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Abstract: Robust and rapid image dense matching is the key to large-scale three-dimensional
(3D) reconstruction for multiple Unmanned Aerial Vehicle (UAV) images. However, the following
problems must be addressed: (1) the amount of UAV image data is very large, but ordinary computer
memory is limited; (2) the patch-based multi-view stereo-matching algorithm (PMVS) does not work
well for narrow-baseline cases, and its computing efficiency is relatively low, and thus, it is difficult
to meet the UAV photogrammetry’s requirements of convenience and speed. This paper proposes an
Image-grouping and Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (IG-SAPMVS)
for multiple UAV imagery. First, multiple UAV images were grouped reasonably by a certain grouping
strategy. Second, image dense matching was performed in each group and included three processes.
(1) Initial feature-matching consists of two steps: The first was feature point detection and matching,
which made some improvements to PMVS, according to the characteristics of UAV imagery. The
second was edge point detection and matching, which aimed to control matching propagation during
the expansion process; (2) The second process was matching propagation based on the self-adaptive
patch. Initial patches were built that were centered by the obtained 3D seed points, and these were
repeatedly expanded. The patches were prevented from crossing the discontinuous terrain by using
the edge constraint, and the extent size and shape of the patches could automatically adapt to the
terrain relief; (3) The third process was filtering the erroneous matching points. Taken the overlap
problem between each group of 3D dense point clouds into account, the matching results were merged
into a whole. Experiments conducted on three sets of typical UAV images with different texture
features demonstrate that the proposed algorithm can address a large amount of UAV image data
almost without computer memory restrictions, and the processing efficiency is significantly better
than that of the PMVS algorithm and the matching accuracy is equal to that of the state-of-the-art
PMVS algorithm.

Keywords: self-adaptive patch; image-grouping; multi-view stereo matching; unmanned aerial
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1. Introduction

The image sequences of UAV low-altitude photogrammetry are characterized by large scale, high
resolution and rich texture information, which make it suitable for three-dimensional (3D) observation
and its role as a primary source of fine 3D data [1,2]. UAV photogrammetry systems consist of airborne
sensors, airborne Global Navigation Satellite Systems (GNSS) (for example, Global Positioning Systems,
GPS) and Inertial Navigation Systems (INS), flight control systems and other components, which can
provide aerial images and position and pose (POS) data [3,4]. As light and small low-altitude remote
sensing aircraft, UAVs offer advantages such as flexibility, ease of operation, convenience, safety and
reliability, and low costs [3,5,6]. They can be widely used in many applications such as large-scale
mapping [7], true orthophoto generation [8], environmental surveying [9], archaeology and cultural
heritage [10], traffic monitoring [11], 3D city modeling [12], and especially emergency response [13];
each field contributes to the rapid development of the technology and offers extensive markets [2,14].

Reconstructing 3D models of objects based on large-scale and high-resolution image sequences
obtained by UAV low-altitude photogrammetry demands rapid modeling speeds, high automaticity
and low costs. These attributes rely upon the technology in the digital photogrammetry and computer
vision fields, and image dense matching is exactly the key to this problem. However, because of
their small size, UAVs are vulnerable to airflow, resulting in instability in flight attitudes, which
leads to images with large tilt angles and irregular tilt directions [15,16]. Until now, most UAV
photogrammetry systems have used non-metric cameras, which generate a large number of images
with small picture formats, resulting in a small base-to-height ratio [5]. The characteristics described
above present many difficulties and challenges for robust and rapid image matching. Thus, the
research on and implementation of UAV multi-view stereo-matching are of great practical significance
and scientific value.

The goal of the multi-view stereo is to reconstruct a complete 3D object model from a
collection of images taken from known camera viewpoints [17]. Over the last decade, a number of
high-quality algorithms have been developed, and the state of the art is improving rapidly. According
to [18], multi-view stereo algorithms can be roughly categorized into four classes: (1) Voxel-based
approaches [19–24] require knowing a bounding box that contains the scene, and their accuracy
is limited by the resolution of the voxel grid. A simple example of this approach is the graph
cut algorithm [22,25,26], which transforms 3D reconstruction into finding the minimum cut of the
constructed graph; (2) Algorithms based on deformable polygonal meshes [27–29] demand a good
starting point—for example, a visual hull model [30,31]—to initialize the corresponding optimization
process, which limits their applicability. The spacing curve [29] first extracts the outline of the object,
establishing a rough visual hull, and then photo consistency constraints are adopted to carve the visual
hull and finally recover the surface model. Voxel-based or polygonal mesh–based methods are often
limited to object data sets (scene data sets or crowd scene data sets are hard to handle), and they are
not flexible; (3) Approaches based on multiple depth maps [32–35] are more flexible, but the depth
maps tend to be noisy and highly redundant, leading to wasted computational effort. Therefore, these
algorithms typically require additional post-processing steps to clean up and merge the depth maps [36].
The Semi-Global Matching (SGM) algorithm [35] and its acceleration algorithms [37] are widely used
in many applications [38,39]. The study in [40] enhanced the SGM approach with the capacity to search
pixel correspondences using dynamic disparity search ranges, and introduced a correspondence linking
technique for disparity map fusion (disparity maps are generated for each reference view and its two
adjacent views) in a sequence of images, which is most similar to [41]; (4) patch-based methods [42,43]
represent scene surfaces by collections of small patches (or surfels). They use matching propagation
to achieve dense matching. Typical algorithms include the patch propagation algorithm [18], belief
propagation algorithm [44], and triangle constrained image matching propagation [45,46]. Patch-based
matching in the scene space is much more reasonable than rectangular window matching in the image
space [22,26,33] because it adds the surface normal and position information. Furukawa [18] generates
a sparse set of patches corresponding to the salient image features, and then spreads the initial matches
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to nearby pixels and filters incorrect matches to maintain surface accuracy and completeness. This
algorithm can handle a variety of data sets and allows outliers or obstacles in the images. Furthermore,
it does not require any assumption on the topology of an object or a scene and does not need any
initialization, for example a visual hull model, a bounding box, or valid depth ranges that are required
in most other competing approaches, but it can take advantage of such information when available. The
state-of-the-art algorithm achieves extremely high performance on a great deal of MVS datasets [47]
and is suitable for large-scale high-resolution multi-view stereo [48], but does not work well for
narrow-baseline cases [18]. To improve the processing efficiency of PMVS, Mingyao Ai [16] feeds the
PMVS software with matched points (as seed points) to obtain a dense point cloud.

This paper proposes a multi-view stereo-matching method for low-altitude UAV data, which is
characterized by a large number of images, a small base-to-height ratio, large tilt angles and irregular
tilt directions. The proposed method is based on an image-grouping strategy and some control
strategies suitable for UAV image matching and a self-adaptive patch-matching propagation method.
It is used to improve upon the state-of-the-art PMVS algorithm in terms of the processing capacity
and efficiency. Practical applications indicate that the proposed method greatly improves processing
capacity and efficiency, while the matching precision is equal to that of the PMVS algorithm.

The paper is organized as follows. Section 2 describes the issues and countermeasures for
UAV image matching and the improved multi-view stereo-matching method based on the PMVS
algorithm for UAV data. In Section 3, based on experiments using three typical sets of UAV data with
different texture features, the processing efficiency and matching accuracy of the proposed multi-view
stereo-matching method for UAV data are analyzed and discussed. Conclusions are presented in the
last section.

