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Abstract: The classical absolute orientation method is capable of transforming tie points (TPs) from
a local coordinate system to a global (geodetic) coordinate system. The method is based only on a
unique set of similarity transformation parameters estimated by minimizing the total difference
between all ground control points (GCPs) and the fitted points. Nevertheless, it often yields a
transformation with poor accuracy, especially in large-scale study cases. To address this problem,
this study proposes a novel absolute orientation method based on distance kernel functions, in
which various sets of similarity transformation parameters instead of only one set are calculated.
When estimating the similarity transformation parameters for TPs using the iterative solution of a
non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which
the distances from the point are short. The weighting matrices can be evaluated using the distance
kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used
the exponential function and the Gaussian function to describe distance kernel functions in this
study. To validate and verify the proposed method, six synthetic and two real datasets were tested.
The accuracy was significantly improved by the proposed method when compared to the classical
method, although a higher computational complexity is experienced.

Keywords: absolute orientation; weighting matrix; kernel function; least squares problem

1. Introduction

Absolute orientation in photogrammetry can be defined as the problem of using three or more
pairs of ground control points (GCPs) between the local and global (geodetic) coordinate systems
in an attempt to find the best transformation parameters for the points’ transformation. Absolute
orientation has been widely used in many applications, including registration, matching, etc. [1–7].

Assuming that the pairs of points in two different coordinate systems satisfy a rigid-body
transformation, in the classical method, a set of seven similarity transformation parameters is utilized
to describe the transformation. Because the observation function of the absolute orientation is
non-linear, the iterative solution is the simplest method of finding the optimal unknown parameters,
namely one scaling factor parameter, three rotational angles and three translation vectors [8–10].
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When an initialization of all unknown parameters is given, the first derivative w.r.t. the seven
similarity transformation parameters is deduced to describe the descent direction for finding the
global minima of the non-linear optimization problem. Although this method is rigorous and yields
accurate estimations, the iterative solution also suffers from certain disadvantages, including a high
computational cost and the risk of divergence. More importantly, it is difficult to provide a suitable
initialization for the iterative solution to guarantee that the non-linear problem can converge to the
global minima without the risk of divergence. To overcome this bottleneck, various researchers
have made great efforts to find a closed-form solution for use instead of the iterative solution.
[11] presented a Gauss–Jacobi combinatorial algorithm for when three points are available in both
coordinate systems to obtain a closed-form overdetermined problem of the seven-parameter datum
transformation, in which the approximate starting values were not required. By supposing that the
translation vectors and the scaling are known constants, [12] determined the rotation of the space
model using the solution of linear equations. Furthermore, [13] presented a closed-form solution
when representing the rotation using unit quaternions when the translation vectors and the scaling
are unknown. Then, the optimal translation vectors can be calculated based on the difference
between centroids of two coordinates. The optimal scale factor is the ratio of the root-mean-square
deviations of the two coordinates, and the optimal rotation is equal to the eigenvector of a symmetric
4× 4 matrix [13]. Additionally, [14] proposed an alternative closed-form solution using orthonormal
matrices based on singular value decomposition (SVD) [15]. Unfortunately, this method fails to
produce a correct rotation matrix if the data are severely corrupted. To address this drawback,
[16] gave another strict closed-form solution based on SVD, therein guaranteeing greater robustness
even for corrupted data. [17] described the 3D absolute orientation of LiDAR points from the
scanner coordinate system to a global coordinate system based on GPS measurements. [18] registered
two different scanning points based on a set of rigid-body transformation parameters, which can
be deduced using absolute orientation. [19] presented a direct solution of the seven-parameter
transformation problem using Grobner bases and polynomial resolution, therein obtaining the values
of the translation, the rotation and the scale factor without requiring linearization.

In all of the above-mentioned methods, the main task concerning the absolute orientation
problem is to solve a least squares problem, where the weighting matrices are set as identity
matrices. Then, a unique set of similarity transformation parameters is optimized to achieve the
point transformation between the two coordinate systems. The weighting matrices should be used to
describe the uncertainty of the measurements, namely the GCPs, in the absolute orientation problem.
Because of the lack of uncertainty descriptions of the GCPs in practice, the above methods must
assume that the noise of the GCPs satisfies a Gaussian distribution and that the weighting matrices
can therefore be described with identity matrices. Although the uncertainties of the GCPs are missing,
here, we attempt to describe the weighting matrices based on distance kernel functions to improve
the accuracy of the absolute orientation problem. For each local tie point (TP), the distances between
such a point and the GCPs in the local coordinate system are calculated to serve as the variable of
the distance kernel functions when computing the weighting matrices for different GCPs. Finally, the
least squares problem, which is assigned varying weighting matrices instead of identity matrices, can
be solved.

