level features into the parameter space, the FK coding is able
to preserve a lot of details of the low-level features in the coding process, which leads to a compact
representation and a reduction in the size of the codebook.

In this paper, to further improve the performance of the scene classification, a local FK (LFK)
coding scene classification method under the FK coding framework is proposed to incorporate the
spatial information, where the local GMM (LGMM), a probabilistic generative model, is proposed
to consider the spatial arrangement during estimation of the distribution of the low-level features,
and the LFK coding is developed to code the spatial arrangement information into the representation.
The scene classification methods developed under the FK coding framework, both with and without
the incorporation of the spatial information, are called FK-S and FK-O, respectively. The contributions
of this work consist of two main aspects:

(1) The introduction of a compact representation for HSR scene classification under the FK coding
framework. By generating a compact representation by the use of a gradient vector instead of the
count statistics in the BOVW model, the details of the low-level features can be preserved during
the coding procedure, while the size of the codebook can be decreased to accelerate the speed of
the codebook learning process for the HSR scene classification.

(2) The incorporation of spatial information into the scene classification under the FK coding
framework, where the LGMM is able to incorporate the spatial information during the codebook
learning of the low-level features, and LFK coding is correspondingly proposed to utilize this
local information in the codebook.

The experimental results show that the proposed scene classification methods under the FK
coding framework are able to greatly reduce the computational cost by the compact representation
with a small codebook, and they can improve the performance of HSR scene classification.
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The remainder of this paper is organized as follows. Section 2 describes scene classification
under the FK coding framework for HSR imagery, which is followed by Sections 3 and 4 where the
experimental datasets, the experimental scheme, the results, and analysis are reported. In Section 5, a
discussion about the proposed method is conducted. Finally, conclusions are made in Section 6.

2. Fisher Kernel Coding Framework

To reduce the size of the codebook and preserve the details of the low-level features as much
as possible, the FK coding framework is introduced to obtain compact descriptions for the scene
classification of HSR images. Under the FK coding framework, a scene classification method is
proposed to incorporate the spatial information of the HSR scenes. In the following parts, the FK coding
framework is introduced for the representation of HSR images in Part A, while the scene classification
methods under the FK coding framework, both with and without the incorporation of the spatial
information (denoted by FK-S and FK-O, respectively), are described in Part B and C, respectively.

2.1. Fisher Kernel Coding Framework for the Representation of HSR Scenes

The Fisher kernel (FK) is a technique that combines the advantages of the generative and
discriminative approaches by describing a signal with a gradient vector of its probability density
function (PDF) with respect to the parameters of the PDF. Figure 1 shows the FK coding framework
that is used to obtain the representation of the HSR imagery.

Figure 1. FK coding framework for the representation of HSR imagery.

We let p be the PDF of the local low-level features. The set of local low-level features in a HSR
image X “

 

Xj
(n

j“1 can then be characterized by the gradient vector ∇Θ p pX|Θq, where n is the number
of patches in the image, and Θ is the set of parameters of the PDF. The gradient vector describes the
magnitude and direction that the parameters are modified to fit the data. To normalize the gradient
vector, the Fisher information matrix is recommended, which measures the amount of information
that X carries about the unknown Θ of the PDF, and can be written as:

FΘ “ EX

”

p∇ΘlogppX|Θqq p∇ΘlogppX|ΘqqT
ı

. (1)

The normalized gradient vector is then derived by:

GX
Θ “ F´1{2

Θ ∇ΘlogppX|Θq. (2)

Finally, the normalized gradient vector is used to represent the HSR image, and is classified by a
discriminative classifier, such as SVM. Under this FK coding framework, the method of local low-level
feature extraction, the probabilistic generative model, and the discriminative classifier can be changed
according to the characteristics of these models and the HSR images.
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2.2. Scene Classification without the Consideration of the Spatial Information (FK-O)

In this part, FK-O is introduced to classify HSR scenes without the consideration of the spatial
information. Under the FK coding framework, the GMM is employed as the probabilistic generative
model to estimate the PDF of the low-level features. The FK coding is then performed to obtain the
coding vectors to represent the HSR scenes. Finally, the coding vectors of the training images are
used to train the discriminative classifier, SVM, which is used to classify the coding vectors of the test
images (Figure 2). The details are as follows.

Figure 2. Procedure of the FK-O scene classification method.

2.2.1. Patch Sampling and Feature Extraction

For each scene image, the patches are evenly sampled from each region with a certain size and
spacing (e.g., 8 ˆ 8 pixels size and 4 pixels spacing), which are empirically selected to obtain a good
scene classification performance. The local low-level features can then be extracted from the patches.
To acquire the low-level features, there are many local descriptors, such as the descriptors based on the
gray-level co-occurrence matrix [24] and scale invariant feature transform (SIFT) [25]. In this work,
the mean/standard deviation statistics [9] are used to extract the low-level features because of their
simplicity and performance in HSR scene classification.