2. Methodology

2.1. The Issues and Countermeasures Related to UAV Image Matching

Because of the low flight altitude of UAVs, UAV images have high resolution and rich
features. However, we cannot avoid mismatching because of the impact of deformation, occlusion,
discontinuity and repetitive texture. For image deformation problems, we can establish a general affine
transformation model [18,49,50]. For occlusion problems, because the occluded part of an image maybe
visible in other images, the multi-view redundancy matching strategy was generally used [18,50]. For
discontinuity problems, local smooth constraints were introduced to match the sparse texture areas,
and edges were used to control smooth constraints [51]. For repetitive texture problems, the epipolar
constraint is a good choice. However, it is ineffective for ambiguous matches when the texture and
epipolar line have similar directions. This paper used the matching method based on patch, which can
solve the problem.

2.2. PMVS Algorithm

We will briefly introduce the Patch-based Multi-View Stereo (PMVS) algorithm [18]; then we
will employ it and make improvements in the field of UAV image dense matching. PMVS [18,52] is a
multi-view stereo software that uses a set of images as well as the camera parameters as inputs and
then reconstructs the 3D structure of an object or a scene that is visible in the images. The software
outputs both the 3D coordinate and the surface normal at each oriented point. The algorithm consists
of three procedures: (1) initial matching where sparse (3D) seed points are generated; (2) expansion
where the initial matches are spread to nearby pixels and dense matches are obtained; (3) filtering
where visibility constraints are used to eliminate incorrect matches. After the first step (generating
seed points), the next two steps need to cycle three times.

First, use the Difference-of-Gaussian (DOG) [53] and Harris [54] operators to detect blob and
corner features. To ensure uniform coverage, lay over each image a regular grid of 32ˆ 32 pixel
blocks and return as features the four local maxima with the strongest responses in each block for



Remote Sens. 2016, 8, 89 4 of 30

each operator. Consider each image as reference image R ppq in turn and other images that meet the
geometric constraint conditions as search images I ppq. For each feature f detected in R ppq, collect
in I ppq the set F of features f 1 of the same type (Harris or DOG) that lie within two pixels from the
corresponding epipolar lines in I ppq, and triangulate the 3D points associated with the pairs

`

f , f 1
˘

.
Sort these points in order of increasing distance from the optical center of the corresponding camera.
Initial a patch from these points one by one and also initial corresponding image sets V ppq, V˚ ppq
(images in V ppq satisfy the angle constraint, and images in V˚ ppq satisfy the correlation coefficient
constraint). Then, use a conjugate-gradient method [55] to refine the center and normal vector of the
patch and update V ppq and V˚ ppq. If |V˚ ppq| ě 3, the patch generation is deemed a success, and the
patch is stored in the corresponding cells of the visible images. To speed up the computation, once
a patch has been reconstructed and stored in a cell, all the features in the cell are removed and no
longer used.

Second, repeat taking existing patches and generating new ones in nearby empty spaces. The
expansion is unnecessary if a patch has already been reconstructed there or if there is segmentation
information (depth discontinuity) when viewed from the camera. The new patch’s normal vector
is the same as that of the seed patch. The new patch’s center is the intersection of the light through
the neighborhood image cell of the image point f and the seed patch plane. The rest is similar to the
procedure for generating the seed patch: Refine and verify the new patch, update V ppq and V˚ ppq,
and if |V˚ ppq| ě 3, accept the new patch as a success. The new patches are also participating in the
expansion as seed patches. The goal of the expansion step is to reconstruct at least one patch in each
image cell.

Third, remove erroneous patches using three filters that rely on visibility consistency, a weak form
of regularization, and clustering constraint.

2.3. The Design and Implementation of IG-SAPMVS

The proposed IG-SAPMVS mainly processes multiple UAV images with known orientation
elements and outputs a dense colored point cloud. First, given that the number of images may be too
large and considering the memory limit of an ordinary computer, we need to group the images, which
will be described in Section 2.3.4. Then, we process each group in turn, which is partitioned into three
parts: (1) multi-view initial feature-matching; (2) matching propagation based on the self-adaptive
patch; and (3) filtering the erroneous matching points. Finally, we need to merge the 3D point cloud
results of all the groups into a whole, which will be described in Section 2.3.5.

2.3.1. Multi-View Initial Feature-Matching

This procedure had two steps: The first was feature point detection and matching, which made
some improvements to PMVS, according to the characteristics of UAV imagery. The second was edge
detection and matching, which aimed to control matching propagation during the expansion process.

The proposed method followed PMVS by setting up regular grids on all of the images, used Harris
and DOG operators to detect feature points, and then matched the feature points. For each matched
feature point f in the reference image, when finding candidate matching points on the corresponding
epipolar line in the search image, there is an improvement compared to PMVS. In general cases, the
rough ground elevation scope of the region photographed by UAV is known. Denoting the rough
ground elevation scope by pZmin, Zmaxq, there is a corresponding scope denoted by pPmin, Pmaxq in
the epipolar line of the search images; thus, we can simply seek the corresponding image points in
that scope. Taking into account that the orientation elements of the reference image may not be very
accurate, the search range (the red box in Figure 1) was expanded to two pixels around the epipolar
line. Then, we calculated the correlation coefficient between each potential candidate matching point
in that scope and the matched feature point f . Because of the unstable flight attitudes of the UAV, the
image deformation is large. It is not advisable to use the traditional correlation coefficient calculation
method that assumes the relevant window may be simply along the direction of the image. Thus, we
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designed the relevant window along the direction of the epipolar line; that is to say, the edge of the
relevant window was parallel with the epipolar line (Figure 1).
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The potential candidate feature point whose correlation coefficient is greater than γ1 (in this
paper, we set γ1 to be 0.7) was used as candidate match point f 1 and added to set F. The set F was
sorted according to the value of the correlation coefficient from big to small, and then, the 3D points
associated with the pairs

`

f , f 1
˘

were triangulated. According to [18], we considered these 3D points
as potential patch centers. Next, we refined and verified each patch candidate associated with the
potential patch center in turn according to the PMVS method. Finally, we obtained the accurate 3D
seed points with normal vectors.

Edge feature detection and matching, taking the method of Li Zhang [51] as a reference, first used
the Canny operator [56] to detect edge points on every image, and then performed a match for the
dominant points and well-distributed points on the edges. The only difference was that after obtaining
the 3D edge points using the method of [51], we used the PMVS method to refine and verify each 3D
edge point.

2.3.2. Matching Propagation Based on Self-Adaptive Patch

In PMVS, the 3D seed points are very sparse, and dense matching mainly depends on the
expansion step; moreover, it is time-consuming. However, such speed makes it difficult to meet the
requirements of real-time and convenient UAV photogrammetry. Thus, this paper presented matching
propagation based on the self-adaptive patch method to improve processing efficiency. The basic
concept was to build initial patches centered by the 3D seed points that had already been obtained.
The extents and shapes of the patches could adapt to the terrain relief automatically: When the surface
was smooth, the size of the patch would become bigger to cover the entire smooth area; if the terrain
was very rough, the size of the patch would become smaller to describe the details of the surface
(Figure 2a). In Figure 2, different sizes and shapes of patches are conformed to the different terrain
features. There are more spread points on the larger extent patches.
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The initial size of a patch must ensure that the projection of the patch onto the reference image
can cover the size of m2 ˆm2 square pixels (in this paper, m2 is also denoted as the length of the patch,
and the initial value of m2 is 3ˆ 7 “ 21, meaning it is three times the initial patch size of PMVS).
There was an affine transformation between the patch and its projection onto the image, and the affine
transformation parameters could be determined by the center coordinate and normal vector of the
patch. Taking the projection of the patch onto the image as a relevant window, the correlation coefficient
between the reference image I0 and each search image Ij donated by nccpI0, Ij, patchqwas calculated.
Because UAV imagery is generally taken by an ordinary non-metric digital camera, the imagery usually
has three channels: R, G, B. Thus, when calculating the correlation coefficient nccpI0, Ij, patchq, we
made full use of the information of the three channels. The formula is as follows:

nccpI0, Ij, patchq

“
m2

2
ř

i“1

pR0ris ´ Rave0qpRjris ´ Rave jq ` pG0ris ´ Gave0qpGjris ´ Gave jq ` pB0ris ´ Bave0qpBjris ´ Bave jq