The remainder of this study is organized as follows. Section 2 briefly introduces the classical
absolute orientation method, where the weighting matrices in the least squares problem are set
as identity matrices. Section 3 describes the novel absolute orientation method on the basis of
distance kernel functions, with which the weighting matrices can be evaluated using distance kernel
functions instead of identity matrices. Section 4 discusses two types of distance kernel functions:
the exponential function and the Gaussian function. In Section 5, six synthetic datasets and two
real datasets, covering small-scale and large-scale terrain in aerial photogrammetry, are tested to
demonstrate the improved accuracy of the point transformation provided by the proposed method.
Section 7 presents the conclusions and possible further studies.
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2. Classical Absolute Orientation Based on a Unique Set of Transformation Parameters

In this study, we call the points in the local coordinate system the local points for simplicity.
Similarly, the points in the global coordinate system are called the global points. In the classical
absolute orientation method in photogrammetry, only a unique set of similarity transformation
parameters is exploited to describe the transformation from the local point xi to the global point
yi as follows:

yi = cRxi + t (1)

where R is the rotational matrix computed with three Euler angles, t refers to the three translation
vectors and c denotes the scaling factor. c, R and t constitute the set of similarity transformation
parameters. In addition, this transformation can also be expressed in the form of a homogeneous
vector as follows: [

yi
1

]
=

[
cR t
0 1

] [
xi
1

]
(2)

Supposing that there are n pairs of points in the local and global coordinate systems,
SL = {x1, x2, ..., xn} and SG = {y1, y2, ..., yn}, to minimize the total difference between the global
points and their transformed points of the local points using Equation (1), the set of similarity
transformation parameters can be optimized via the solution of a least squares problem as follows:

‖ε‖2 = e2(R, t, c) =
1
n

n

∑
i=1

[yi − (cRxi + t)]T [yi − (cRxi + t)] (3)

In Equation (3), the global points serve as the measurement in the least squares problem, where
the weighting matrices of all measurements are the identity matrices. Thus, they are eliminated
and not noted in Equation (3). To find the optimal set of similarity transformation parameters in
Equation (3), we can choose an iterative solution [1] or a closed-form solution [16]. In this section, we
briefly introduce a closed-form solution for the absolute orientation problem. The main idea is to use
the SVD algorithm, with the last singular value being zero. We take µSL , µSG and σSL , σSG as the mean
and standard deviation, respectively, of SL, SG. Meanwhile, we express the covariance matrix of the
point sets SL, SG as Σ. The detailed formulation is as follows:

µSL =
1
n

n

∑
i=1

xi

µSG =
1
n

n

∑
i=1

yi

σ2
SL

=
1
n

n

∑
i=1
‖xi − µSL‖

σ2
SG

=
1
n

n

∑
i=1
‖yi − µSG‖

Σ =
1
n

n

∑
i=1

(yi − µSG )(xi − µSL)
T

(4)

We first decompose the covariance matrix Σ using the SVD as Σ = UDVT . Then, we obtain
another 3× 3 matrix S:

S =

{
I, det(Σ) ≥ 0

diag(1, 1,−1), det(Σ) < 0
(5)
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When the determinant of the covariance matrix is negative, S is a diagonal matrix in which the
last element is set as −1. If not, S is an identity matrix. With the above basic matrices and vectors, we
can compute the final rotation matrix, translation vectors and scaling factor as:

R = USVT

c =
1

σ2
SL

tr(DS)

t = µSG − cRµSL

(6)

where tr(·) denotes the trace of a matrix. The three Euler rotational angles are easy to compute via
inverse transformation of the rotation matrix.

The three rotational angles, the three translation vectors and a scaling constitute the set of
transformation parameters, therein ensuring that the transformed points of the local points are close
to the global points. When the set of transformation parameters is known, we can transform TPs from
the local coordinate system to a global one via Equation (1).

3. Absolute Orientation Based on Distance Kernel Functions

3.1. Absolute Orientation Based on Various Sets of Similarity Transformation Parameters

In the classical method, the set of seven similarity transformation parameters, uniquely
describing the transformation between two point sets in two coordinate systems, can be estimated
when the points of GCPs in the local and global coordinate systems are available. In this section, for
each TP xk, we introduce a new absolute orientation method to obtain the transformed point yk using
the individual set of similarity transformation parameters (ck, Rk, tk), as shown here:[

yk
1

]
=

[
ckRk tk

0 1

] [
xk
1

]
(7)

where ck, Rk and tk represent the computed scaling factor, rotation matrix and translation vectors used
to transform TP xk into yk, respectively. The calculated transformation parameters are significantly
different for different TPs. For the pair of points (xk, yk), the set of similarity transformation
parameters is expressed by (ck, Rk, tk) instead of (c, R, t). (ck, Rk, tk) should be different for different
pairs of points. Supposing that there are n TPs to be transformed, the number of sets of transformation
parameters calculated should be n. In other words, k in (ck, Rk, tk) ranges from one to n.

