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Abstract: In recent years, deep learning has been widely studied for remote sensing image analysis.
In this paper, we propose a method for remotely-sensed image classification by using sparse
representation of deep learning features. Specifically, we use convolutional neural networks (CNN)
to extract deep features from high levels of the image data. Deep features provide high level
spatial information created by hierarchical structures. Although the deep features may have
high dimensionality, they lie in class-dependent sub-spaces or sub-manifolds. We investigate the
characteristics of deep features by using a sparse representation classification framework. The
experimental results reveal that the proposed method exploits the inherent low-dimensional structure
of the deep features to provide better classification results as compared to the results obtained by
widely-used feature exploration algorithms, such as the extended morphological attribute profiles
(EMAPs) and sparse coding (SC).
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1. Introduction

Hyperspectral images can provide rich information both from the spectral and spatial domain
simultaneously. For this reason, hyperspectral images are widely used in agriculture, environmental
management and urban planning. Classification of each pixel in hyperspectral imagery is a common
method used in these applications. However, hyperspectral sensors generally have more than
100 spectral bands for each pixel (e.g., AVIRIS, Reflective Optics System Imaging Spectrometer (ROSIS)),
and the interpretation of such high dimensionality imagery with good accuracy is rather difficult.

Recently, sparse representation [1] has been demonstrated as a useful tool for high dimensional
data processing. It is also widely applied in hyperspectral imagery classification [2–4]. Sparse models
intend to represent most observations with linear combinations of a small set of elementary samples,
often referred to as atoms, chosen from an over-complete training dictionary. In this way, hyperspectral
pixels, which lie in a high dimension space, can be approximately represented by a low dimension
subspace structured by dictionary atoms from the same class. Therefore, given the entire training
dictionary, an unlabeled pixel can be sparsely represented by a specific linear combination of atoms.
Finally, according to the positions and values of the sparse coefficients of the unlabeled pixel, the class
label can be determined.

Spatial information is an important aspect in sparse representations of hyperspectral images. It is
widely accepted that a combination of spatial and spectral information provides significant advantages
in terms of improving the performance of hyperspectral image representation and classification (e.g., [5,6]).
To explore effective spatial features, several methods have been developed in this direction. In [3],
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two kinds of spatial-based sparse representation are proposed for hyperspectral image processing.
Among them, one is a local contextual-based method. In this method, it adds a spatial smoothing term
in the optimization formulation during the sparse reconstruction process of the original data. The
second one jointly utilizes the sparse constraints of neighboring pixels, around the pixel of interest.
The experimental results show that these two strategies perform better, in terms of classification results.
However, both spatial smoothing and the joint sparsity model lay emphasis only on local consistency
in the spectral domain, whereas spatial features (e.g., shapes and textures) also need to be explored for
better representation of hyperspectral imagery. Recently, mathematical morphology (MM) methods [7]
have been commonly used for modeling the spatial characteristics of the objects in hyperspectral
images. For panchromatic images, derivative morphological profiles (DMPs) [8] have been successfully
used for image classification. In the field of hyperspectral image interpretation, spatial features are
commonly extracted by building extended morphological profiles (EMPs) [9] on the first few principal
components. Moreover, extended morphological attribute profiles (EMAPs) [10], similar to EMPs,
have been introduced as an advanced algorithm to obtain detailed multilevel spatial features of high
resolution images generated by the sequential application of various spatial attribute filters that can be
used to model different kinds of structural information. Such morphological spatial features, which
are generated from the pixel level (low level), suffer heavily from redundancy and great variations in
feature representation. To reduce the redundancy in morphological feature space, several studies have
been set to find more representative spatial features by using a sparse coding technique, such as [11,12].
However, due to the variability of low-level morphological features, which limited the power of sparse
representation, it is necessary to find higher level and more robust spatial features.