We let x be the low-level features extracted from the patch, where x can be obtained by computing
the mean and standard deviation features of this patch with Equation (3). In Equation (3), B is the
number of spectral bands of the image, n is the number of pixels in the patch, and vp,b is the b-th band
value of the p-th pixel in the patch

x “ pxm
1 , ¨ ¨ ¨ , xm

B , xstd
1 , ¨ ¨ ¨ , xstd

B q
T

xm
b “

řn
p“1 vp,b{n, xstd

b “

b

řn
p“1 pvp,b ´ xm

b q
2
{n

. (3)

2.2.2. Fisher Kernel Coding and Scene Classification

To obtain a compact representation of the HSR scene, the FK coding method is introduced to code
the low-level features into mid-level coding vectors, without losing too many details. Before the FK
coding, the distribution of the low-level features should be estimated by the GMM. We let xj be the
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low-level feature of the j-th patch, and the sets of patches used to learn the parameters of the GMM
Θ “ tαk, µk, Σku

K
k“1 can then be denoted by I “

 

xj
(N

j“1, where tαku
K
k“1 are the priors of the Gaussians,

µk “
 

µk,d
(D

d“1 and Σ are the mean and covariance matrix of the k-th Gaussian component, D (D = 2B)
is the dimension of the features, and K is the number of Gaussian components. For the FK coding,
the covariance matrix Σ of each cluster is usually approximated by a diagonal matrix σ, where the
diagonal elements are the variances of the features of the pixels in the cluster. We let d be the index of
the components of the features, σ2

k “ diagpσ2
k,1, σ2

k,2, ¨ ¨ ¨ , σ2
k,Dq.

Given the low-level features X “
 

xj
(n

j“1 in an image, where xj “ txj,du
D
d“1, and n is the number of

patches in the image, the image can then be described by the normalized gradient vector (Equation (4))
under the FK coding framework.

GX
Θ “ F´1{2

Θ

ˆ

1
n

ÿn

j“1
∇Θlogppxj|Θq

˙

, Θ “ tµk,σk|k “ 1, ¨ ¨ ¨Ku . (4)

The FK coding vector with respect to ¯k and œk can be derived as shown in Equations (5) and (6),
respectively, where the posterior probability τj,k can be obtained by Equation (7),

Υµk,d “
1

n
?

αk

n
ÿ

j“1

τj,k

´

xj,d ´ µk,d

¯

{σk,d, (5)

Υσk,d “
1

n
?

2αk

n
ÿ

j“1

τj,k

´

pxj,d ´ µk,dq
2
{σ2

k,d ´ 1
¯

, (6)

τj,k “
αk ppxj|µk,σkq

řK
k“1 αk ppxj|µk,σkq

. (7)

The Fisher vector of an image can be written as Υ “ pΥµ, Υσq P <2KD, where
Υµ “ pΥµ1,1 , ¨ ¨ ¨ , Υµ1,D , ¨ ¨ ¨ , ΥµK,1 , ¨ ¨ ¨ , ΥµK,Dq and Υσ “ pΥσ1,1 , ¨ ¨ ¨ , Υσ1,D , ¨ ¨ ¨ , ΥσK,1 , ¨ ¨ ¨ , ΥσK,Dq. From
Equations (5) and (6), it can be seen that the low-level features are coded by the gradient between the
low-level features and the parameters of the Gaussian components, which infers that the coding vector
can preserve the details of the low-level features as much as possible, compared to the traditional
feature coding method based on the distance. In addition, in order to improve the performance,
L2-normalization and power normalization are recommended by Perronnin et al. [41]. After the FK
coding, each image can be represented by an FK coding vector Υ.

Finally, the coding vectors of the training images are used to train an SVM classifier [43], while
the coding vector of the test image is classified by the trained SVM. During the training of the
SVM classifier, the histogram intersection kernel (HIK) is adopted due to its performance in image
classification [44]. The HIK is defined as shown in Equation (8), where q is the index of the component
of the coding vector,

kpγ, γiq “
ÿ

q
minpγq, γi

qq. (8)

2.3. Scene Classification with the Consideration of the Spatial Information (FK-S)

In order to consider the spatial information, the scene classification method under the FK coding
framework for HSR scenes, FK-S, is proposed in this part. The procedure of the proposed method is
shown in Figure 3.
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Figure 3. Procedure of the FK-S scene classification method.

Instead of the GMM, FK-S uses the LGMM to estimate the distribution of the low-level features
by considering the difference between different regions of the HSR scenes, while LFK is developed to
code the HSR images to adapt to the change brought about by the change of distribution estimation
method. The details of FK-S are described in the following parts.