To accurately transform a TP xk in the local coordinate system to the global coordinate system,
we should consider the influence of the distances between xk and the GCPs. Thus, we first exchange
xk and yk in Equation (7) to obtain the new observation function as follows:[

xk
1

]
=

[
ckRk tk

0 1

] [
yk
1

]
(8)

where ck, Rk and tk are the scaling factor, rotation matrix and translation vector used to transform yk
into xk. The GCPs close to xk should play a more important role in determining the global point of xk.
Thus, in contrast to the least squares problem in (3), a least squares problem with weighting matrices
is constructed to find the optimal set of similarity transformation parameters as follows:

‖ε‖2
Q = e2(Rk, tk, ck) =

1
n

n

∑
i=1

[xi − (ckRkyi + tk)]
T Qi [xi − (ckRkyi + t)] (9)
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When the set of transformation parameters in Equation (8) is computed, (ck, Rk, tk) for xk can be
calculated using:

ck =
1
ck

Rk = RT
k

tk = −
1
ck

RT
k tk

(10)

The weighting matrix Qi should be used to describe the uncertainty of the measurement xi. In
the classical method, this weighting matrix is set as the identity matrix, namely Qi = I (I denotes the
identity matrix). For the least squares problem in Equation (9), the weighting matrix is exploited to
describe the relevance between the point xi and xk in the space, instead of the uncertainty of xi. The
weighting matrix is calculated based on the distance kernel functions, which serve as a function of
the distance between xi and xk in the local coordinate system.

In the simple example illustrated in Figure 1, the red local point xk should be transformed to
obtain the projected blue global point yk using Equation (7), when given three pairs of GCPs drawn
with black points in two coordinate systems. The distances between the red point and the local points
of the GCPs are d1k, d2k, d3k. The distances will make varying contributions to determining the global
point yk.

Figure 1. A simple example using three pairs of ground control points (GCPs) to compute the optimal
set of transformation parameters for tie points (TPs).

The objective function of the least squares problem is:

‖ε‖2
Q =

x1 − (ckRky1 + tk)

x2 − (ckRky2 + tk)

x3 − (ckRky3 + tk)


T Q1(d1k) 0 0

0 Q2(d2k) 0
0 0 Q3(d3k))


x1 − (ckRky1 + tk)

x2 − (ckRky2 + tk)

x3 − (ckRky3 + tk)

 (11)

where Qi(·), a 3× 3 matrix, is a weighting matrix that is a function of the distance dik and serves as
a variable for distance kernel functions. After finding the best similarity transformation parameters
(ck, Rk, tk), we can perform a similarity transformation to obtain yk using Equations (7) and (10).

To avoid numerical instability when the iterative solution is adopted for this non-linear solution,
data normalization should be required. The normalization matrices of two sets of points in two
coordinate systems can be expressed as follows:

TX =



√
2

σX
0 0 − µ1

X
σX

0
√

2
σX

0 − µ2
X

σX

0 0
√

2
σX

− µ3
X

σX

0 0 0 1

 TY =



√
2

σY
0 0 − µ1

Y
σY

0
√

2
σY

0 − µ2
Y

σY

0 0
√

2
σY
− µ3

Y
σY

0 0 0 1

 (12)
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where (µ1
X , µ2

X , µ3
X) and (µ1

Y, µ2
Y, µ3

Y) are the centres of two point sets and σX and σY are the covariance
of two point sets. Furthermore, the centres and variance can be computed using the following:

µX =
1
n

n

∑
i=1

xi

µY =
1
n

n

∑
i=1

yi

σX =
1
n

n

∑
i=1
‖xi − µX‖

σY =
1
n

n

∑
i=1
‖yi − µY‖

(13)

After the original points are subject to data normalization, the maximum distance between a
point and the centre is

√
2. The normalization matrices are applied to two sets of points, and the

normalized points are treated as new measurements to estimate the optimal similarity transformation
parameters (c

′
k, R

′
k, t
′
k) as described by:

TX

[
xi
1

]
=

[
c
′
kR
′
k t

′
k

0 1

]
TY

[
yi
1

]
(14)

Now, the final similarity transformation parameters (ck, Rk, tk), with which we can transform xk,
can be computed via multiplication between the normalization matrices and (c

′
k, R

′
k, t
′
k), so that:[

ckRk tk
0 1

]
= T−1

Y

[
c
′
kR
′
k t

′
k

0 1

]
TX (15)