To explore higher level and more effective spatial features, [13] defines sparse contextual properties
based on over-segmentation results, which greatly reduce computational cost. However, objects seldom
belong to only one superpixel because of the spectral variations, and this is particularly so in high
resolution images. Moreover, the spatial features, defined at the superpixel level, are commonly
merged and linearly transformed from low level (pixel-level) ones; therefore, they probably would not
significantly increase the representation power of spatial features in remote sensing images. After all,
both MM and object-level spatial features require prior knowledge of setting proper parameters for
feature extraction. The process of parameter setting always produces inefficient and redundant spatial
features [14,15]. Therefore, in this paper, instead of setting spatial features, we explore high level
spatial features by using a deep learning strategy [16,17]. Deep learning, as one of the state-of-the-art
algorithms in the computer vision field, shifts the human-engineered feature extraction process to
automatic feature learning and highly application-dependent feature exploration [18–20]. Furthermore,
due to the deep structure in such learning strategies (e.g., stacked autoencoder (SAE) [21], convolutional
neural network (CNN) [22]), one can extract higher level spatial features by using non-linear activation
functions, layer by layer, which are much more robust and effective than low level ones. Recently, some
efforts have been made in deep learning for hyperspectral image classification. Chen [23] probably is
the first one to explore the SAE framework for hyperspectral classification. In his work, SAE was used
for spectral and spatial feature extraction in the hierarchical structure. However, SAE can only extract
higher level features from one-dimensional data, while it overlooked the two-dimensional spatial
characteristics (although an adjacent effect has been considered). Unlike SAE, CNN takes a fixed size
image patch, called the “receptive field”, for deep spatial feature extraction; thus, it can keep spatial
information intact. In the work of Chen [24], wherein the vehicles on the roads are detected by deep
CNN (DCNN), the results show that CNN is effective for object detection in high resolution images.
Instead of object detection, Yue [14,25] explored both spatial and spectral features in higher levels
by using a deep CNN framework for the possible classification of hyperspectral images. However,
the extracted deep features still remain in a high dimensional space, which involves a rather high
computational cost and may lead to lower classification accuracies.

In this paper, we follow a different strategy, exploit the low dimensional structure of high level
spatial features and perform sparse representation using both spectral and spatial information for
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hyperspectral image classification. Specifically, we focus on CNN, which offers the potential to describe
the structural characteristics in high levels according to the hierarchical feature extraction procedure.
At the same time, we also exploit the fact that the deep spatial features of the same class lie in a
low-dimensional subspace or manifold and can be expressed by linear sparse regression. Thus, it
would be worthwhile to combine sparse representation with high dimensional deep features, which
may provide better representation in terms of the characterization of spatial and spectral features and
for better discrimination between different classes. Therefore, the method proposed in this paper for
hyperspectral image classification combines the merits of deep learning and sparse representations.
In this work, we tested our method on two well-known hyperspectral datasets: an Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS) scene over Indian Pines, IN, USA, and a Reflective Optics
System Imaging Spectrometer (ROSIS) scene over Pavia University. The experimental results show
that the proposed method can effectively exploit the sparsity that lies at a higher level spatial feature
subspace and also provides better classification performance. The merits of the proposed method
are as follows: (1) instead of manually setting spatial features, we use CNN to learn such features
automatically, which is more effective for hyperspectral image representation; (2) the hierarchical
network strategy is applied to explore higher level spatial features, which are more robust and effective
for classification compared to the low level spatial features; (3) the sparse representation method
is introduced to exploit a suitable subspace for high dimension spatial features, which reduces the
computational cost and increases feature discrimination between classes.

The remainder of the paper is structured as follows. Section 2 presents the proposed methodology
in two parts: CNN deep feature extraction and sparse classification and describes the datasets used for
experiments and compares the performance of the proposed method with that of other well-known
approaches. Finally, Section 3 concludes with some suggestions for future works.

2. Proposed Methodology

The proposed method can be divided mainly into three parts, as shown in Figure 1. First, the high
level spatial features are extracted by the CNN framework. Then, the sparse representation technique
was applied to reduce the dimensionality of the high level spatial features generated by the previous
step. Finally, with the learned sparse dictionary, classification results can be obtained.