2.3.1. Image Segmentation, Patch Sampling, and Feature Extraction

For each scene image, chessboard segmentation is used to split the whole image into multiple
regions, while the patches are evenly sampled from each region with a certain size and spacing. The
local low-level features can then be extracted from the patches. Figure 4 shows the multiple regions of
an image produced by chessboard segmentation with different numbers of regions M, where i is the
index of the regions, j is the index of the patches, and xi,j is the low-level feature extracted from the j-th
patch in the i-th region.

Figure 4. Image segmentation by chessboard segmentation with different numbers of regions.

As in FK-O, FK-S also employs the mean/standard deviation statistics to extract the low-level
features (Equation (3)). We let xi,j,d be the d-th component of xi,j, and xi,j “

`

xi,j,1, xi,j,2, ¨ ¨ ¨ , xi,j,D
˘

P <D,
where D is the dimension of the low-level features. All the regions of the images can then be denoted as
R “ triu

M
i“1, where M is the number of regions, ri “

 

xi,1, xi,2, ¨ ¨ ¨ , xi,ni

(

is the set of low-level features
in the i-th region, and ni is the number of patches in the i-th region.
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2.3.2. Learning the Parameters of the Local Gaussian Mixture Model (LGMM)

Considering that the traditional GMM (Figure 5a) generates all the features x in the whole
scope of the images from Gaussians with the same priors P(z|I) (also known as mixing weights),
which ignores the spatial arrangement of the HSR images during the estimation of the distribution
of the low-level features, the LGMM (Figure 5b) is used to learn the distribution of the low-level
features, where the features x in the different regions are generated from Gaussians with different
priors tPpz|riqu

M
i“1. In particular, for the i-th region ri, the identities of the Gaussians z are generated

from the priors P(z|ri), and the features x in this region can then be extracted from the Gaussians
identified by the corresponding z. Due to the different treatment of different regions, the LGMM is
able to estimate different sets of priors of Gaussians for different regions tPpz|riqu

M
i“1, which reflects

the different distributions of low-level features in the different regions. Therefore, the distribution of
the low-level features estimated by the LGMM can take into account the spatial arrangement of the
low-level features.

Figure 5. Graphical model representations. (a) GMM; (b) LGMM.

We let zi ,j be the latent value of the low-level feature xi,j in ri, and the probability of pixel xi,j being
drawn from the k-th Gaussian (zi,j “ k) is described in Equation (9), where µk and Σk are the mean
vector and the covariance matrix of the k-th Gaussian, respectively,

ppxi,j|ri, zi,j “ k,µk, Σkq “
1

p2πq
D
2 |Σk|

1
2

exp
ˆ

´
1
2
pxi,j ´ µkq

TΣ´1
k pxi,j ´ µkq

˙

. (9)

In order to learn the parameters of the distribution of the low-level features for the HSR scenes, a
number of images are randomly selected from the HSR image dataset, and should be divided into M
regions by chessboard segmentation (Figure 3). All the low-level features of patches in the same region
of all the selected images are collected and form a new set of features r1

i “
 

xi,1, xi,2, ¨ ¨ ¨ , xi,Ni

(

, where
i P t1, 2, ¨ ¨ ¨ , Mu, Ni “

ř

l
nl,i, and nl,i is the number of patches in the i-th region of the l-th selected

image. Assuming that all the local low-level features are independent, the log-likelihood of all the
features can be formulated by Equation (10), where αi,k “ Ppzi,j “ k|riq. The log-likelihood of all the

features is then parameterized by Θ “ ttαi,ku
M
i“1,µk, Σku

K
k“1.

LpΘ; Xq “ logppX|R, Θq “
M
ÿ

i“1

Ni
ÿ

j“1

logp
K
ÿ

k“1

αi,k ppxi,j|ri, zi,j “ k, µk, Σkqq. (10)

The expectation-maximization (EM) algorithm is employed to estimate the parameters of the
LGMM, as in the GMM. The EM algorithm begins with an initial estimate Θp0q and repeats the
following two steps:

E-step. Compute the expected value QpΘ|Θptqq “ Ez|X,R,Θptq rL pΘ; X, zqs of the log-likelihood function

with respect to the conditional distribution Ppzi,j “ k|ri, xi,j, Θptqq, according to Equation (11).
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QpΘ|Θptqq “
M
ÿ

i“1

N
ÿ

j“1

K
ÿ

k“1

Ppzi,j “ k|ri, xi,j, Θptqqlogpαi,kPpxi,j|ri, zi,j “ k, µk, Σkqq. (11)

In Equation (11), τ
ptq
k.i,j “ Ppzi,j “ k|ri, xi,j, Θptqq can be calculated by Equation (12),

τ
ptq
k,i,j “ Ppzi,j “ k|ri, xi,j, Θptqq “

α
ptq
i,k ppxi,j|ri, zptqi,j “ k,µptqk , Σ

ptq
k q

řK
k“1 α

ptq
i,k ppxi,j|ri, zptqi,j “ k,µptqk , Σ

ptq
k q

. (12)