σ0 ¨ σj

(1)
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where

σ0 “

g

f

f

f

f

e

m2
2

ř

i“1
rpR0ris ´ Rave0q

2
` pG0ris ´ Gave0q

2
` pB0ris ´ Bave0q

2
s

m2 ˆ 3

σj “

g

f

f

f

f

e

m2
2

ř

i“1
rpRjris ´ Rave jq

2
` pGjris ´ Gave jq

2
` pBjris ´ Bave jq

2
s

m2 ˆ 3

Rave0 “

m2
2

ř

i“1
R0ris

m22 Rave j “

m2
2

ř

i“1
Rjris

m22

Then, we computed the average value of the correlation coefficients as follows:

NCCpatch “
1
n

ÿ

n
j“1ncc

`

I0, Ij, patch
˘

(2)

where n is the number of search images.
If the NCCpatch is greater than the threshold γ2 pγ2 “ 0.8q, the surface area covered by the patch

is smooth and can be similarly treated as a plane, so that some new 3D points (near the patch center)
in the patch plane can be directly generated. The normal vectors of the new 3D points are the same as
the normal vector n ppq of the patch. According to the properties of affine transformation, a plane π
through affine transformation becomes another plane π˚, and the affine transformation parameters for
each point on the plane π are the same [18,57]; thus, we can compute the corresponding coordinates of
the 3D new points in the patch by using the center point coordinate c ppq and normal vector n ppq of
this patch plane. The calculation process is as follows:

(1) Calculate the xyz-plane coordinate system of the patch, that is the x-axis is px ppx1, px2, px3q

and the y-axis is py
`

py1, py2, py3
˘

, and the normal vector n ppq of the patch is seen as the z-axis
(Figure 3). The patch center p is considered the origin of the xyz-plane coordinate system of the
patch. The y-axis py is the vector that is perpendicular to the normal vector n ppq and the Xc-axis
of the image space coordinate system; thus, py “ n ppq ˆ Xc. The x-axis px is the vector that is
perpendicular to the y-axis py and the normal vector n ppq; thus, px “ py ˆ n ppq. Then, px and
py are normalized to the unit vector.

(2) Calculate the ground resolution of the image as follows:

d “
dpc

fc ¨ cosθ
(3)

where dpc represents the distance between the patch center p and the projection center of the
image, fc represents the focal length, θ represents the angle between the light through the patch
center p and the normal vector n ppq of the patch, and d actually represents the corresponding
distance in the direction of n ppq for one pixel in the image.

(3) Suppose a new point’s plane coordinate in the patch plane coordinate system is p∆x, ∆yq. The
plane coordinates of the new points in the patch plane coordinate system are as shown in Figure 4.

To ensure matching accuracy, the spread size is in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

(the patch size

is m2 ˆm2) when the patch center p is considered the origin of the patch plane coordinate system.
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(4) Calculate the XYZ-coordinate of the new point in the object space coordinate system. Suppose
a (3D) new point is P “ pXP, YP, ZPq and the patch center p is pXc, Yc, Zcq. We calculate the
XYZ-coordinate of the new point as follows:

P “ p` d ¨ ∆x ¨ px ` d ¨ ∆y ¨ py
¨

˚

˝

XP
YP
ZP

˛

‹

‚

“

¨

˚

˝

Xc

Yc

Zc

˛

‹

‚

` d ¨ ∆x ¨

¨

˚

˝

px1

px2

px3

˛

‹

‚

` d ¨ ∆y ¨

¨

˚

˝

py1

py2

py3

˛

‹

‚

(4)

After obtaining the XYZ-coordinate of a new point in the object space coordinate system, the new
point is projected onto the reference image and search images so that we can obtain the corresponding
image points.

As a result, new 3D points are spread by the 3D seed point, as shown in Figure 5.
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In our method, the size and shape of the patch can self-adapt to the texture feature: (1) For big
and very smooth areas, the generated new 3D points will be directly added to the seed point set, and
the newly added seed points are also in the original patch plane and they can spread further so that it
enlarges the size of the original patch. Thus, the shape formed by all the spread points in the original
patch would not be a regular square (Figure 2); (2) For discontinuous terrain, the length of the patch m2

would be shortened to avoid crossing the edge, resulting in a smaller spread size (the spread size is in
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˙

) and a smaller size of the patch (m2ˆm2); (3) For a large relief terrain,

the size and shape of the patch would be automatically shrunk from different directions, resulting
in a smaller spread size. For such cases, the generated new 3D points would be processed following
the method of PMVS. First, they are refined and verified one by one, and then the 3D points that are
successfully constructed are added to the 3D seed point set. The newly added seed points are not in
the original patch plane, and, thus, they will not enlarge the size of the original patch.

2.3.3. The Strategy of Matching Propagation

In Self-Adaptive Patch-based Multi-View Stereo-matching (SAPMVS), the size and shape of the
patch should adapt to the texture feature: increasing the patch size in smooth areas and decreasing the
patch size in undulating terrain. In addition, the patch should avoid crossing discontinuous terrain.
The strategy of matching propagation based on the self-adaptive patch is as follows (Figure 6):

(1) Get a 3D seed point from the initial feature-matching set SEED, and build a patch by using that
point as the patch center. The initial size of the patch should ensure that the projection of the
patch onto the reference image is of size m2 ˆm2 square pixels. In this paper, m2 is also denoted
as the length of the patch, and the initial value of m2 is 21. However, if the set SEED becomes
empty, stop the whole matching propagation process.

(2) If the patch does not contain any edge points, go to step 3. Otherwise, adjust the size and shape
of the patch so that the edge (we used the edge points to determine the edge) is not crossed. In
Figure 7, the patch is partitioned into two parts by an edge. We need to build a new patch from
the part that contains the center point. The center point of the new patch is unchanged, and the
shape is a square. One edge of the new patch is parallel to the edge. Thus, the length of the patch
m2 decreased and the shape also changed. Finally, go to step 3.

(3) Take the projection of the patch onto each of the images as the relevant window, and use Equation
(1) to calculate the correlation coefficient nccpI0, Ij, patchq between the reference image and each
search image. Then, use Equation (2) to calculate the average value of the correlation coefficients
NCCpatch.
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(4) If NCCpatch ă γ2 pγ2 “ 0.8q, the size of the patch needs to be adjusted; thus, go to step 5, or else

generate some new 3D points near the patch center in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

on the

patch plane. Details are presented in Section 2.3.2. Here, we need to judge whether another point
has already been generated in that place. The judging method is as follows: project the new point
onto the target image; if there is another point in the image pixel of the new point, give up the
newly generated point. Directly add the remaining new points to the set SEED, and go to step 1.

