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Abstract:

 Mapping surface all-wave net radiation (Rn) is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm−2, and an average bias of −17.59 Wm−2. We also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.




Keywords:


net radiation; GLASS products; remote sensing; satellite








1. Introduction


Surface all-wave net radiation (Rn), characterizing the available radiative energy at the Earth’s surface that is usually called surface radiation budget, is the difference between total upward and total downward radiation. Mathematically, Rn consists of four components:
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(1)




where Rns is the net shortwave radiation, Rnl is the net longwave radiation, Rsi is the incident shortwave radiation, Rso is the reflected shortwave radiation calculated by Rso = α*Rsi where α is shortwave broadband albedo, Rli is the downward longwave radiation, and Rlo is the outgoing longwave radiation.



Rn drives the processes of evapotranspiration and air and soil heat fluxes, as well as other smaller energy-consuming processes such as photosynthesis [1,2]. Rn is a critical parameter to estimate evapotranspiration [3,4,5]. The net surface radiation controls the energy and water exchanges between the biosphere and the atmosphere, and has major influences on the Earth’s weather and climate [6,7]. Thus, reliable spatial and temporal Rn information is required for many applications. However, in spite of its importance, directly measured Rn is available only from a very small number of standard radiometric observatories because of the expensive instrumentation and constant maintenance needed to guarantee that reliable measurements can be provided [8]; these in situ measurements are thus unable to characterize the spatial variation.



Alternative methods for obtaining Rn are meteorological reanalysis and satellite remote sensing [9]. Table 1 gives detailed information about the commonly used Rn products. Reanalysis products are usually derived by merging available observations with an atmospheric model to obtain the best estimate of the states of the atmosphere and land surface [10], while existing remote sensing products are generated mostly based on a radiative transfer model with inputted atmospheric and surface parameters. From Table 1, we can see that the spatial resolutions of these products are too coarse for many land applications although they are temporally continuous and globally complete. Another issue is that the accuracies of these products vary considerably and may not meet the application requirements, such as the global change research [9,10,11]. Therefore, a new long-time high-resolution global Rn product with both high accuracy and fine temporal-spatial resolutions is urgently needed.



Table 1. Characteristics of the commonly used Rn datasets.



	
Product

	
Spatial Resolution

	
Temporal Resolution

	
Period

	
Reference




	
Reanalysis products






	
NCEP/CFSR

	
T382 (38 km)

	
6 hourly

	
1979–2010

	
[10,12]




	
NASA/MERRA

	
[image: there is no content]

	
hourly

	
1979–present

	
[13]




	
ERA40

	
T159 (125 km)

	
6 hourly

	
1957–2002

	
[14]




	
ERA-Interim

	
T255 (80 km)

	
3 hourly

	
1980–present

	
[15]




	
JRA55

	
T319 (~55 km)

	
3 hourly

	
1958–present

	
[16]




	
NCEP/NCAR RII

	
T62 (200 km)

	
6 hourly

	
1979–present

	
[17]




	
remotely sensed products




	
CERES-SYN

	
1°

	
3 hourly

	
2000–present

	
[18]




	
GEWEX-SRB

	
1°

	
3 hourly

	
1983–2007

	
[19,20]




	
ISCCP-FD

	
280 km

	
3 hourly

	
1983–2011

	
[21]










Many geostationary and polar-orbiting satellite data are at the kilometer spatial resolution and can be potentially used for estimating the individual components of Equation (1), such as incident shortwave radiation [22] and albedo [23,24]. If all components in Equation (1) are known, the calculation of Rn is straightforward [25]. The difficulty in generating the global Rn product using Equation (1) is the estimation of the thermal components under the cloudy conditions. This is the reason why many studies focus primarily only on shortwave [26,27,28] or clear-sky conditions [29]. If we know the exact atmospheric and surface properties, radiative transfer models enable us to calculate surface net radiation. However, it is extremely difficult to generate a complete set of atmosphere and surface products for model calculation at a high resolution. The most practical solution is to estimate incident shortwave radiation directly from satellite observations and then convert it into all-wave net radiation using either linear [30,31,32,33,34] or nonlinear [35,36] models. Jiang et al. [37] recently developed two artificial neuron networks models using comprehensive global in situ observations and found that the nonlinear models can produce better accuracy than the linear models.