Figure 1. Graphical illustration of the convolutional neural networks (CNN)-based spatial feature
extraction, sparse representation and classification of hyperspectral images.
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2.1. CNN-Based Deep Feature Extraction

Recently, deep learning, one of the state-of-the-art techniques in the field of computer vision,
has demonstrated impressive performances in recognition and classification of several famous image
datasets [26,27]. Instead of setting image features, CNN can automatically learn higher level features
from a hierarchical neural network in a way similar to the process of human cognition. To explore
such spatial information, a fixed size of the neighborhood area (receptive field) should be first given.
For a PC band of hyperspectral images, given a training sample pi and its pixel neighbors in Ps(pi),
a local neighborhood area forms with the size of P × P ; the patch-based training sample can be
denoted as Xi. Additionally, the label of patch sample Xi can be denoted as ti. CNN works like a
black box; given the input patches and its labels, the hierarchical spatial features can be generated by a
layer-wise activation structure, shown in Figure 2. Conventionally, two kinds of layers are stacked
together in the CNN framework f (k, b|X); the convolution layer and the sub-sampling layer [28].
Here, f (x) = (1 + e−x)1 is the non-linear activation function. The convolution layer generates spatial
features by activating the output value of previous layers with spatial filters. Then, the sub-sampling
layer generates more general and abstract features, which greatly reduces the computational cost
and increases the generalization power for image classification. Learning a CNN network with L
layers involves learning the trainable parameters in each layer of the framework. The feature maps
of the previous layer are convolved by the convolution layer with learnable kernel k and bias term b
through the activation function to form feature maps of the current layer. For l-th convolution layer
l ∈ (1, 2, ..., L), we have that:

Fl = f (Fl−1 ∗ kl + bl) (1)

where Fl represents the feature maps of the current layer and Fl−1 means the feature map lies
in the previous layer. k and b are trainable parameters in the convolution layer. Commonly,
sub-sampling layers are interspersed with convolution layers for computational cost reduction and
feature generalization. Specifically, a subsampling layer produces downsampled versions of the input
feature maps for feature abstraction. For example, for the q-th sub-sampling layer q ∈ (1, 2, ..., L),
we have:

Fq = f (down(Fq−1) + bq) (2)

where down(·) represents the sub-sampling function that shrinks a feature map by using a mean
value pooling operation and b is the bias term of the sub-sampling layer. The final output layer can be
defined as:

y(k, b) = f L(kLhL−1 + bL) (3)

where y(k, b) is the predicted value of the entire CNN and hL−1 means the output feature map of the
(L− 1)-th hidden layer in the CNN, which could be either a convolution layer or a sub-sampling layer.
During the training process, the squared loss function is applied to measure the deviation from target
labels and predicted labels. If there are N training samples, the optimization problem is to minimize
the loss function EN as follows:

min EN =
1
2

N

∑
i=1
||ti − yi(k, b)||22 (4)

where aL = kLhL−1 + bL denotes a single activation unit. To minimize the loss function, a backward
propagation algorithm is a common choice. Specifically, the stochastic gradient descent algorithm
(SGD) is applied to optimize the parameters k and b.
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The parameter of the entire network could be updated according to the derivatives. Once the
back propagation process is finished, k and b are determined. Then, a feed-forward step is applied to
generate new error derivatives, which can be used for another round for parameter updating. These
feed-forward and back-propagation processes are repeated until convergence is achieved, and thus,
optimal k and b are obtained. High level spatial features Di can thus be extracted by using such learned
parameters and a hierarchical framework.

O = f L(kXi + b) (5)

Once the output feature map of the last layer is obtained, it is important to flatten the feature map
into a one-dimension vector for pixel-based classification. Therefore, the flattened deep feature can be
represented as Di = vectorize(O), where O is the final output feature map.
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Figure 2. The process of CNN-based spatial feature extraction. The training samples are squared
patches. The convolution layer and sub-sampling layer are interspersed in the framework of CNN.