(5) From one direction (e.g., the right), shrink the patch once by two pixels and calculate the NCCpatch
in the meantime. If the value of NCCpatch is increased, continue to shrink the size of the patch
in the same direction; otherwise, change the direction (e.g., left, up and down) to shrink the
patch. The process above continues until NCCpatch ą γ2. However, if the process continues until
m2 “ 1, go to step 1. After finishing the size and shape adjustment process, if the length of the
patch m2 is greater than λ pλ “ 14q pixels, go to step 4, or else go to step 6).

(6) Generate new 3D points near the patch center in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

on the patch

plane (if
m2 ´ 1

4
ă 1, the scope becomes p´1, 1q). Then, refine and verify them one by one. Add

the points that are constructed successfully to the set SEED, and go to step 1.

In the end, filter the incorrect points following the PMVS filtering method.Remote Sens. 2016, 8, 89 12 of 32 
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2.3.4. Image-Grouping

Generally, a UAV flight varies between one and three hours. The number of images can reach
from 1000 to 2000. It demands a high-performance computer and, in particular, a memory with large
capacity. Thus, we should divide the whole region into small regions and process each separately.
Finally, combine the matching result of each image group into a whole point cloud. When we divide
the whole region, we must not only consider the memory constraint but also process more images
at one time. Suppose the number of images in each group is no more than nmax (the value of nmax is
related to the computer memory and the size of the image; in this paper, nmax “ 6). The process for
grouping images is as follows:

(1) Calculate the position and the size of the associated area (footprint) of every image, that is the
corresponding ground points’ XY-plane coordinates for the four corner points of the image.

Firstly, compute the size of the footprint (the length and width of the ground region) as follows:

width “ imgWidthˆ
H
fc

and length “ imgHeightˆ
H
fc

(5)

where imgWidth and imgHeight are the width and height of the image. H is the flight height relative
to the ground, and fc is the focal length of the image.

Then, compute the four XY-plane coordinates pXi, Yiq of the footprint as follows:

Xi “ cos pkappaq ˆ
width

2
´ sin pkappaq ˆ

length
2

` x0 , pi “ 1, 2, 3, 4q

Yi “ sin pkappaq ˆ
width

2
` cos pkappaq ˆ

length
2

` y0 , pi “ 1, 2, 3, 4q
(6)

where kappa is the rotation angle of the image, and px0, y0q is the coordinate of the projection center.

(2) Compute the minimum enclosing rectangle of the entire photographed area according to the
footprints of all the images.

(3) Divide the minimum enclosing rectangle into N ˆ M blocks to ensure the number of images
that are completely within each block is no more than but close to nmax (Figure 8). Compute the
footprint of each block, and enlarge the block. In Figure 8, the black dotted box represents the
enlarged block, which is denoted by bigBlock.
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(4) According to the footprint of every image and the footprint of every bigBlock, take all the images
belonging to one bigBlock as a group.

2.3.5. Group Matching and Merging the Results

Process each image group in turn using the proposed Self-Adaptive Patch-based Multi-View
Stereo-matching algorithm (SAPMVS). SAPMVS is partitioned into three parts: (1) multi-view initial
feature-matching, which is introduced in Section 2.3.1; (2) matching propagation based on the
self-adaptive patch, which is introduced in Section 2.3.3; (3) filtering the erroneous matching points
following the PMVS filtering method. As a result, we obtain the group matching results.

Finally, we need to merge all group matching results into a whole. The merge process is as
follows: (1) Remove the redundant points in bigBlock; that is, retain only the points in the block and
abandon the points that exceed the extent of the block; (2) Obtain the final point cloud of the entire
photographed area by merging the point clouds of every block.

To avoid gaps that appear on the edges of the blocks in the final result, in step (1) we should
preserve the (3D) edge points of each block and, in step (2) remove the (3D) repetitive points at the
block edges according to the corresponding image points of those 3D points. If there is a corresponding
image point that belongs to two 3D points, we preserve only one of the two 3D points (or refine and
verify the 3D repetitive points following the PMVS method).

3. Experiments and Results

3.1. Evaluation Index and Method

Currently, there is no unified approach to evaluating multiple image dense matching algorithms.
Usually, we can compare them in the following aspects [58]: (1) accuracy, which indicates the
degree of correct matching quantitatively; (2) reliability, which represents the degree of precluding
overall classification error; (3) versatility, the ability to apply the algorithm to different image scenes;
(4) complexity, the cost of equipment and calculation.

In the field of computer vision, to evaluate the accuracy of a multi-view dense matching algorithm,
3D reconstruction of the scene is carried out by means of the dense matching algorithm, and then
the 3D reconstruction model is compared with the high-accuracy real surface model (real data are
obtained by laser), and the performance of the dense matching algorithm is evaluated in terms of
accuracy and completeness [17]. In the field of digital photogrammetry, we can use the corresponding
image points obtained by the multi-view stereo image matching to obtain their corresponding object
points by means of forward intersection, and we can then generate the Digital Surface Model (DSM)



Remote Sens. 2016, 8, 89 13 of 30

and Digital Elevation Model (DEM). Therefore, we can evaluate the accuracy of DSM and DEM and
thereby evaluate the accuracy of the matching algorithm indirectly; the accuracy of the DEM and DSM
can be evaluated in relation to higher-precision reference data, such as laser point cloud data and
manual measurement control point data [46,51].

As the output result of our algorithm is the 3D point cloud and the computational cost is large,
we will evaluate our algorithm from three aspects: visual inspection, quantitative description and
complexity. Visual inspection ensures that the shape of the 3D point cloud is consistent with the actual
terrain. Quantitative description is necessary to compare the 3D point cloud with the high-precision
reference data, such as laser point cloud data and artificial measurement control point data. Complexity
mainly refers to the requirements of devices and the cost in time of computing. On the other hand, the
main input data of our algorithm are the images that have lens distortion removed [59–61] and their
orientation elements, while the accuracy of the orientation elements can directly affect the accuracy of
the imaging geometric model, which may lead to errors in the forward intersection.

3.2. Experiments and Analysis

To evaluate the performance of our multi-view stereo-matching algorithm for multiple UAV
imagery in a more in-depth and comprehensive way, we will use three typical sets of UAV data with
different texture features viewed from three perspectives: visual inspection, quantitative description
and complexity.

3.2.1. The Experimental Platform

The proposed algorithm is implemented in Visual C++ and a PC with Intel® Core™ i7 CPU 920
2.67 GHz processors, 3.25 GB RAM, and Microsoft Windows Xp Sp3 64.

3.2.2. The First Dataset: Northwest University Campus, China

This group of experiments uses UAV imagery data taken at the Northwest University campus
in Shaanxi, China, by a Cannon EOS 400D. The photography flying height is 700 m, and the ground
resolution of the imagery is approximately 0.166 m. The shooting lasted 40 min, and there are a total of
67 images. The specific parameters of the photography can be seen in Table 1.

Table 1. The parameters of the UAV photography in Northwest University.

Camera
Name

CCD Size
(mm ˆmm)

Image Resolution
(pixels ˆ pixels)

Pixel Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of Images

Canon
EOS 400D 22.16 ˆ 14.77 3888 ˆ 2592 5.7 24 700 0.166 67

This set of data is provided by Xi’an Dadi Surveying and Mapping Corporation. We used a
commercial UAV photogrammetric processing software called GodWork, which was developed
by Wuhan University, to perform automatic aerotriangulation to obtain the precise orientation
elements of the images (we can also use the structure-from-motion software “VisualSFM” by
Changchang Wu [62,63] to estimate the precise camera pose). The accuracy of aerotriangulation
was as follows: the value of the unit-weight mean square error (Sigma0) was 0.49 pixels, and the
average residual of the image point was 0.23 pixels. Because the data had no manual control point
information, the bundle adjustment method and the orientation elements were under freenet. Figure 9
is the tracking map of the 67 images under freenet. We used GodWork software to remove the lens
distortion of the 67 images. Table 2 shows part of the corrected images’ external orientation elements.
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Table 2. The external orientation elements of a portion of the corrected images.