3.2. Initialize Similarity Transformation Parameters Using Affine Transformation

To solve the non-linear problem in Equation (9), an affine transformation, which approximates
the similarity transformation, will be utilized to provide the initialization. The affine transformation
between a pair of points can be defined in the form of the homogeneous vector:[

xi
1

]
=

[
A a
0 1

] [
yi
1

]
(16)

where the 3× 3 matrix A and the 3× 1 vector a consist of twelve affine transformation parameters.
To determine the best unknown parameters, Equation (16) can be expressed with another linear
equation as a function of affine transformation parameters:

xi =

yT
i 0 0 1 0 0
0 yT

i 0 0 1 0
0 0 yT

i 0 0 1




AT
1

AT
2

AT
3

a

 (17)

where Ai refers to the elements of the i-th row of matrix A. If more than four (n > 4) pairs of GCPs
are available, a linear system can be constructed as follows:

Bx = b (18)
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to find the solution of Equation (17); where:

B =



yT
i 0 0 1 0 0
0 yT

i 0 0 1 0
0 0 yT

i 0 0 1
. . . . . . . . . . . . . . . . . .
yT

n 0 0 1 0 0
0 yT

n 0 0 1 0
0 0 yT

n 0 0 1


x =


AT

1
AT

2
AT

3
a

 b =

x1

. . .
xn

 . (19)

Then, the SVD algorithm can be adopted to solve the linear system:

[U, D, V] = svd(B) (20)

and the affine transformation parameters can be obtained as:

AE =

xT
1:3

xT
4:6

xT
7:9

 , aE =

x10

x11

x12

 (21)

where:
b
′
= UTb

yi = b
′
i/Dii

x = V · y

(22)

when the affine transformation parameters are known, the similarity transformation parameters can
be calculated via:

s = det(AE)

R = AE/s

t = aE

(23)

4. Distance Kernel Functions

In contrast to the classical method with identity matrices for each measurement, the local points
of GCPs should be assigned different weighting matrices as functions of the distances between CPs
and these local points. In this study, the weighting matrices will be measured using distance kernel
functions; here, the exponential function and Gaussian function are used.

4.1. Exponential Function

When given a TP xk must be transformed into the global coordinate system, the weighting matrix
of the GCPs xi can be defined as follows:

Qi(xk) = 10−p‖xk−xi‖ (24)

where the distance between xk and xi is expressed by ‖xk − xi‖. Additionally, p controls the gradient
of the curve of the exponential function shown in Figure 2, where the five curves of the exponential
kernel function (p = 1, 5, 10, 15, 20) are drawn with different colours.

Because all raw points are processed with data normalization, the maximum and minimum
distance between two points are 2

√
2 and zero, respectively. The weight, computed using the

exponential kernel function, ranges from 10−2
√

2p to one, that is Qi ∈ (10−2
√

2p, 1]. For the maximum
weight, when a point to be transformed is located at the position of a GCP, the distance between the
two points is zero, that is ‖xk − xi‖ = 0. In addition, p plays an important role in the distribution
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of the weight, as well as the minimum weight. If p is large, the minimum weight will be very small,
and the gradient of the curve will be very sharp, leading to the ill-conditioning of the least squares
in Equation (9). When p is very small, the gradient of the curve is very gentle, and the weights are
nearly the same for points with different distances, resulting in poor transformation accuracy. The
parameter p is critical to guaranteeing a non-linear least-squares solution with more accuracy of the
transformation and better convergence. Thus, we will discuss how the parameter should be set in the
Experimental Section.

Figure 2. Exponential kernel function.

4.2. Gaussian Function

Similarly, the Gaussian function in Equation (25) is chosen to serve as another type of distance
kernel function to compute the weighting matrices as follows:

Qi(xk) = e
−‖xk−xi‖

2

2σ2 (25)

where σ2 determines the minimum weight and the gradient of the Gaussian curve. The five curves
(σ2 = 20, 2−2, 2−4, 2−6, 2−8) are depicted with different colours in Figure 3, where the gradient will
become steep when the parameter σ2 decreases.

Figure 3. Gaussian kernel function.

Similarly to the exponential function, the maximum weight of the Gaussian kernel function is

one when the point just is located at the position of a GCP, and the minimum weight is e
−4
σ2 . The

influence of the accuracy of the absolute orientation affected by this parameter σ2 will be thoroughly
discussed in Section 5.3.
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5. Experiments and Results

In this experiment, six synthetic and two real datasets were utilized to validate and verify the
proposed algorithm. First, the six synthetic datasets, whose sizes of the area in the study case range
from 20 km × 20 km to 800 km × 100 km, were tested, and we conducted a fair comparison with
the classical method. Furthermore, we verified the algorithm using two real datasets to analyse
the accuracy obtained using the classical method and the proposed method. Finally, we discussed
the influence of two parameters of the distance kernel function on the accuracy using one synthetic
datum.