2.2. Deep Feature-Based Sparse Representation

Deep spatial features generated by the CNN framework are usually of high dimensionality, which
are ineffective for classification. Therefore, we introduce sparse coding as one of the-state-of-art
techniques to find a subspace for deep feature representation and to possibly improve the classification
performances, as shown in Figure 3. The sparse representation classification (SRC) framework was
first introduced for face recognition [29]. Similarly, in hyperspectral images, a particular class with
high dimensional features both in the spectral and spatial domain should lie in a low dimensional
subspace spanned by dictionary atoms (training pixels) of the same class. Specifically, an unknown
test pixel can be represented as a linear combination of training pixels from all classes. As a concrete
example, let xi ∈ RM×1 be the pixel with M denoting the dimension of deep features in D and
A = [A1, ..., Ac, ..., AC] the structural dictionary, where Ac ∈ RM×nc , c = 1, ..., C holds the samples of
class c in its columns; C is the number of classes, nc is the number of samples in Ac; and ∑C

c=1 Nc = N
is the total number of atoms in A. Therefore, a pixel xi, whose class identity is unknown, can be
represented as a linear combination of atoms from the dictionary A:

xi = Aα (6)
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where ff ∈ Rn is a sparse coefficient for the unknown pixel xi. Given the structural
dictionary A, the sparse coefficient α can be obtained by solving the following optimization
problem:

α̂ = arg min||α||0 subject to ||xi −Aα||2 ≤ δ (7)

where ||α||0 denotes the `0-norm of α, which counts the number of nonzero components on the
coefficient vector, and δ is the error tolerance, which represents noise and possible modeling
error. However, the aforementioned problems make it hard to solve this optimization problem
because of its nondeterministic and NP-hard characteristic. To tackle this problem, therefore, greedy
algorithms, such as basis pursuit (BP) [30] and orthogonal matching pursuit (OMP) [31], have been
proposed. In the BP algorithm, the `1 norm replaces the `0 norm. The optimization problem is
transferred into:

α̂ = arg min||α||1 subject to ||α||0 ≤ K (8)

where K is the sparsity level, representing the number of selected atoms in the dictionary. ||α||1 = ∑i |αi|,
for i = 1, ..., n. On the other hand, the OMP algorithm incorporates the following steps at each iteration
based on the correlation between the dictionary A and the residual vector R, where R = x−Aα.
Specifically, at each iteration, the OMP finds the index of the atom that best approximates the residual,
adds this member to the matrix of atoms, updates the residual and computes the estimate of α

using the newly-obtained atoms. Once the approximation error falls below a certain prescribed
limit, then OMP finds the sparse coefficient vector α̂. The class label for xi can be determined
by the minimal representation error between xi and its approximation from the sub-dictionary of
each class:

ĉ = arg min
c
||xi −Acα̂c||2, c = 1, ..., C (9)

Therefore, we proposed the deep feature-based OMP algorithm to explore the low dimension
subspace for deep feature representation and for image classification.

Deep Learning

Features ...

Sparse 

Representation
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...
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Figure 3. The process of deep feature-based sparse representation classification.
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Algorithm 1 Framework of the deep feature-based sparse coding.

Require:
xi, training pixels from all classes with deep features; A, structural dictionary; C, number of classes;
K, sparsity level;

Ensure:
α̂, sparse coefficients matrix;

1: Initialization: set the index matrix Iiter=1 = ∅, residual matrix Riter=1 = xi, the iteration counter
iter = 1;

2: Compute residual correlation matrix Eiter : Eiter = ATRiter;
3: Select a new adaptive set based on Eiter

4: Find the best representation atoms’ indexes iiter
c and the corresponding coefficient values viter

c for
each class c.

5: Combine the best representative atoms for each class into a cluster Witer
c , and obtain the

corresponding coefficients Viter
c in that cluster.

6: Select the adaptive set Liter from the best atoms out of Witer
c according to the indexes in Viter

c .
7: Combine the newly-selected adaptive set with the previously-selected adaptive sets:

Iiter = Iiter ⋃ Liter

8: Calculate the sparse representation coefficients α̂.
9: Update the residual matrix: Riter = x−DA.

10: Check if sparsity coefficient α̂iter > K; stop the procedures; and output the final sparse coefficient
matrix; otherwise, set iter = iter + 1 and go to Step 2.

2.3. Datasets

In this section, we evaluate the performance of the proposed deep feature-based sparse
classification algorithm on two hyperspectral image datasets, i.e., the Reflective Optics System
Imaging Spectrometer (ROSIS-03) University of Pavia data and the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) Indian Pines data.