M-step. Maximize QpΘ|Θptqq with the constraint that
řK

k“1 αi,k “ 1 to obtain the update equation

of parameters Θ “ ttαi,ku
M
i“1,µk, Σku

K
k“1. To solve this problem, Lagrange multipliers tλiu

M
i“1 are

introduced into the objective function QpΘ|Θptqq. The new objective function ΦpΘ|Θptqq can then be
rewritten as:

ΦpΘ|Θptqq “
M
ÿ

i“1

λip1´
K
ÿ

k“1

αi,kq `

M
ÿ

i“1

Ni
ÿ

j“1

K
ÿ

k“1

τ
ptq
k,i,jlogpαi,kPpxi,j|ri, zi,j “ k, µk, Σkqq. (13)

To obtain the updated equation of α
pt`1q
i,k , µ

pt`1q
k , and Σpt`1q

k , the objective functions are obtained

by isolating the terms with αi,k, µ
pt`1q
k , and Σpt`1q

k , respectively, and can be written as:

Φpαi,k|Θ
ptqq “ ´λiαi,k `

Ni
ÿ

j“1

τ
ptq
k,i,jlogpαi,kq, (14)

Φpµk|Θ
ptqq “ ´

ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,jpxi,j ´ µ

pt`1q
k q

T
Σ´1

k pxi,j ´ µ
pt`1q
k q, (15)

ΦpΣk|Θ
ptqq “ ´

ÿM

i“1

ÿN

j“1
τ
ptq
k,i,jplog|Σk| ` pxi,j ´ µ

pt`1q
k q

T
Σ´1

k pxi,j ´ µ
pt`1q
k qq. (16)

By maximizing the objective functions, the updated equations of α
pt`1q
i,k , µ

pt`1q
k , and Σpt`1q

k can be
obtained as shown in Equations (17)–(19), respectively:

α
pt`1q
i,k “

ÿNi

j“1
τ
ptq
k,i,j{Ni, (17)

µ
pt`1q
k “

ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,jxi,j{

ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,j, (18)

Σ
pt`1q
k “

ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,jpxi,j ´ µ

pt`1q
k qpxi,j ´ µ

pt`1q
k q

T
{
ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,j. (19)

The EM algorithm is terminated when the last two values of the log-likelihood are close enough
(below some preset convergence threshold) or the number of iterations reaches the preset number.
Similarly, assuming that the components of the feature vectors are independent, the covariance matrix
Σ of each Gaussian can be replaced with a diagonal matrix σ2. Equations (9) and (19) can then be
rewritten as Equations (20) and (21), respectively, where σ2

k “ diagpσ2
k,1, σ2

k,2, ¨ ¨ ¨ , σ2
k,Dq,

Ppxi,j|ri, zi,j “ k,µk,σkq “ p2πq´D{2
D
ź

d“1

σ
´1{2
k,d exp

˜

´

D
ÿ

d“1

pxi,j,d ´ µk,dq
2

2σk,d

¸

, (20)

σ2
k,d
pt`1q

“
ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,jpxi,j,d ´ µ

pt`1q
k,d q

2
{
ÿM

i“1

ÿNi

j“1
τ
ptq
k,i,j. (21)

The M sets of features are then used to learn the parameters Θ˚ “ ttαi,ku
M
i“1,µk, Σku

K
k“1 by the use

of the LGMM.
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2.3.3. Local Fisher Kernel (LFK) Coding and Scene Classification

To incorporate the spatial information contained in the parameters obtained by the LGMM, an
LFK coding method is proposed under the FK coding framework.

Given the low-level features R “ triu
M
i“1 , ri “

 

xi,j
(ni

j“1 in an image, the LFK coding vector of the
image can then be described by Equation (22) under the FK coding framework, where ni is the number
of patches in the i-th region of the image,

GR
Θ “ F´1{2

Θ

¨

˝

1
M

M
ÿ

i“1

1
ni

ni
ÿ

j“1

∇Θlogppxi,j|Θq

˛

‚, Θ “

!

 

αi,k
(M

i“1 ,µk,σk

)K

k“1
. (22)

The LFK coding vector with respect to αi,k, µk, and σk can be derived as shown in
Equations (23)–(25), respectively, where the posterior probability τi,j,k can be obtained by Equation (12)

with the parameters Θ˚ “ ttαi,ku
M
i“1,µk, Σku

K
k“1,

Υαi,k “
1

c

ni

´

1
αi,k
` 1

αi,1

¯

ni
ÿ

j“1

ˆ

τi,j,k

αi,k
´

τi,j,1

αi,1

˙

, k ě 2. (23)

Υµk,d “
1

d

M
ř

i“1
niαi,k

M
ÿ

i“1

ni
ÿ

j“1

τi,j,k

ˆxi,j,d ´ µk,d

σk,d

˙

, (24)