The primary objective of this study is to generate the accurate long-term high-resolution Global LAnd Surface Satellite (GLASS) Rn product. The GLASS product suite is for the long-term environmental change studies [38,39] and continuously expanding. For generating such a global product, algorithm development is the key and we must therefore balance the accuracy and computational efficiency of the algorithm. To achieve this objective, we explore two new nonlinear models: Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR). After comparing them with two models developed earlier [17,20], we select the MARS model to produce the GLASS Rn product at a 5 km spatial resolution. The resulting high-resolution GLASS Rn product is further validated, compared with one satellite product and two reanalysis products. The details are presented in the following sections.




2. Data and Models


2.1. Data


The data used in this study are comprised of in situ radiation measurements, remote sensing products, and meteorological reanalysis data. The remote sensing products and reanalysis data were used to map Rn on a global scale. Based on the characteristics of these data, multiple trial experiments and pre-processing with strict quality control were conducted, and data were aggregated to a daytime or diurnal scale. The variables considered in this study are shown in Table 2. The readers are referred to Jiang et al. [37] for more information about these data.



Table 2. Variables explanation and source.



	

	
Abbr.

	
Name

	
Unit

	
Source






	
Response variable

	
Rn

	
Daytime surface net radiation

	
Wm−2

	
In situ




	
Independent variables

	
Rsi

	
Daily surface incoming solar radiation

	
Wm−2

	
In situ




	
Rsi*

	
Daily surface incoming solar radiation

	
Wm−2

	
Remotely Sensed data (GLASS products)




	
ABD

	
Daily surface albedo

	




	
NDVI

	
Daily Normalized Difference Vegetation Index

	




	
Ta

	
Daytime air mean temperature

	
°C

	
Reanalysis product (MERRA)




	
Tmin

	
Daytime air minimum temperature

	
°C




	
Tmax

	
Daytime air maximum temperature

	
°C




	
PS

	
Daytime surface air pressure

	
Pa




	
W

	
Daytime wind speed

	
ms−1




	
RH

	
Daytime mean relative humidity

	
%

	
Calculated




	
ea

	
Daytime water vapor pressure

	
KPa




	
dr

	
Inverse relative Earth−Sun distance

	




	
CI

	
Clearness Index

	




	
BI

	
Brightness Index

	








Rsi* stands for the GLASS Rsi product and was used for global GLASS daytime Rn production in this study.








As described above, more than 8000 validation samples were selected from the observations made in 2008, and most of them were from 25 sites. Table 3 gives detailed information about these sites, which were mainly from the ARM (http://www.arm.gov/) and SURFRAD (http://www.srrb.noaa.gov; [40]) observation networks. This ensures that the data are of the best quality currently available. The distribution of the 25 sites is shown in Figure 1. All ARM and SURFRAD data are carefully checked, and quality-control information is supplied with the data (ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/) and http://www.archive.arm.gov/; [41]).


Figure 1. Distribution of the 25 validation sites in the United States.
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Table 3. Information about the 25 validation sites.