Image
Name X (m) Y (m) Z (m) ϕ (Degree) ω (Degree) κ (Degree)

IMG_0555 ´201.736 ´31.7532 ´1.35375 ´1.0234 ´0.44255 166.7002
IMG_0554 ´194.482 17.90618 ´1.22801 ´0.71193 ´0.1569 166.2114
IMG_0553 ´187.641 67.63342 ´0.87626 0.320481 ´0.03621 166.3385
IMG_0552 ´180.965 116.052 ´0.61774 0.518773 ´0.87317 166.7509
IMG_0551 ´174.434 166.2001 ´0.59227 0.454139 ´0.86679 167.2784
IMG_0550 ´168.264 214.3878 ´0.79246 ´0.57551 ´0.67894 167.5912
IMG_0549 ´162.096 265.1268 ´0.70428 ´1.08565 ´0.7456 167.166
IMG_0548 ´156.002 314.2426 ´0.53393 ´1.40444 ´0.84598 166.5402
IMG_0547 ´148.987 367.3003 ´0.30983 ´0.77136 ´0.86104 166.5097
IMG_0546 ´142.152 417.2658 ´0.04708 ´0.38776 ´0.89084 166.5219
IMG_0545 ´135.102 466.7365 0.507349 ´0.08542 ´0.09929 166.4838
IMG_0544 ´128.322 520.032 1.246216 ´0.2938 ´0.41415 166.7157
IMG_0543 ´121.833 569.8722 1.862483 ´0.20825 ´0.21687 167.1119

First, we used the proposed UAV multiple image–grouping strategy to divide this set of 67 images
into 12 groups. The serial number of each image group is shown in Table 3.

Table 3. Image-grouping result of the Northwest University data.

Group Image Number Corresponding Image Name Number of Images

0 0 1 2 3 4 5 IMG_1093~IMG_1089 6
1 6 7 8 9 10 11 IMG_ 1087~IMG_1082 6
2 12 13 14 15 IMG_1081~IMG_1078 4
3 16 17 18 19 20 21 IMG_0102~IMG_0107 6
4 22 23 24 25 26 27 IMG_0108~IMG_0113 6
5 28 29 30 31 32 IMG_0114~IMG_0118 5
6 33 34 35 36 37 38 IMG_0641~IMG_0646 6
7 39 40 41 42 43 44 IMG_0647~IMG_0652 6
8 45 46 47 48 49 50 IMG_0653~IMG_0658 6
9 51 52 53 54 55 56 IMG_0555~IMG_0550 6

10 57 58 59 60 61 62 IMG_0549~IMG_0544 6
11 63 64 65 66 IMG_0543~IMG_0540 4
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After image-grouping, we used the proposed Self-Adaptive Patch-based Multi-View
Stereo-matching algorithm (SAPMVS) to address each image group, and obtained the 3D dense
point cloud data of each image group. Then, we merged the 3D dense point clouds of each group;
the merged 3D dense point cloud is shown in Figure 10 (the small black areas in the figures are
water). We found that the merged 3D dense point cloud has 8,526,192 points, and the point density is
approximately three points per square meter; thus, the ground resolution is approximately 0.3 m.

Because of the lack of control point data or high-precision reference data in the data set, such as the
laser point cloud, we use the visual inspection method to evaluate the results of the proposed algorithm,
i.e., whether the shape of the 3D point cloud is consistent with the actual terrain. We compared the
3D dense point cloud and the corresponding corrected images that had the lens distortion removed,
as shown in Figure 11. By comparing the point clouds and images in Figure 11, it can be seen that
the 3D dense point clouds of the proposed algorithm accurately described the terrain features of the
Northwest University campus as well as the shape and distribution of physical objects (such as roads
and buildings).Remote Sens. 2016, 8, 89 17 of 32 

 

 
Figure 10. The merged 3D dense point cloud of Northwest University. 

 
(a)

Figure 10. The merged 3D dense point cloud of Northwest University.

For further analysis of the accuracy and efficiency of the proposed algorithm, we used the
proposed IG-SAPMVS algorithm and PMVS algorithm [18,52], respectively, to process this set of data,
and recorded the processing time and the 3D point cloud results. Table 4 shows the statistics for these
two algorithms with respect to the processing time and the point number of 3D dense point clouds.
Figure 12 shows the final 3D dense point cloud results.

From Table 4, it can be seen that the processing time of the proposed IG-SAPMVS algorithm is
approximately 0.5 times that of the PMVS algorithm; thus, the calculation efficiency of the proposed
IG-SAPMVS algorithm is significantly higher than that of the PMVS algorithm. Because the terrain
relief of the test area is not large and there are many flat square grounds in the test area, the proposed
Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (SAPMVS) can spread more quickly
than the PMVS algorithm in the matching propagation process. On the other hand, based on Table 4, it
can be seen that the point number of the 3D dense point cloud by the proposed IG-SAPMVS algorithm
is 1.15 times that of the PMVS algorithm; Figure 12 illustrates that the 3D dense point cloud result
of the proposed IG-SAPMVS algorithm is almost the same as that of the PMVS algorithm based on
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visual inspection. In general, the proposed IG-SAPMVS algorithm outperforms the PMVS algorithm
in computing efficiency and the quantity of 3D dense point clouds.

  

Article 

  
(a) 

  
(b) 

Figure 11. Comparison of the same areas in the 3D dense point clouds and the corresponding images. 
(a) The building area; (b) the flat area. 
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Figure 11. Comparison of the same areas in the 3D dense point clouds and the corresponding images.
(a) The building area; (b) the flat area.
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Table 4. Statistics for the proposed IG-SAPMVS algorithm and PMVS algorithm.

Algorithm RunTime (h:min:s) Point Cloud Amount Number of Images

IG-SAPMVS 2:41:38 8526192 67
PMVS 4:8:30 7428720 67

3.2.3. The Second Dataset: Remote Mountains

This group of experiments uses UAV imagery data of remote mountains characterized by large
relief, heavy vegetation and a small amount of physical objects, such as roads and buildings, in China;
they were also taken by a Cannon EOS 400D with a focus of 24 mm. The photography flying height is
approximately 1900 m and the ground resolution of the imagery is approximately 0.451 m. There are a
total of 125 images. Figure 13 is the GPS tracking map under the geodetic control network. We also
used GodWork software to remove the lens distortion of the 125 images.
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Figure 13. The GPS tracking map of the UAV images taken in remote mountains under geodetic
control network.

This set of data is also provided by Xi'an Dadi Surveying and Mapping Corporation. Because
of the low accuracy of the airborne GPS/IMU data, it cannot meet the requirements of the
proposed multi-view stereo-matching algorithm. We used the commercial UAV photogrammetric
processing software GodWork, which was developed by Wuhan University, to perform automatic
aerotriangulation and obtain the images’ precise exterior orientation elements. The accuracy of
aerotriangulation was as follows: the value of the unit-weight mean square error (Sigma0) was 0.77
pixels, and the average residual of the image point was 0.36 pixels. Table 5 shows part of the corrected
images’ external orientation elements.