5.1. Synthetic Data

In this section, six synthetic datasets, covering small-scale and large-scale terrains, were designed
to validate and analyse the accuracy of the proposed method. To manufacture the two sets of points
in the local and global coordinate systems for the absolute orientation problem, we generated the
synthetic data using the bundle adjustment (BA) model, as explained in Figure 4. When the terrain
size was determined, we randomly generated evenly-distributed GCPs and TPs. In Figure 4, the
black points and the red points represent the TPs and the GCPs, respectively. These 3D points
can be projected into cameras, forming various image point correspondences. Here, images are
captured by a camera that is free of distortion. Additionally, the maximum size of the camera is up to
7680 × 13,824 pixels, and the principal point is located on the centre of the image. The TPs and the
GCPs are denoted as yT and yG, which are located in the global coordinate system defined as OG. The
image projections of the TPs on the two images involves pT

1 and pT
2 , whereas the ones of the GCPs on

all visible images consist of pG
2 and pG

3 . For the TPs, random Gaussian noise (σ = 0.3 pixel) is added
to the theoretical image points. Note that no noise is added to the image projections of the GCPs.
Serving as the measurements, these image projections will be input into the BA model to triangulate
3D points and orientate cameras in the local coordinate system defined by OL. Some of these GCPs
will be used as the measurements for estimating the similarity transformation parameter, and the
remainder will be treated as check points (CPs) to assess the accuracy using the residual mean square
error (RMSE).

Figure 4. The workflow of manufacturing two point sets of synthetic data using the bundle adjustment
(BA) model.

We manufactured six synthetic datasets, as listed in Table 1, where the area of the study case and
the number of images continuously increases. The trajectories of images were designed like a snake
shape in the aerial survey [20], in which a downward camera is used. In addition, the forward and
side overlaps are up to 60% and 50%, respectively. In Table 1, the numbers of TPs, GCPs and CPs are
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listed in the fourth, fifth and sixth columns, respectively. In addition, the spatial distribution of GCPs,
CPs and 3D TPs of six synthetic datasets is shown in Figure 5, where the terrains are represented with
various blue quadrangles using 3D TPs. In addition, the red triangles and yellow circles represent the
GCPs and the CPs, respectively.

Table 1. The parameters of the synthetic datasets. CP, check point.

Data Area Images Tie Points GCPs CPs

Sim20-20 20 km × 20 km 80 1585 12 6
Sim50-50 50 km × 50 km 440 10,320 60 55

Sim100-100 100 km × 100 km 1738 42,422 74 69
Sim200-100 200 km × 100 km 3453 84,045 110 105
Sim400-100 400 km × 100 km 6886 167,712 168 147
Sim800-100 800 km × 100 km 13,772 335,268 336 294

(a) Sim20-20 dataset. (b) Sim50-50 dataset.

(c) Sim100-100 dataset. (d) Sim200-100 dataset.

(e) Sim400-100 dataset. (f) Sim800-100 dataset.

Figure 5. The spatial distribution of GCPs, CPs and 3D tie points of six synthetic datasets. The red
triangles and yellow circles represent GCPs and CPs, respectively. Additionally, TPs are drawn with
blue quadrangles. (a), (b), (c), (d), (e) and (f) represent the spatial distribution of Sim20-20, Sim50-50,
Sim100-100, Sim200-100, Sim400-100 and Sim800-100 datasets, respectively.

The GCPs in the sixth column of Table 1 are used to estimate the transformation parameters
between two point sets, and the CPs in the seventh column are used to check the accuracy in
Table 2. We conducted a fair comparison among the classical absolute orientation method (CAO), the
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absolute orientation with the exponential kernel function (AO-EF) and the absolute orientation with
the Gaussian kernel function (AO-GF). In addition, all results of the absolute orientation method will
be compared to another type of method. The method incorporates the GCPs into the BA model in the
global coordinate system, yielding better accuracy. We call this technique BA-GCP in this study for
convenience. As shown in the fourth column of Table 2, the RMSE of CAO continuously increased
with increasing area of the study case. The main reason is that the transformation of the large study
case cannot be accurately represented by a set of similarity transformation parameters. However,
the accuracies of the two solutions of the proposed method, AO-EF and AO-GF, are very similar and
significantly better than those of the CAO. For example, the height RMSE of the AO-EF solution can be
reduced to approximately fifty times that of the CAO for the largest dataset. Moreover, the accuracies
of the absolute orientation methods, including the classical method and the proposed method, are
poorer than those of the BA-GCP method. In contrast to the BA-GCP, which is a direct solution used
to triangulate TPs in only one step, the absolute orientation methods first triangulate the local points
using a free-net BA model and then perform the 3D transformation. In the first step of the free-net
BA, the error will be propagated into the second step, increasing the final error.