Υσk,d “
1

d

2
M
ř

i“1
niαi,k

M
ÿ

i“1

ni
ÿ

j“1

τi,j,k

˜

pxi,j,d ´ µk,dq
2

σ2
k,d

´ 1

¸

, (25)

Finally, the LFK coding vector of an image can be written as Υ “ pΥα, Υµ, Υσq P <2KD`MpK´1q,
where Υα “ pΥα1,2 , ¨ ¨ ¨ , Υα1,K , ¨ ¨ ¨ , ΥαM,2 , ¨ ¨ ¨ , ΥαM,K q, Υµ “ pΥµ1,1 , ¨ ¨ ¨ , Υµ1,D , ¨ ¨ ¨ , ΥµK,1 , ¨ ¨ ¨ , ΥµK,Dq, and
Υσ “ pΥσ1,1 , ¨ ¨ ¨ , Υσ1,D , ¨ ¨ ¨ , ΥσK,1 , ¨ ¨ ¨ , ΥσK,Dq. It is worth noting that the LFK coding vector with respect
to the priors Υαi,k contains the spatial information obtained by the LGMM, and the number of
components of Υαi,k M(K´1) should be kept at less than 50% of the dimension of the LFK coding
vector, 2KD+M(K´1), to ensure that the spatial information is less important than the low-level
feature information in the coding vector. Therefore, the number of regions M should be less than
2KD/(K´1)«2D. In addition, when M is a small number, the importance of the spatial information
decreases, and we recommend that M should be set as larger than 1. For example, when the number
of bands of the images B = 3, then D = 2B = 6, and 1 < M < 2D = 12. Between M = 4 and M = 9, we
recommend M = 9, because it can explore more spatial information for the HSR scene images.

As in FK-O, L2-normalization and power normalization are recommended to improve the
performance of FK-S. After the LFK coding, each image can be represented by an LFK coding vector ΥI.
Finally, the coding vectors of the training images are used to train an SVM classifier with HIK, while
the coding vector of the test image is classified by the trained SVM.

Both FK-O and FK-S are developed under the FK coding framework, where the low-level
features are coded by the gradient between the low-level features and the parameters of the Gaussian
components, which leads to the ability to preserve more of the details of the low-level features than
the traditional feature coding method based on the distance.

3. Datasets and Experimental Scheme

In order to test the performance of the scene classification methods developed under the FK
coding framework for HSR imagery, namely FK-O and FK-S, the commonly used UC Merced (UCM)
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land-use dataset [33] (Figure 6), a Google dataset (Figure 7), and an IKONOS dataset (Figure 8) were
used to conduct the scene classification experiments. The BOVW model, SPM [32], LDA [9], and LDA
with a hybrid strategy (P-LDA) [30] were employed as the comparison methods, where the classifier
of BOVW was SVM with a radial basis function (RBF) kernel. For the UCM dataset, the accuracies
published in the previous works [15–17,19,22,33–35] are also reported.

Figure 6. UCM dataset. (a–u) agricultural, airplane, baseball diamond, beach, buildings, chaparral,
dense residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile home
park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts.

Figure 7. Google dataset. (a–l) meadow, pond, harbor, industrial, park, river, residential, overpass,
agriculture, commercial, water, and idle land.

Figure 8. Wuhan IKONOS dataset. (a–h) dense residential, idle, industrial, medium residential, parking
lot, commercial, vegetation, and water.
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3.1. Experimental Datasets

UCM dataset: the UCM dataset contains 21 land-use classes (Figure 6), namely agricultural,
airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course,
harbor, intersection, medium residential, mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks, and tennis courts. In the UCM dataset, each class consists of 100
aerial orthophotographs with 256 ˆ 256 pixels and a 1 ft resolution, which were extracted from large
images in the USGS National Map Urban Area image collection for various urban areas around the US.

Google dataset: the Google dataset was acquired from Google Earth (Google Inc., Cambridge, MA,
USA) and mainly covers urban areas in China. This dataset contains meadow, pond, harbor, industrial,
park, river, residential, overpass, agriculture, commercial, water, and idle land classes (Figure 7). Each
class contains 200 images with a 2 m spatial resolution and a size of 200 ˆ 200 pixels.

Wuhan IKONOS dataset: The HSR images in the Wuhan IKONOS dataset were acquired over the
city of Wuhan in China by the IKONOS sensor in June 2009. The spatial resolutions of the panchromatic
images and the multispectral images are 1 m and 4 m, respectively. All the images in the Wuhan
IKONOS dataset were obtained by Gram–Schmidt pan-sharpening with ENVI 4.7 software. In the
Wuhan IKONOS dataset, eight scene classes are defined, namely dense residential, idle, industrial,
medium residential, parking lot, commercial, vegetation, and water (Figure 8). Each class contains 30
images with a size of 150 ˆ 150 pixels, a 1 m spatial resolution, and blue, green, red, and near-infrared
bands. A large image with a size of 6150ˆ 8250 pixels and a 1 m resolution was used for the annotation
experiment (Figure 9a).