First, we also used the UAV multiple image-grouping strategy to divide this set of 125 images
into 21 groups. After image-grouping, we used the proposed Self-Adaptive Patch-based Multi-View
Stereo-matching algorithm (SAPMVS) to address each image group, and obtained the 3D dense point
cloud data of each image group. Then, we merged the 3D dense point clouds of each group, and
the merged 3D dense point cloud is shown in Figure 14 (the small black areas in the figures are
water). We found that the merged 3D dense point cloud has 12,509,202 points, and the point density is
approximately one point per square meter; thus, the ground resolution is approximately 1 m.
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Table 5. The external orientation elements of part of the corrected images (the remote mountains).

Image
Name X (m) Y (m) Z (m) ϕ (Degree) ω (Degree) κ (Degree)

IMG_0250 453208.9 4312689 1926.36 4.251745 ´2.30691 10.23632
IMG_0251 453205.6 4312796 1926.462 2.852207 ´6.04494 10.94959
IMG_0252 453200.6 4312900 1921.71 0.681977 ´7.93856 11.60872
IMG_0253 453198.6 4313007 1920.499 ´0.01863 ´3.6135 8.714555
IMG_0254 453198.7 4313117 1915.972 3.277204 ´6.38877 8.599633
IMG_0255 453199.3 4313230 1910.448 6.64432 ´6.29777 8.965715
IMG_0256 453196.7 4313341 1904.105 3.33602 ´6.5811 10.72329
IMG_0257 453194.1 4313450 1903.386 1.594531 ´4.486 10.71933
IMG_0258 453192.8 4313559 1902.593 ´4.04339 ´5.57166 8.112464
IMG_0259 453194.9 4313667 1899.551 3.77633 ´2.96418 7.066141
IMG_0260 453198.2 4313776 1899.075 7.240338 ´5.29839 8.254281
IMG_0261 453196.6 4313882 1898.725 3.41796 ´1.02482 10.90049
IMG_0262 453193.1 4313986 1895.928 3.000324 ´5.9483 12.35882
IMG_0263 453185.4 4314095 1896.413 1.532879 ´4.00544 11.27756
IMG_0264 453184 4314196 1895.204 4.379199 ´2.4512 11.95034
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Figure 14. The merged 3D dense point cloud of the remote mountains. (a) The plan view of the merged
3D dense point cloud; (b) The side views of the merged 3D point-cloud.

For further analysis of the accuracy and efficiency of the proposed algorithm, we used the
proposed IG-SAPMVS algorithm and PMVS algorithm [18,52], respectively, to process this set of
remote mountain data and recorded the processing time and the 3D point cloud results. Table 6 shows
the statistics of these two algorithms with respect to the processing time and the point number of the
3D dense point clouds. Figure 15 shows the final results of the 3D dense point cloud.
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Table 6. The statistics of the proposed IG-SAPMVS algorithm and PMVS algorithm.

Algorithm RunTime (h:min:s) Point Cloud Amount Number of Images

IG-SAPMVS 4:36:5 12509202 125
PMVS 15:48:11 8953228 125

From Table 6, it can be seen that the processing time of the proposed IG-SAPMVS algorithm is
about one-third of that of the PMVS algorithm; thus, the efficiency of the proposed IG-SAPMVS
algorithm is significantly higher than that of the PMVS algorithm. Obviously, even in the
remote mountain field with complex terrain, the proposed Self-Adaptive Patch-based Multi-View
Stereo-matching algorithm (SAPMVS) can spread more quickly than the PMVS algorithm in the
matching propagation process. On the other hand, based on Table 6, it can be seen that the point
number of the 3D dense point cloud by the proposed IG-SAPMVS algorithm is 1.40 times that of
the PMVS algorithm, and Figure 15 illustrates that the 3D dense point cloud result of the proposed
IG-SAPMVS algorithm is nearly the same as the PMVS algorithm based on visual inspection. In general,
the proposed IG-SAPMVS algorithm significantly outperforms the PMVS algorithm in computing
efficiency and the quantity of 3D dense point clouds.

3.2.4. The Third Dataset: Vaihingen, Germany

The third dataset was captured over Vaihingen, Germany, by the German Society for
Photogrammetry, Remote Sensing and Geoinformation (DGPF) [64]. It consists of three test areas of
various object classes (three yellow areas in Figure 16).

‚ Area 1 “Inner City”: This test area is situated in the center of the city of Vaihingen. It is
characterized by dense development consisting of historic buildings with rather complex shapes,
but there are also some trees (Figure 17a).

‚ Area 2 “High Riser”: This area is characterized by a few high-rise residential buildings that are
surrounded by trees (Figure 17b).

‚ Area 3 “Residential Area”: This is a purely residential area with small detached houses
(Figure 17c).
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Figure 17. The three test sites in Vaihingen. (a) a1-a8: the eight cut images of the “Inner City” from the
original images: 10030061.jpg, 10030062.jpg, 10040083.jpg, 10040084.jpg, 10050105.jpg, 10050106.jpg,
10250131.jpg, 10250132.jpg, respectively; (b) b1-b4: the four cut images of the “High Riser” from the
original images: 10040082.jpg, 10040083.jpg, 10050104.jpg, 10050105.jpg, respectively; (c) c1-c6: the six
cut images of the “Residential Area” from the original images: 10250134.jpg, 10250133.jpg, 10040083.jpg,
10040084.jpg, 10050105.jpg, 10050106.jpg, respectively.

The data include high-resolution digital aerial images and orientation parameters and airborne
laser scanner data (available in [65]).

Digital Aerial Images and Orientation Parameters: The images are a part of the Intergraph/ZI
DMC block with 8 cm ground resolution [64]. Each area is visible in multiple images from several strips.
The orientation parameters are distributed together with the images. The accuracy of aerotriangulation
is as follows: the value of unit-weight mean square error (Sigma0) is about 0.25 pixels. Table 7 shows
the external orientation elements of the images in the test region.

Airborne Laser Scanner Data: The test area was covered by 10 strips captured with a Leica ALS50
system. Inside an individual strip, the average point density is 4 points {m2 [66]. The airborne laser
scanner data of the test region are shown in Figure 18.

Table 7. The external orientation elements of the experimental images (Vaihingen data).

Image
Name X (m) Y (m) Z (m) ω (Degree) φ (Degree) κ (Degree)

10030060.tif 496803.043 5420298.566 1163.983 2.50674 0.73802 199.32970
10030061.tif 497049.238 5420301.525 1163.806 2.05968 0.67409 199.23470
10030062.tif 497294.288 5420301.839 1163.759 1.97825 0.51201 198.84290
10030063.tif 497539.821 5420299.469 1164.423 1.40457 0.38326 198.88310
10040081.tif 496558.488 5419884.008 1181.985 ´0.87093 0.36520 ´199.20110
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Table 7. Cont.