Table 2. The plane and height RMSE obtained using the classical method and the proposed method.
CAO, classical absolute orientation; AO-EF, absolute orientation with the exponential kernel function;
GF, Gaussian kernel function.

RMSE (m) BA-GCP CAO Proposed AO-EF Proposed AO-GF

Sim20-20 Plane 0.0056 0.0286 0.0136 0.0145
Height 0.00625 0.1269 0.0866 0.0863

Sim50-50 Plane 0.0067 0.0503 0.0112 0.0106
Height 0.0385 0.1356 0.0495 0.0494

Sim100-100 Plane 0.0080 0.0791 0.0125 0.0134
Height 0.0448 0.2251 0.0511 0.0552

Sim200-100 Plane 0.0112 0.4078 0.0255 0.0248
Height 0.0867 0.4477 0.0951 0.0990

Sim400-100 Plane 0.0096 0.3456 0.0184 0.0243
Height 0.0700 1.2799 0.0932 0.1339

Sim800-100 Plane 0.0098 1.2407 0.0239 0.0665
Height 0.0772 7.4464 0.1399 0.2939

Summarizing the above results, the proposed method can significantly improve the accuracy of
the absolute orientation, compared to the classical method, regardless of the size of the area of the
study case.

5.2. Real Data

In this section, a small-scale “Village” dataset and a large-scale “Taian” dataset are used to test
the proposed algorithm, and the areas of the study cases are up to 2 km× 3.5 km and 53 km× 35 km,
respectively. The Village dataset includes imagery of a hilly terrain, and the images with 0.1-m ground
sample distances (GSD) are captured by a DMCcamera at a height of 1000 m. The Taian dataset
includes imagery of a mountain terrain with 0.5 GSD, and its images are also captured by a DMC
camera at a height of 3500 m. Similar to the synthetic datasets, the Village and Taian images were
captured by a downward camera and orientated in a snake shape. The forward and side overlaps
of the Village dataset are 80% and 50%, while those of the Taian dataset are up to 60% and 30%.
In contrast to the synthetic datasets manufactured in Section 5.1, the local points can be triangulated
by the BA model using image points generated using feature extraction and a matching algorithm.
The L2-SIFT algorithm, which is designed to efficiently extract image point correspondence from
large-scale aerial images, is used [20], and ParallaxBA, a type of BA, is utilized to estimate structures
and motion [21,22]. The overall parameters of the two real datasets are listed in Table 3. There are
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six GCPs, six CPs and 90 cameras in the Village dataset, as shown in Figure 6. The GCPs and CPs
are denoted by red triangles and green triangles, respectively. In addition, 32 GCPs and 20 CPs of the
Taian dataset are evenly distributed in Figure 7, where there are 737 cameras.

Table 3. The parameters of the real datasets.

Data Area Images TPs GCPs CPs

Village 2 km × 3.5 km 90 305,719 6 6
Taian 53 km × 35 km 737 2,743,625 32 20

Figure 6. Distribution of the GCPs and CPs for the Village data.

Figure 7. Distribution of the GCPs and CPs for the Taian data.

For the Village dataset, six GCPs were used to estimate the transformation parameters between
two coordinate systems, and the plane and height RMSE are analysed in Table 4 using six CPs. In this
table, the RMSE and max residual associated with CAO, AO-EF and AO-GF are compared. The max
residuals and the RMSE obtained using the proposed method are slightly better than those obtained
using the classical method. The errors of the local points obtained using a free-net BA tested on small
study cases are comparatively small and propagated into the global points transformed based on the
absolute orientation. For the small-scale aerial photogrammetry, the deformation of point sets in the
local and global coordinate systems is relatively small, and the relationship between two coordinate
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systems can be accurately expressed with the similarity transformation. Thus, the accuracy is slightly
improved by the proposed method.

Table 4. The plane and height RMSE of the Village dataset obtained by the classical method and the
proposed method.

Parameter BA-GCP CAO Proposed AO-EF Proposed AO-GF

Max residual (m)

East 0.1361 0.1307 0.0999 0.1091
North 0.2347 0.1775 0.1968 0.2001
Plane 0.1779 0.2068 0.2143 0.2189

Height 0.3185 0.4147 0.2959 0.3253

RMSE (m)

East 0.0707 0.0797 0.0635 0.0658
North 0.1370 0.0967 0.1046 0.1033
Plane 0.1090 0.1253 0.1224 0.1224

Height 0.1800 0.2541 0.2287 0.2320

For the Taian dataset, 32 CPs and 20 CPs were used to check the maximum residual and
the RMSE obtained by CAO, AO-EF and AO-GF in Table 5, where the accuracies of AO-EF and
AO-GF are approximately equal. As shown in the row for the max residual, the height and plane
residuals of the proposed method were approximately three-times smaller than those of the classical
method. Moreover, the plane RMSE and height RMSE obtained using the proposed method were
approximately three- and four-times higher than those of the classical method, and the height RMSE
of the proposed method decreased to as low as 3.2 m from the original 12.4 m.