Figure 9. Large image annotation using the Wuhan IKONOS dataset. (a) false-color image of the large
image with 6150 ˆ 8250 pixels; (b) annotated large image.

3.2. Experimental Scheme

In the experiments, the BOVW, LDA, and P-LDA scene classification methods employed the mean
and standard deviation statistics as the low-level feature extractor, in the same way as the FK-O and
FK-S scene classification methods. For the SPM scene classification method, not only the mean and
standard deviation statistics, but also the SIFT descriptor, were used to extract the low-level features,
and are denoted by SPM-MeanStd and SPM-SIFT, respectively. For SPM, it was found that the number
of pyramid levels is better set as one, rather than two, in the experiments with the three datasets.
Therefore, the accuracies acquired by SPM with one level of pyramid were used for the comparison.
During the low-level feature extraction using the mean and standard deviation statistics or SIFT, the
size and spacing of the sampling patch were empirically set. For the three datasets, different sizes and
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spacings of sampling patches were tested by the use of SPM. The results (Figure 10) showed that it is
best to set the patch size and spacing as 8 ˆ 8 pixels and four pixels, respectively.

Figure 10. Classification performance with different patch sizes and spacing. The top and bottom rows
show the classification accuracies when varying the patch spacing from four to ten pixels, with the
patch size as 8 ˆ 8 pixels, and when varying the patch size from 8 ˆ 8 to 16 ˆ 16 pixels, with the patch
spacing as 50% of the size, respectively.

For the BOVW, SPM, LDA, and P-LDA methods, the number of cluster centers was set to 1000,
which was optimally selected from 200, 400, 600, 800, 1000, and 1200 by considering the scene
classification accuracy and the computational complexity. For LDA and P-LDA, the topic numbers
were optimally chosen from 30 to 100 with a step size of 10 during the scene classification. The topic
numbers of P-LDA were set to 100 for the three datasets to obtain the best classification accuracies.
For LDA, the number of topics in each scene class was automatically optimized in the procedure of
scene classification according to the perplexity index [9]. The parameters of the SVM classifier were
tuned to obtain the best accuracy.

The codebooks were obtained by GMM, LGMM, or k-means with 1050, 960, and 192 images
randomly selected from the UCM dataset, the Google dataset, and the Wuhan IKONOS dataset,
respectively. For FK-O and FK-S, the number of Gaussians K of the GMM and the LGMM was varied
between 8, 16, 32, 64, and 128. For the LGMM, the number of regions M was varied between 4, 9, 16,
and 25. By varying these parameters, the best classification accuracies were used for the comparison.
In the scene classification, 80, 100, and 24 images per class were randomly selected to train the SVM
classifier from the UCM dataset, the Google dataset, and the Wuhan IKONOS dataset, respectively,
while the rest of the images were used to test the performance. The classification performance was
quantitatively evaluated by the classification accuracy, as defined in Equation (26), where Nc is the
number of correctly classified images in the test images, and Nt is the total number of test images.
The scene classification experiments were repeated 20 times to generate the mean and standard
deviation of the accuracies,

Acc “ Nc{Nt. (26)

An annotation experiment was also performed to test the performance of the proposed scene
classification method with a large HSR image (Figure 9a), using the Wuhan IKONOS dataset. During
the annotation of the large image, the large image was split into a set of scene images, where the image
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size and spacing were set to 150 ˆ 150 pixels and 100 pixels, respectively. Therefore, there were 50
overlapping pixels between two adjacent images. All the labeled images in the Wuhan IKONOS dataset
were used to train the FK-S model, which was employed to classify the scene images obtained from the
large image. For the overlapping pixels between adjacent images, their class labels were determined
by the majority voting rule. The large annotation maps were evaluated visually by overlaying the
annotation maps on the original image (with 60% transparency).

4. Results and Accuracies

The FK-O method obtained the highest classification accuracies when the number of Gaussians K
was set to 128, 64, and 32 for the UCM dataset, the Google dataset, and the Wuhan IKONOS dataset,
respectively, while the FK-S method obtained the best performance when K was set to 128, 128, and 32
for the UCM dataset, the Google dataset, and the Wuhan IKONOS dataset, respectively. For all the
datasets, when the number of regions M was set to 9, FK-S acquired the best accuracy. The classification
accuracies of the different methods for the three image datasets are reported in Table 1. Here, it can
be seen that the feature coding methods under the FK coding framework, namely FK-O and FK-S,
acquired accuracies of 91.38 ˘ 1.54(%) and 91.63 ˘ 1.49(%) for the UCM dataset, 90.16 ˘ 0.82(%)
and 90.40 ˘ 0.84(%) for the Google dataset, and 89.67 ˘ 4.19(%) and 90.71 ˘ 4.41(%) for the Wuhan
IKONOS dataset, respectively.