The AVIRIS Indian Pines image was captured over the agricultural Indian Pine test site located in
the northwest of Indiana. Two-thirds of the site contain agricultural crops and one-third forest or other
natural, perennial vegetation. The spectral range includes 220 spectral bands from 0.2 to 2.4 µm, and
each band measures 145 × 145 with a spatial resolution of 20 m. Prior to commencing the experiments,
the water absorption bands were removed. There are 16 different classes in Indian Pines reference
map, and most of them can be related to different types of crops.

The University of Pavia image was acquired by the ROSIS-03 sensor over the University of Pavia,
Italy. The image measures 610× 340 with a spatial resolution of 1.3 m per pixel. There are 115 channels
whose coverage ranges from 0.43 to 0.86 µm. Prior to commencing the experiment, 12 absorption
bands were discarded because of noise. Nine information classes were considered for this scene.

2.4. Configuration of CNN

During the deep feature extraction process, it is important to address the configuration of the deep
learning framework. The receptive field (P), the kernel (k), the number of layers (nl) and the number
of feature maps of each layer (n f ) are primary variables that affect the quality of deep features. We
empirically set the size of the receptive field to 28 ∗ 28, which offered enough contextual information.
The kernel sizes recommended in recent studies for CNN framework are 5× 5, 7× 7 or 9× 9 [32]. For
7× 7 and 9× 9 kernels, there were 49 and 81 trainable parameters, which significantly increased the
computational cost during training of such a framework, as compared to the cost for 5× 5 kernels.
Therefore, for our CNN framework, we adopted 5× 5 kernels to accelerate the training process. Once
the sizes of the receptive field and kernels are determined, the main structure of the CNN framework
can be considered established. A training patch Xi (receptive field) can generate four levels of feature
maps (two convolutional layers and two subsampling layers), and the size of the final output map is
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4× 4 (((28 − (5 − 1))/2 − 4)/2). However, the number of feature maps (n f ) of each layer still remains
unsolved. To solve this problem, we constrained the number of feature maps to be equal at each layer.
With this configuration, CNN works, like the deep Boltzmann machine (DBM) [33], which should not
significantly affect the quality of the output of deep features. To illustrate the impact of different CNN
configurations on classification accuracy, we conducted a series of experiments, as will be explained in
the following section. The experiment was conducted on the spatially independent training sets and
the remaining as the test datasets.

2.4.1. CNN Depth Effect

The depth parameter of CNN plays an important role in classification accuracy, because it controls
the deep feature quality in terms of the level of abstraction. To measure the effectiveness of the
depth parameter, a series of experiments were conducted on the Pavia University dataset. We set
four different depths of CNNs from 1 to 4, and the feature number was fixed to 50. Overall accuracy was
used to measure the classification performance with different depth configurations. The experimental
results are shown in Figures 4 and 5.

As can be seen from the figure, the classification accuracies can be obtained as increased with the
increase in the depth configuration. The shallow layers contain low-level spatial features, but they
vary greatly because of the constrained representation power. However, in deeper layers, the deep
features are more robust and representative than those of lower ones. In addition, the shallow CNNs
seem to have suffered more from overfitting, as presented in Figure 5.

Figure 4. Overall accuracies of the university of Pavia dataset classified by CNN under different depths.
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Figure 5. Overall accuracies of Indian Pines dataset classified by CNN under different depths.

2.4.2. CNN Feature Number Effect

In the CNN framework, the number of features can determine the dimensionality of the extracted
spatial features. To measure the effect of spatial number on classification accuracy, a series of
experiments were conducted. The feature number was varied from 10 to 100, and the whole CNN
framework was constructed with a four-layer structure. Overall accuracy was used to measure the
performance of the CNN-based classification algorithm. The classification results are reported in
Figure 6.

Figure 6. Classification results by setting different deep feature numbers for the CNN framework.
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From the results for the University scene, it can be seen that the classification accuracy increased
with the increase in feature number. However, no appreciable change in accuracy was noticed beyond
the number of 50 deep features. A similar pattern can be seen in the Indian Pines dataset as well.
Unlike in the University scene, the classification accuracy in the Indian Pines data dropped significantly
after 50, reaching the lowest point at 90. This indicates that the classification accuracy becomes unstable
when the number of deep features increases beyond a limit. Therefore, for our experiments, we set the
number of deep features to 50.