Image
Name X (m) Y (m) Z (m) ω (Degree) φ (Degree) κ (Degree)

10040082.tif 496804.479 5419882.183 1183.373 ´0.26935 ´0.63812 ´198.97290
10040083.tif 497048.699 5419882.847 1184.616 0.34834 ´0.40178 ´199.44720
10040084.tif 497296.587 5419884.550 1185.010 0.81501 ´0.53024 ´199.35600
10040085.tif 497540.779 5419886.806 1184.876 1.38534 ´0.46333 ´199.85010
10050103.tif 496573.389 5419477.807 1161.431 ´0.48280 ´0.03105 ´0.23869
10050104.tif 496817.972 5419476.832 1161.406 ´0.65210 ´0.06311 ´0.17326
10050105.tif 497064.985 5419476.630 1159.940 ´0.74655 0.11683 ´0.09710
10050106.tif 497312.996 5419477.065 1158.888 ´0.53451 ´0.19025 ´0.13489
10050107.tif 497555.389 5419477.724 1158.655 ´0.55312 ´0.12844 ´0.13636
10250130.tif 497622.784 5420189.950 1180.494 0.09448 3.41227 ´101.14170
10250131.tif 497630.734 5419944.364 1181.015 0.61065 2.54420 ´97.84478
10250132.tif 497633.024 5419698.973 1179.964 1.27053 1.62793 ´97.23292
10250133.tif 497628.317 5419452.807 1179.237 0.90688 0.83308 ´98.72504
10250134.tif 497620.954 5419207.621 1178.201 0.17675 1.27920 ´101.86160
10250135.tif 497617.307 5418960.618 1176.629 0.22019 1.47729 ´101.55860Remote Sens. 2016, 8, 89 24 of 32 
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(Figure 17). We used the proposed Self-Adaptive Patch-based Multi-View Stereo-matching 
algorithm (SAPMVS) to address the three sets of cut images separately, and obtained the 3D 
dense point cloud data of each dataset. The 3D dense point cloud data of each dataset are shown 
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Table 8. 

(a) (b) (c) 

Figure 19. Final 3D point cloud results for the three sets of cut images. (a) Area 1: “Inner City”;  
(b) Area 2: “High Riser”; (c) Area 3: “Residential Area”. 

  

Figure 18. The airborne laser scanner data of the experimental region (Vaihingen).

Because this dataset’s image pixel resolution (7680 ˆ 13824 square pixels) is large, it often
exhausted the computer memory in the experiment when processing the original images. In addition,
the imaging of any of the three experimental areas is only a small part of each image. Therefore, we
can cut out the three experimental areas in each of the original images separately (Figure 17). We used
the proposed Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (SAPMVS) to address
the three sets of cut images separately, and obtained the 3D dense point cloud data of each dataset.
The 3D dense point cloud data of each dataset are shown in Figure 19. The statistics of the results by
the proposed SAPMVS algorithm are shown in Table 8.
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Figure 19. Final 3D point cloud results for the three sets of cut images. (a) Area 1: “Inner City”;
(b) Area 2: “High Riser”; (c) Area 3: “Residential Area”.

Table 8. The statistics for the results of the Vaihingen data by the proposed SAPMVS algorithm.

Experiment Area
Number of Images

(Image Pixel
Resolution)

Point Amount Average Distance
between Points

RunTime
(min:s)

Area 1: “Inner City” 8
(1200*1200) 253125 16 cm 11:33

Area 2: “High Riser” 4
(1200*1600) 220073 16 cm 6:30

Area 3: “Residential Area” 6
(1400*1300) 259637 16 cm 9:46

From Table 8 and Figure 19, it can be seen that the computational efficiency of the proposed
SAPMVS algorithm is high and the ground resolution of the obtained 3D dense point cloud is
approximately 0.16 m.

To quantitatively describe the accuracy of the proposed algorithm, we can compare the obtained
3D point cloud results by the PMVS and the proposed algorithm with the high-precision airborne
laser scanner data, respectively. The specific evaluation method is performed as follows: For each
3D point of the obtained point-cloud result that was assumed to be Pi pi P r1, nsq, we determine all
the laser points near the point Pi (the XY-plane distance between point Pi and the laser point should
be smaller than the threshold value d, which is related to the average point density of the airborne
laser scanner data, in our experiment d “ 0.25m) in the laser point cloud data; we then calculate the
average elevation Zai of these nearby laser points as the reference elevation of the point Pi [36]. Finally,
we compare the elevation Zi of the point Pi with its reference elevation Zai and calculate the root
mean square error (RMSE) and the maximum error (Max) of the obtained 3D point cloud [67]. The
calculation formulas are as follows:

RMSE “

g

f

f

f

e

n
ř

i“1
pZi ´ Zaiq

2

n
(7)

Max=max |Zi ´ Zai| , i P r1, ns (8)

where n represents the point number of the obtained 3D dense point cloud result. It should be noted
that using this method to evaluate the accuracy of the obtained 3D dense point cloud has one drawback:
At the edge or the fracture line, the value of |Zi ´ Zai|may become a large value, which is inconsistent
with the actual situation, resulting in a pseudo-error. That is to say, if a 3D point Pi is on the edge (or at
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one side of the edge) and the nearby laser points are located outside of the edge (or on the other side
of the edge), the value of |Zi ´ Zai|may become very large, but the large error is not real (in fact, in
that case, the maximum error Max is not meaningful). The quantitative evaluation results if we do
not remove the pseudo-errors (from statistics, the frequency of pseudo-errors is relatively small) are
shown in Table 9.

Table 9. The quantitative evaluation accuracy of the obtained 3D dense point cloud without removing
pseudo-errors. (a) PMVS; (b) The proposed algorithm.

(a)

Experiment Area Checkpoint
Amount RMSE(m) Max(m) Percentage of

Errors within 1 m
Area 1: “Inner City” 245752 2.180527 20.410379 66.7%
Area 2: “High Riser” 213679 4.032463 30.742815 46.1%

Area 3: “Residential Area” 252568 2.349705 18.903685 74.1%

(b)

Experiment Area Checkpoint
Amount RMSE(m) Max(m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 2.164632 20.307628 66.8%
Area 2: “High Riser” 220073 3.950138 29.812880 46.4%

Area 3: “Residential Area” 259637 2.328481 18.713413 74.2%

Because there are a certain number of pseudo-errors that may be very large, when evaluating the
accuracy of the obtained 3D dense point cloud, we mainly focus on the percentage of errors within 1 m
(for errors within 1 m, the vast majority should be a true error; this has valuable reference meaning) and
then the RMSE value. However, the value of Max is a maximum pseudo-error and is not meaningful,
and if there is no such pseudo-error, the actual RMSE value will be much smaller.

Table 9a shows that the percentages of errors within 1 m by the PMVS algorithm for the three
experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 66.7%, 46.1% and 74.1%, respectively, and the
corresponding RMSE values are 2.180527 m, 4.032463 m and 2.349705 m, respectively. Table 9b shows
that the percentages of errors within 1 m by the proposed algorithm for the three experiment areas
(“Area 1”, “Area 2”, and “Area 3”) are 66.8%, 46.4% and 74.2%, respectively, and the corresponding
RMSE values are 2.164632 m, 3.950138 m and 2.328481 m, respectively. It can be seen that the accuracy
of the proposed algorithm is slightly higher than that of the PMVS algorithm for the three experiment
areas. Additionally, it can be seen that the matching accuracy from high to low is “Area 3”, “Area
1”, and “Area 2”. Such an experimental result is reasonable because there are mainly low residential
buildings in “Area 3”, the buildings in “Area 1” are more complex, and the buildings in “Area 2” are
very tall; thus, the matching difficulty is gradually increased.

To evaluate the actual accuracy of the PMVS and the proposed algorithm more precisely, we need
to delete some of the large pseudo-errors when calculating the RMSE value. We can take a simple
approach inspired by [68–71]: For “Area 3” and “Area 1”, if the value |Zi ´ Zai| of a 3D point is greater
than the Elevation Error Threshold 1 pEET1q, we consider the value of |Zi ´ Zai| as a pseudo-error and
delete the 3D point (do not use it as a checkpoint), while for “Area 2”, if the value |Zi ´ Zai| of a 3D
point is greater than the Elevation Error Threshold 2 pEET2q, we consider the value of |Zi ´ Zai| as
a pseudo-error and delete the 3D point (do not use it as a checkpoint). The actual and more precise
quantitative evaluation results of the two algorithms are shown in Tables 10 and 11.
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Table 10. The actual quantitative evaluation accuracy of the obtained 3D dense-point cloud by removing
the large pseudo-errors (EET1 “ 6m, EET2 “ 9m). (a) PMVS; (b) The proposed method.