For both the Village and Taian datasets, as in the synthetic datasets, the obtained accuracies
using the BA-GCP method are certainly also better than those obtained using the absolute orientation
methods. However, the complexity of the absolute orientation method is lower than that of the
BA-GCP method, although the accuracy is poorer. More importantly, the absolute orientation method
not only is utilized to achieve the TP transformation following the use of the free-net BA using image
data, but also performs registration when only 3D points are available.

Table 5. The plane and height RMSE of the Taian dataset obtained by the classical method and the
proposed method.

Parameter BA-GCP CAO Proposed AO-EF Proposed AO-GF

Max residual (m)

East 0.6881 1.7903 0.5742 0.5606
North 1.0715 2.5271 0.7532 0.6710
Plane 0.7579 2.5284 0.7989 0.7585

Height 3.6663 21.2717 7.6978 7.4669

RMSE (m)

East 0.2507 0.6500 0.2312 0.2313
North 0.3923 0.9734 0.3177 0.3039
Plane 0.3292 1.1705 0.3929 0.3819

Height 1.2780 12.4855 3.2782 3.2696

Finally, the transformed TPs located in the global coordinate system using the proposed method
are depicted in Figures 8 and 9, and the local TPs are shown in Figures 8a and 9a. The global TPs
are drawn in Figures 8b and 9b, and the different elevations of points are shown in different colours.
Because there were only slight differences among the TPs transformed using two solutions of the
proposed method, we only present the result of the absolute orientation based on the exponential
kernel function. From the drawn points, the local points were transformed with high accuracy, and
we did not change their structure.
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(a) Reconstructed local points. (b) Reconstructed global points.

Figure 8. Reconstructed 3D terrain of the Village dataset in the local and global coordinate systems.
The unit of measure of the reconstructed points in the global coordinate system is meters, whereas the
local points have no practical meaning due to a lack of scale and origin information. (a) and (b) are
3D triangulated points of the Village dataset in the local and global coordinate systems, respectively.

(a) Reconstructed local points. (b) Reconstructed global points.

Figure 9. Reconstructed 3D terrain of the Taian dataset in the local and global coordinate systems.
The unit of measure of the reconstructed points in the global coordinate system is meters, whereas the
local points have no practical meaning due to a lack of scale and origin information. (a) and (b) are
3D triangulated points of the Taian dataset in the local and global coordinate systems, respectively.

5.3. The Parameters of Distance Kernel Functions

The two parameters, namely those of the exponential kernel function and the Gaussian kernel
function, and the distance between the two points affecting the weighting matrices used in the least
squares problem are defined in Equation (9). In this study, these two parameters were manually set,
and their suggested values are discussed in the experimental analyses as follows. The Sim200-100
synthetic dataset, introduced in Section 5.1, was used to discuss the accuracy variation with these
two parameters.

For the exponential kernel function, we set the parameters as p = 0, 1, ..., 15. The RMSE and
maximum residual of the plane and height are listed in Table 6. Additionally, the RMSE, as a function
of the different parameters, is drawn in Figure 10. The plane and height RMSE decreased when the
parameters were increased and remained almost constant when pwas set as six. Thus, the parameter
of the exponential kernel function was set as six to yield the best results in the experiments.
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Table 6. The RMSE and max residual of the plane and height directions as a function of the parameters
in the exponential kernel function.

RMSE (m) Max Residual (m)
Plane Height Plane Height

p = 0 0.4078 0.4477 1.0732 1.1884
p = 1 0.0877 0.2217 0.3525 0.6538
p = 2 0.0877 0.2217 0.3525 0.6538
p = 3 0.0295 0.1094 0.1360 0.3425
p = 4 0.0262 0.1003 0.1113 0.3024
p = 5 0.0252 0.0971 0.1000 0.2923
p = 6 0.0249 0.0958 0.0949 0.2871
p = 7 0.0251 0.0953 0.0925 0.2842
p = 8 0.0255 0.0951 0.0961 0.2825
p = 9 0.0262 0.0950 0.1057 0.2821
p = 10 0.0271 0.0949 0.1160 0.2834
p = 11 0.0282 0.0949 0.1264 0.2845
p = 12 0.0293 0.0950 0.1362 0.2852
p = 13 0.0303 0.0959 0.1448 0.2858
p = 14 0.0312 0.0992 0.1520 0.3011
p = 15 0.0320 0.1098 0.1578 0.4331

Figure 10. The RMSE as a function of the different parameters in the exponential kernel function.