2.5. Analysis of Sparse Representation

To conclude the effectiveness of sparse representation, we analyzed the relationship between the
size of the training dictionary in both EMAP space and the deep feature space and the classification
accuracies obtained by the OMP algorithm in this work. In Figure 7, the obtained classification
accuracies are plotted as a function of the size of the training dictionary. The best classification
accuracies are obtained by exploring the sparse representation of deep features for both the Indian
Pines and Pavia University datasets. Generally, as the number of training samples increase, the
uncertainty of classes decreases.
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Figure 7. Classification OAs as a function of training dictionary size (expressed as a percentage of
training samples for each class) for the Indian Pines and Pavia University datasets.

The following experiments illustrate the advantage of using a sparse representation in deep feature
space for image classification over using the EMAP-based sparse coding. We considered a training
dictionary made up of 1043 atoms and labeled the remaining samples as the test set. After constructing
the dictionary, we randomly selected a pixel (belonging to Class 3) for sparse representation analysis,
and the sparse coefficients are shown as bars in Figure 8. From these figures, it can seen that in the
original spectral space, the sparse coefficients appear so mixed up that it is hard to distinguish one class
from the other. In the EMAP space, the differences between classes are becoming clear, but they are
also hard to classify in the highly mixed-up pixel. In the deep feature space, the unknown pixel can
be seen as belonging to Class 3, because it is more discriminative than that in the spectral or EMAP
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space. The reason behind this phenomenon is that the redundancy in spectral information and EMAP
features greatly reduced the representativeness of the pixels. However, in the space of deep features,
the correlation between different features is rather poor, and thus, it is more discriminative than the
spectral and EMAP space.

Figure 8. Estimated sparse coefficients (spectral space) for one pixel (belonging to Class 3) in the Indian
Pines image. (a) Spectral space; (b) extended morphological attribute profile (EMAP) space; (c) deep
feature space.

2.6. Comparison of Different Methods

The main purpose of the experiments with such remote sensing datasets is to compare the
performances of different state-of-the-art algorithms in terms of classification results. Prior to feature
extraction and classification, all of the datasets were whitened with the PCA algorithm, preserving the
first several bands that contained more than 98% information.

To assess the effect of deep features, the well-known spatial feature extended morphological
attribute profiles (EMAP) were introduced to classify the images in the spatial domain. Specifically,
the EMAPs were built by using the attributes of area and standard deviation. Following the work
in [34], threshold values were chosen for the area in the range of {50,500} with a stepwise increment
of 50 and for a standard deviation in the range of 2.5% to 20% with a stepwise increment of 2.5%.
However, both EMAP and deep features are commonly shown in great redundancy and also with
high dimensionality. To address the importance of the sparsity constraint in such spectral and spatial
features, we added the original spectral information to our EMAP and deep feature-based sparse
representation classification experiments. It should be noted that, in all of the experiments, the OMP
algorithm was used to approximately solve the sparse problem for the original spectral information,
EMAP and deep features, which can be denoted respectively as Speo, EMAPo and Deepo. We also
compared the proposed method with the nonlocal weighting sparse representation (NLW-SR) and the
spectral-spatial deep convolutional neural network (SSDCNN) [25] in terms of classification accuracy.

In addition, we compared the sparse-based classification accuracy of OMP with the accuracies
obtained by several state-of-the-art methods. Recently, some novel classification strategies have
proposed for classifying hyperspectral images, such as random forest [35]. However, to evaluate
the robustness of the deep features, the widely-used SVM classifier is considered as the benchmark
in the experiment. It should be noted that the parameters of SVM were determined by five-fold
cross-validation, and we selected the polynomial kernel for the rest of the experiments. The polynomial
kernel can easily reveal the effectiveness of deep features, for future comparison. We denote the
SVM-based classifications of spectral information, EMAP and deep features respectively as Spes,
EMAPs and Deeps.

For our research, a series of experiments were conducted to extract deep features with
different numbers of feature map settings. Furthermore, the training dictionary was constituted of
randomly-selected samples from a reference map. The remaining samples were used for evaluating the
classification performances. Overall accuracy (OA), average accuracy (AA) and the Kappa coefficient
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were used to quantitatively measure the performance of the proposed method. The classification
results are shown in Figure 9 and Figure 10.