(1) Comparison between the feature coding methods under the FK coding framework and the
traditional methods based on the BOVW. When compared to the traditional BOVW method, scene
classification based on FK-O and FK-S improved the classification accuracy by about 19% for the UCM
dataset and about 9%–10% for the Google dataset and the Wuhan IKONOS dataset. In contrast to the
SPM-MeanStd method, FK-O and FK-S increased the accuracy by about 6%, 4%, and 2% for the UCM
dataset, the Google dataset, and the Wuhan IKONOS dataset, respectively. Compared to the LDA and
P-LDA methods, FK-O and FK-S improved the accuracy by more than 9%, 8%, and 5% for the UCM
dataset, the Google dataset, and the Wuhan IKONOS dataset, respectively.

Table 1. Classification accuracies (%) of the different methods.

UCM Google Wuhan IKONOS

BOVW 72.05 ˘ 1.41 81.10 ˘ 1.37 80.75 ˘ 5.16
SPM 85.38 ˘ 1.85 86.31 ˘ 0.90 88.21 ˘ 4.29
LDA 81.92 ˘ 1.12 60.32 ˘ 1.20 77.34 ˘ 6.23

P-LDA 81.27 ˘ 2.01 81.81 ˘ 1.05 84.69 ˘ 4.74
FK-Linear 87.70 ˘ 1.72 87.53 ˘ 0.51 78.23 ˘ 4.25

LFK-Linear 88.69 ˘ 2.01 88.42 ˘ 0.96 79.69 ˘ 5.32
FK-O 91.38 ˘ 1.54 90.16 ˘ 0.82 89.67 ˘ 4.19
FK-S 91.63 ˘ 1.49 90.40 ˘ 0.84 90.71 ˘ 4.41

(2) Comparison between before and after considering the spatial information. For all the datasets,
the FK-S scene classification method obtained slightly higher classification accuracies than the FK-O
scene classification method, which suggests that considering the spatial information during the
parameter learning and coding can improve the classification performance.

(3) Comparison between the linear kernel and HIK kernel of SVM. The FK-O (FK-S) scene
classification method with HIK kernel increased the accuracy by about 2%, 2%, and 10% when
compared to the FK-Linear (LFK-Linear) classification method with linear kernel for the UCM dataset,
the Google dataset, and the Wuhan IKONOS dataset, respectively.

(4) Comparison of the codebook size. For FK-O and FK-S, the size of the codebook is the number
of Gaussian components K. The sizes of BOVW, FK-O, and FK-S codebooks corresponding to the
accuracies in Table 1 are recorded in Table 2, where the codebook sizes of FK-O are 128, 64, and 32,
while the codebook sizes of FK-S are 128, 128, and 32 for the UCM dataset, the Google dataset, and the
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Wuhan IKONOS dataset, respectively. The codebook size of BOVW is 1000 for all the datasets. By the
use of a PC with a 2.5 GHz Intel Core i5-3210M processor, the cost times of the different methods are
reported in Table 2, which infers that the cost times of FK-O and FK-S are less than those of BOVW.
Table 2 also indicates that the cost times of FK-S are greater than those of FK-O. This evidence infers
that scene classification under the FK coding framework can reduce the size of the codebook and the
computational cost, to obtain a more compact representation of the scenes.

Table 2. Sizes of codebook and cost times of the different methods.

Datasets
BOVW FK-O FK-S

Size Time (s) Size Time (s) Size Time (s)

UCM 1000 11,544 128 8840 128 9247
Google 1000 6528 64 2942 128 5510
Wuhan 1000 881 32 119 32 309

(5) Comparison with the state-of-the-art. The published classification accuracies of different
methods for the UCM dataset are shown in Table 3. Here, it can be seen that the FK-O and FK-S scene
classification methods acquired a very competitive accuracy when compared to the state-of-the-art.

Table 3. Accuracy comparison for the UC Merced (UCM) dataset.

Methods Accuracy (%)

SCK [33] 73.14
SCK++ [34] 77.38

CCM+BOVW [16] 86.64 ˘ 0.81
PSR [15] 89.61
UFL [35] 81.67 ˘ 1.23

SG-UFL [22] 82.72 ˘ 1.18
UFL-SC with LPP [17] 90.26 ˘ 1.51

Partlets-based method [19] 91.33 ˘ 0.11
FK-O 91.38 ˘ 1.54
FK-S 91.63 ˘ 1.49

(6) Evaluation of the performance of the scene classification and annotation methods developed
under the FK coding framework for each scene class. Taking FK-S as an example, the classification
confusion matrices of the three datasets are shown in Figure 11, and the annotated image for the large
Wuhan IKONOS image is shown in Figure 9b.