(a)

Experiment Area Point Amount Checkpoint
Amount RMSE(m) Percentage of

Errors within 1 m
Area 1: “Inner City” 245752 243179 1.312648 67.5%
Area 2: “High Riser” 213679 212151 3.402339 46.5%

Area 3: “Residential Area” 252568 250463 1.587426 74.7%

(b)

Experiment Area Point Amount Checkpoint
Amount RMSE(m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 250488 1.301095 67.5%
Area 2: “High Riser” 220073 218508 3.352631 46.7%

Area 3: “Residential Area” 259637 257470 1.571167 74.8%

Table 10a shows that after we deleted the large pseudo-errors (EET1 “ 6m, EET2 “ 9m), the
RMSE values of the PMVS algorithm for the three experiment areas (“Area 1”, “Area 2”, and “Area 3”)
are 1.312648 m, 3.402339 m and 1.587426 m, respectively. Table 10b shows that after we deleted the
large pseudo-errors (EET1 “ 6m, EET2 “ 9m), the RMSE values of the proposed algorithm for the
three experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 1.301095 m, 3.352631 m and 1.571167 m,
respectively. It can be seen that the accuracy of the proposed algorithm is almost equal to that of the
PMVS algorithm for the three experiment areas. In fact, the pseudo-errors that still remain act as a
kind of constraint on the precision of the two algorithms.

Table 11. The actual quantitative evaluation accuracy of the obtained 3D dense point cloud by removing
the pseudo-errors (EET1 “ 2m, EET2 “ 3m). (a) PMVS; (b) The proposed method.

(a)

Experiment Area Point Amount Checkpoint
Amount RMSE (m) Percentage of

Errors within 1 m
Area 1: “Inner City” 245752 240826 0.880695 68.2%
Area 2: “High Riser” 213679 173487 1.351428 57.1%

Area 3: “Residential Area” 252568 248728 0.898527 75.3%

(b)

Experiment Area Point Amount Checkpoint
Amount RMSE (m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 248113 0.870425 68.1%
Area 2: “High Riser” 220073 178565 1.316283 57.2%

Area 3: “Residential Area” 259637 255674 0.886161 75.3%

Table 11a shows that after we deleted almost all the pseudo-errors (EET1 “ 2m, EET2 “ 3m),
the RMSE values by the PMVS algorithm for the three experiment areas (“Area 1”, “Area 2”, and
“Area 3”) are 0.880695 m, 1.351428 m and 0.898527 m, respectively. Table 11b shows that after we
deleted almost all the pseudo-errors (EET1 “ 2m, EET2 “ 3m), the RMSE values by the proposed
algorithm for the three experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 0.870425 m, 1.316283 m
and 0.886161 m, respectively. It can be seen that the accuracy of the proposed algorithm is almost equal
to that of the PMVS algorithm for the three experiment areas. In fact, because the building coverage of
the three experimental regions is high, the overall accuracy of the dense matching algorithm is bound
to decrease. In addition, the precision of the image orientation elements may act as a small type of
constraint on the precision of the proposed algorithm.
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3.2.5. Discussion

Based on experiments on three typical sets of UAV data with different texture features, the
experimental conclusions are as follows:

(1) The proposed multi-view stereo-matching algorithm based on matching control strategies suitable
for multiple UAV imagery and the self-adaptive patch can address the UAV image data with
different texture features effectively. The obtained dense point cloud has a realistic effect, and the
precision is equal to that of the PMVS algorithm.

(2) Due to the image-grouping strategy, the proposed algorithm can handle a large amount of data
on a typical computer and is, to a large degree, not restricted by the memory of the computer.

(3) The proposed matching propagation method based on the self-adaptive patch is superior to that
of the state-of-the-art PMVS algorithm in terms of the processing efficiency, and has, to some
extent, improved the accuracy of the multi-view stereo-matching algorithm by the self-adaptive
spread patch sizes according to terrain relief, e.g., a small spread patch size for large relief terrain,
and avoiding crossing the terrain edge, i.e., the fracture line.

However, there are several limitations with respect to the proposed approach. The following
aspects should be addressed in future work:

(1) The accuracy and completeness of the proposed algorithm.

In cases of special UAV data characterized by serious terrain discontinuity or other difficult
conditions (low texture and so on), the accuracy and completeness of the proposed algorithm is
not very high [18]. It needs to be further optimized (for example, after multi-view stereo-matching,
we can post-process the 3D dense point cloud to fill in possible holes and obtain a complete mesh
model [18,72]).

(2) The accuracy evaluation method of the proposed algorithm.

In the experimental section, the quantitative description method for the precision of the proposed
algorithm may have certain shortcomings that act as constraints on the evaluation precision of the
proposed algorithm. We have implemented a simple and effective solution; however, it can be replaced
or further improved upon. There are primarily two approaches that can help avoid the problem of
pseudo-error effectively: (1) First, the reference model was aligned to its image set using an iterative
optimization approach (an Iterative Closest Point alignment, ICP) that minimizes the photo-consistency
function between the reference mesh and the images. The alignment parameters consist of a translation,
rotation, and uniform scale. Second, we compare the elevation between the dense point cloud obtained
from the images and the reference mesh obtained from the high precision laser points [17,73]; (2) We
can compare the elevation between the high precision Ground Control Points (GCPs) and the DSM
(volume or mesh) or DEM obtained from the dense point cloud for the images [74–77].

4. Conclusions

Multi-view dense image-matching is a hot topic in the field of digital photogrammetry and
computer vision. In this paper, according to the characteristics of UAV imagery, we proposed
a multi-view stereo image-matching method for UAV images based on image-grouping and the
self-adaptive patch. This algorithm mainly processed multiple UAV images with the known orientation
elements and could output a colorful 3D dense point cloud. The main processing procedures were
as follows: First, the UAV images were divided into groups automatically. Then, each image group
was processed in turn, and the processing flow was partitioned into three parts: (1) multi-view initial
feature-matching; (2) matching propagation based on the self-adaptive patch; and (3) filtering the
erroneous matching points. Finally, considering the overlap problem between groups, the matching
results were merged into a whole.
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The innovations of this paper were as follows: (1) An image-grouping strategy for multi-view UAV
image-matching was designed; as a result, the proposed algorithm can address a large number of UAV
image data without the restriction of computer memory; (2) According to the characteristics of UAV
imagery, some matching control strategies were proposed for multiple UAV image-matching, which
could improve the efficiency of the initial feature-matching process; (3) A new matching propagation
method was designed based on the self-adaptive patch. In the matching propagation process, the sizes
and shapes of the patches could adapt to the terrain relief automatically, and the patches were prevented
from crossing the terrain edge, i.e., the fracture line. Compared with the matching propagation method
of the PMVS algorithm, the proposed self-adaptive patch-based matching propagation method not
only reduced computing time markedly, but also enhanced integrity to some extent.

In sum, many practices indicate that the proposed method can address a large amount of UAV
image data with almost no computer memory restrictions and significantly surpasses the PMVS
algorithm in processing efficiency, while the matching precision is equal to that of the PMVS algorithm.
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