(a)                                              (b)                                              (c)                                                (d)                                                 (e)

(f)                                              (g)                                                (h)                                                 (i)                                             (j)

Figure 9. Classification results obtained by different classifiers for the AVIRIS Indian Pines scene.
(a) Original map; (b) Reference map; (c) Spes classification map; (d) EMAPs classification map; (e) Deeps

classification map; (f) Speo classification map; (g) EMAPo classification map; (h) Nonlocal weighting
sparse representation (NLW-SR) classification map; (i) Spectral-spatial deep convolutional neural
network (SSDCNN) classification map; (j) Deepo classification map.

(a)                                        (b)                                          (c)                                           (d)                                       (e)

(f)                                        (g)                                          (h)                                           (i)                                          (j)

Figure 10. Classification results obtained by different classifiers for the Reflective Optics System
Imaging Spectrometer (ROSIS) Pavia University Scene; (b) Reference map; (c) Spes classification map;
(d) EMAPs classification map; (e) Deeps classification map; (f) Speo classification map; (g) EMAPo

classification map; (h) NLW-SR classification map; (i) SSDCNN classification map; (j) Deepo

classification map.

2.7. Experiments with the AVIRIS Indian Pines Scene

In our first experiment with AVIRIS Indian Pines dataset, we investigate the characteristic of
CNN-based deep features. Specifically, we considered the four-layer CNN with 50 features at each
layer as the default configurations for deep feature generation.

We compare the classification accuracies obtained for the Indian Pines dataset by the proposed
method with those obtained by the other state-of-the-art classification methods. To illustrate the
classification accuracies obtained with a limited number of training samples in a better way, the
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individual class accuracies obtained for the case of 10% training samples are presented in Table 1. As
can be seen in this table, in most cases, the proposed deep feature-based sparse classification (Deepo)
method provided the best results, in terms of individual class accuracies, as compared to the results
obtained by other methods. When only the spectral information is considered, it is difficult to classify
the Indian Pines image, because of the spectral mixture phenomenon. However, by introducing spatial
information (EMAP), higher classification accuracies can be obtained in comparison to the accuracies
obtained with the methods using only spectral information.

Table 1. OA, average accuracy (AA) and Kappa statistic obtained after executing 10 Monte Carlo runs
for the AVIRIS Indian Pines data.

Class Train Test Spes EMAPs Deeps Speo EMAPo NLW-SR SSDCNN Deepo

1 3 43 54.88 94.88 85.42 33.33 96.51 96.34 90.34 95.83
2 14 1414 42.63 68.06 87.67 52.24 72.23 95.30 95.18 96.08
3 8 822 29.53 60.22 74.40 32.66 66.34 93.50 95.03 95.46
4 3 234 17.65 35.73 89.52 32.38 51.92 87.88 93.52 97.28
5 5 478 57.51 74.10 87.25 71.58 74.29 95.70 93.92 98.01
6 7 723 81.02 91.59 98.98 83.63 88.73 99.31 99.71 99.80
7 3 25 86.04 95.02 56.52 21.73 98.00 56.40 96.12 97.06
8 5 473 62.37 94.52 99.35 93.18 99.98 99.86 94.61 99.77
9 3 17 70.59 85.88 33.33 5.56 97.06 50.55 96.34 99.55

10 10 962 39.73 75.60 71.52 36.28 83.37 92.68 90.36 93.66
11 25 2430 73.31 87.37 94.32 63.21 88.61 96.43 95.67 96.53
12 6 587 21.72 57.68 77.17 39.31 70.49 91.14 88.34 91.52
13 3 202 87.28 96.44 99.36 93.15 98.61 91.52 96.65 100
14 13 1252 84.03 97.32 99.92 93.81 95.67 99.63 98.36 99.91
15 4 382 17.38 65.16 79.53 42.69 75.68 89.97 95.13 97.91
16 3 90 70.67 86.89 95.31 85.88 95.11 98.09 97.84 98.29

OA 56.73 79.07 83.18 61.42 82.70 95.38 96.02 97.45
AA 56.04 79.17 88.83 55.04 84.54 89.64 93.59 95.91

Kappa 49.88 76.08 87.18 55.68 80.26 95.26 94.67 96.36
time (s) 2.13 13.26 86.32 31.32 40.23 35.36 124.32 92.61

As regards the sparse representation effects, some important observations can be made from the
content of Table 1. After introducing the sparse coding technique, both EMAP and deep feature-based
classification methods show a significant improvement in terms of classification accuracy. This
reveals the importance of using sparse representation techniques, particularly in EMAP and the deep
feature space.