From the confusion matrix of the UCM dataset (Figure 11a), it can be seen that the accuracies of
all the scenes, except for the freeway class, are more than 80%, and the relatively low accuracy of the
freeway scene is mainly caused by the confusion with the overpass scene. In addition, the confusion
levels of the following pairs of scenes exceed 10%: agricultural/chaparral, buildings/storage tanks,
and dense residential/storage tanks. For the Google dataset (Figure 11b), the accuracies of all the scenes
are more than 80%, and the main confusion occurs in the pairs of scenes of residential/commercial,
river/pond, and residential/overpass. For the Wuhan IKONOS dataset (Figure 11c), the accuracies of
all the scenes are higher than 80%, except for the commercial scene, and the main confusion occurs
between the commercial scene and the medium residential scene. One of the main reasons for the
confusion is that some images in these pairs of scenes are very similar in spectral value, and the mean
and standard deviation statistics of the spectral values have a limited ability to describe the difference.
Therefore, finding a proper feature extractor for the HSR scene classification, or combining different
feature extractors with different characteristics, are potential ways to improve the performance. For the
annotation experiment, although there is some confusion between industrial, parking lot, commercial,
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dense residential, and medium residential, the annotated large image is still satisfactory, based on our
remote sensing image analysis expertise.

Figure 11. Cont.
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Figure 11. Confusion matrices obtained by the FK-S scene classification method for the three datasets.
(a) UCM dataset; (b) Google dataset; (c) Wuhan IKONOS dataset.

5. Discussion

In the FK-O and FK-S scene classification methods, the number of Gaussians K is an important
parameter, which is discussed in this section (Figure 12). In addition, the effect of the number of
regions M for the FK-S scene classification method is also analyzed (Figure 13).

Figure 12. Accuracies of the FK-O and FK-S scene classification methods with different numbers of
Gaussians. (a) UCM dataset; (b) Google dataset; (c) Wuhan IKONOS dataset.

(1) The effect of the number of Gaussians K. In the experiments, K was varied between 8, 16, 32,
64, and 128. The accuracies of the FK-O and FK-S scene classification methods with different K values
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are shown in Figure 12, where the number of regions was set to nine for FK-S. From Figure 12, it can
be seen that the classification accuracies of the FK-O and FK-S scene classification methods increased
rapidly with the increase in K from eight to 32, but the magnitude of the increase was small when K was
increased from 32 to 128 for the UCM dataset and the Google dataset. For the Wuhan IKONOS dataset,
the best performances for the FK-O and FK-S scene classification methods were acquired when K was
set to 32, and a smaller or bigger K caused a decrease in the classification accuracy. This is because a
small codebook lacks the descriptive ability for the low-level features, while a large codebook contains
redundant visual words, which leads to the high dimension of the coding vector (2KD+M(K´1)) and
high correlation between the components. When compared to the FK-O scene classification method,
the FK-S scene classification method obtained higher accuracies.

(2) The effect of the number of regions M for the FK-S scene classification method. In the
experiments, M was varied between 4, 9, 16, and 25. The accuracies of the FK-O and FK-S scene
classification methods with different M values are shown in Figure 13. In Figure 13, the best accuracies
for the FK-S scene classification method were acquired when M was set to nine for all three datasets.
A larger number of regions, e.g., M = 16, led to a decrease in the classification accuracy, because there
were too many components in the LFK coding vector describing the spatial information. Meanwhile, a
smaller number of regions led to a smaller number of spatial components, which resulted in less use of
the spatial information during the scene classification.

Figure 13. Accuracies of the FK-S scene classification method with different numbers of regions.
(a) UCM dataset; (b) Google dataset; (c) Wuhan IKONOS dataset.

6. Conclusions

In order to bridge the semantic gap between the low-level features and high-level semantic
concepts for high spatial resolution (HSR) imagery, we introduce a compact representation for HSR
scenes under the Fisher kernel (FK) coding framework by coding the low-level features with a gradient
vector instead of the count statistics in the BOVW model. Meanwhile, a scene classification method
is proposed under the FK coding framework to incorporate the spatial information, where the local
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Gaussian mixture model (LGMM) is used to consider the spatial arrangement by estimating the
different sets of priors of the Gaussians for the low-level features in different regions, and a local FK
(LFK) coding method is developed to deliver the spatial information into the coding vectors. The scene
classification methods developed under the FK coding framework, with and without the incorporation
of the spatial information, are called FK-S and FK-O, respectively. The experimental results with the
UCM dataset, a Google dataset, and an IKONOS dataset infer that the scene classification methods
developed under the FK coding framework are able to generate a compact representation for the HSR
scenes, and can decrease the size of the codebook. In addition, the experimental results show that the
scene classification method incorporating the spatial information, FK-S, can acquire a slightly better
performance than the scene classification method that does not consider the spatial information, FK-O.
When compared to the published accuracies of the state-of-the art for the UCM dataset, the scene
classification methods under the FK coding framework can obtain a very competitive accuracy.
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