To analyse the parameter of the Gaussian kernel function, we set σ2 = 20, 2−1, ..., 2−7, and
recorded the RMSE and the maximum residual in Table 7, where the plane and height accuracies
are listed. In addition, the RMSE, as a function of the parameter, is depicted in Figure 11. The plane
and height errors decreased when the parameters ranged from 0 to −7. However, a larger RMSE and
larger maximum residual was obtained when σ2 = 2−7, because the effect of the weighting matrices
on the distance between points was reduced when σ2 was very small. Thus, σ2 = 2−6 was found to
yield better accuracy in the Gaussian kernel function.
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Table 7. The RMSE and maximum residual of the plane and height directions obtained using different
parameters in the Gaussian kernel function.

RMSE (m) Max Residual (m)

Plane Height Plane Height

σ2 = 20 0.1589 0.3243 0.5063 0.8495

σ2 = 2−1 0.0982 0.2630 0.3645 0.7273

σ2 = 2−2 0.0616 0.1973 0.2604 0.5867

σ2 = 2−3 0.0407 0.1449 0.1857 0.4574

σ2 = 2−4 0.0288 0.1127 0.1274 0.3526

σ2 = 2−5 0.0248 0.0990 0.0947 0.2978

σ2 = 2−6 0.0251 0.0963 0.0896 0.2843

σ2 = 2−7 0.0312 0.5833 0.1498 3.5668

Figure 11. The RMSE as a function of the different parameters in the Gaussian kernel function.

6. Discussion

To improve the accuracy of transformed points, the proposed method represents the
transformation of the absolute orientation problem using various sets of similarity transformation
parameters instead of only one set. When computing the various sets of parameters, we assign the
GCPs with different weighting matrices measured by distance kernel functions.

From the results obtained using synthetic and real datasets analysed in Section 5, it is clearly
demonstrated that the accuracies of transformed points obtained using the absolute orientation
method are significantly improved by the proposed method compared to the classical method. The
extracted image points suffer from noise, which will be propagated into the triangulate points; thus,
a 3D reconstructed terrain deforms in the local coordinate system. When the size of a study case
area increases, the deformation increases accordingly. For the classical method, the transformation
between two coordinate systems is regarded as a rigid-body transformation without deformation,
and it is sufficient to represent the transformation using a similarity transformation with seven
degrees of freedom. However, the transformation with deformation cannot be accurately expressed
using a unique set of similarity transformation parameters by the classical method. The influence
of the deformation on the accuracy will be reduced using various sets of similarity transformation
parameters in the proposed method, in which the GCPs will be assigned different weighting matrices
calculated by distance kernel functions.

The accuracy of the BA-GCP method is higher than that of the classical and proposed absolute
orientation methods. This is mainly because the BA-GCP method is a direct solution for triangulating
TPs within only one step, whereas the absolute orientation methods first triangulate the local points
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by a free-net BA model and then perform 3D transformation. For the first step of the free-net BA,
the errors of local points will be propagated into the second step, increasing the final error. Although
the complexity of the absolute orientation method is lower than that of the BA-GCP method, the
accuracies associated with the absolute orientation methods are poorer. Thus, the BA-GCP method
is the best method of obtaining a photogrammetric model in the global coordinate system and
cannot be substituted by the proposed method for aerial surveys. This study mainly focuses on
increasing the accuracy of the classical absolute orientation method. The main deficiency is the higher
computational complexity of the proposed method, in which the numerous sets of seven parameters
should be computed instead of one set.

7. Conclusions and Future Work

To improve the accuracy of the transformed points obtained using the classical absolute
orientation method, a novel method based on distance kernel functions is proposed in this study.
The proposed method is able to transform TPs from the local coordinate system to the global
one with better accuracy regardless of the size of the study case. In contrast to the classical
absolute orientation method, the proposed method represents the transformation using various sets
of similarity transformation parameters instead of only one set. For each local TP, a different set of
parameters is estimated by a least squares solution, in which GCPs are assigned different weighting
matrices measured by distance kernel functions. In this study, the exponential function and Gaussian
function are used. Although a higher computational cost is required, the proposed method can
significantly improve the accuracy of transformed points, especially for large-scale study cases, as
demonstrated by its application to the six synthetic and two real datasets. Thus, the proposed method
represents a feasible solution for obtaining more accurate transformed points using the absolute
orientation method in the field of photogrammetry.

In future, we will focus on determining robust parameters for the exponential and Gaussian
distance kernel function.
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