2.8. Experiments with the ROSIS Pavia University Scene

In the second experiment with the ROSIS Pavia University scene, we investigated the characteristic
of CNN-based deep features. As in the case of the AVIRIS Indian Pines dataset, here also, we considered,
for deep feature generation, a CNN with four layers and 50 features at each layer as the default
configuration. Unlike the image of the Indian Pines dataset, the image of the Pavia University dataset
is of high spatial resolution, which is even more complicated in terms of classification. Nine thematic
land cover classes were identified in the university campus: trees, asphalt, bitumen, gravel, metal
sheets, shadows, self-blocking bricks, meadows and bare soil. There are 42,776 reference datasets.
From the training dataset, we randomly selected 300 samples per class to obtain the classification
results by six different classification methods, and the results are presented in Table 2. The table shows
the OA, AA, Kappa and individual class accuracies obtained with different classification algorithms.
It can be seen that the proposed classification method Deepo provided the best results in terms of OA,
AA and most of individual class accuracies.
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In comparison, the classification accuracies obtained by using the SVM classifier tend to be
lower than those obtained by sparse coding-based methods. With the introduction of EMAP
features, the classification accuracies increased significantly, indicating thereby that spatial features
are important, especially for high spatial resolution images. However, great redundancy lies in
the EMAP space. Therefore, sparse coding-based OMPEMAP can give better performance in terms
of classification accuracy. Compared to EMAP features, deep features are more effective and
representative. Therefore, deep feature-based classification methods (both Deeps and Deepo) provide
higher classification accuracy.

Table 2. OA, AA and Kappa statistic obtained after executing 10 Monte Carlo runs for the ROSIS Pavia
University scene.

Class Train Test Spes EMAPs Deeps Speo EMAPo NLW-SR SSDCNN Deepo

1 300 6631 84.87 86.96 96.78 65.66 89.31 90.25 84.56 94.78
2 300 18,649 64.53 78.99 97.83 60.38 84.74 97.13 98.95 99.29
3 300 2099 74.54 81.24 77.87 52.35 82.99 99.80 96.62 98.65
4 300 3064 94.37 95.02 87.74 92.57 76.92 97.42 95.33 97.53
5 300 1345 99.61 99.41 97.74 98.93 99.32 99.97 76.65 100
6 300 5029 72.77 84.98 81.48 47.89 88.62 99.50 98.45 99.91
7 300 1330 96.77 98.90 69.12 84.71 99.71 98.85 99.62 99.80
8 300 3682 77.59 90.88 86.92 74.59 87.88 98.24 94.57 99.09
9 300 947 99.44 99.21 99.89 96.19 92.08 86.70 96.83 98.29

OA 75.28 84.92 91.80 65.62 86.61 96.50 95.18 98.35
AA 84.94 90.62 88.39 74.81 89.06 96.43 93.51 98.61

Kappa 69.14 80.90 90.12 57.15 82.85 95.34 93.64 97.86
time (s) 2.51 34.92 93.19 86.82 97.63 57.31 134.75 104.82

3. Conclusions

In this paper, we investigated a new classification method that integrates sparse representations
and deep learning techniques for spatial-spectral classification of hyperspectral remote sensing images.
The classification results indicate that the proposed method can effectively classify the hyperspectral
images. Furthermore, it can appropriately exploit the inherent sparsity present in deep features to
provide state-of-the-art classification results. We also investigated the characteristics of deep learning
features, which are more discriminative than the low-level hand-crafted spatial features. In comparison
to the the state-of-the-art classifiers, the proposed method gives very promising results, particularly
when the number of available training samples is very small. Future work will be focused on the
development of computationally-efficient implementation of the proposed method.
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