	Site
	Lat, Lon
	Land Cover
	Height (m)
	Project





	Larned, Kansas: E01
	[image: there is no content]
	Cropland
	632
	ARM



	LeRoy, Kansas: E03
	[image: there is no content]
	Cropland
	338
	ARM



	Plevna, Kansas: E04
	[image: there is no content]
	Rangeland
	513
	ARM



	Halstead, Kansas: E05
	[image: there is no content]
	Wheat
	440
	ARM



	Towanda, Kansas: E06
	[image: there is no content]
	Alfalfa
	409
	ARM



	Elk Falls, Kansas: E07
	[image: there is no content]
	Pasture
	283
	ARM



	Coldwater, Kansas: E08
	[image: there is no content]
	Rangeland
	664
	ARM



	Tyro, Kansas: E10
	[image: there is no content]
	Alfalfa
	248
	ARM



	Byron, Oklahoma: E11
	[image: there is no content]
	Alfalfa
	360
	ARM



	Pawhuska, Oklahoma: E12
	[image: there is no content]
	Prairie
	331
	ARM



	Lamont, Oklahoma: E13
	[image: there is no content]
	Pasture
	318
	ARM



	Ringwood, Oklahoma: E15
	[image: there is no content]
	Pasture
	418
	ARM



	El Reno, Oklahoma: E19
	[image: there is no content]
	Pasture
	421
	ARM



	Meeker, Oklahoma: E20
	[image: there is no content]
	Pasture
	309
	ARM



	Okmulgee, Oklahoma: E21
	[image: there is no content]
	Forest
	240
	ARM



	Cordell, Oklahoma: E22
	[image: there is no content]
	Rangeland
	465
	ARM



	Cyril, Oklahoma: E24
	[image: there is no content]
	Wheat
	409
	ARM



	Earlsboro, Oklahoma: E27
	[image: there is no content]
	Pasture
	300
	ARM



	Bondville: SF_BND
	[image: there is no content]
	Cropland
	230
	SURFRAD



	Boulder: SF_TBL
	[image: there is no content]
	Grassland
	1689
	SURFRAD



	Desert Rock: SF_DRA
	[image: there is no content]
	Desert
	1007
	SURFRAD



	Fort Peck: SF_FPK
	[image: there is no content]
	Grassland
	634
	SURFRAD



	Goodwin Creek: SF_GCM
	[image: there is no content]
	Grassland
	98
	SURFRAD



	Penn. State: SF_PSU
	[image: there is no content]
	Cropland
	376
	SURFRAD



	Sioux Falls: SF_SXF
	[image: there is no content]
	Shrubland
	473
	SURFRAD










2.2. Methods


The overall flowchart of this study is shown in Figure 2. First, the GLASS Rn algorithm was determined by comparing four Rn estimation models (Section 3), including the multivariate adaptive regression splines (MARS), the support vector regression (SVR) model, a linear regression model (LM) [21], and a general regression neural network (GRNN) model [20]. To the best of our knowledge, the first two models are the first to be applied for estimating surface net radiation. The details of the MARS model are introduced in this section, while the other three models are outlined in the Appendix. After validation and inter-comparison, the MARS model was determined to generate the GLASS daytime Rn product. Second, the MARS model was applied to the all-wave daytime Rn product by converting the GLASS Rsi product using other satellite products (e.g., NDVI and albedo) and meteorological information from MERRA (Section 4.1). Finally, the accuracy of the new GLASS Rn product was evaluated by validating it against the site observations and comparing it with other Rn products: one remotely sensed product (CERES-SYN), and two reanalysis products (MERRA and JRA55) (Section 4.2).


Figure 2. Flowchart of this study, the explanations of the variables are given in Table 2.
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MARS is a nonlinear and nonparametric regression model proposed by Friedman [42]. MARS is a generalization of the stepwise linear regression procedure for fitting an adaptive nonlinear regression to data. It is more flexible in modeling relationships that are nearly additive or involve interactions with variables. MARS uses expansions in piecewise linear basis functions of the form:
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(2)




with x = t being a knot (linear splines). The smoothing function f is a linear expansion of the basic functions,
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(3)




where [image: there is no content] are the piecewise linear basis functions and [image: there is no content] are the coefficients that are estimated by minimizing the residual sum-of-squares using standard linear regression.



In this study, MARS was first applied for daytime Rn estimation. It was implemented on the R platform with the package “mda,” in which the input variables can be selected automatically. After extensive experiments, the maximum interaction degree between variables in MARS was set to 2, and the backward stepwise process was carried out to train the MARS model.





3. GLASS Daytime Rn Algorithm


The four models (LM, MARS, GRNN, and SVR) were trained one by one with half of the total number of in situ measurements and their corresponding reanalysis and satellite datasets (Figure 2). Four predictions were then produced by the other part of the independent validation dataset and compared. The results are shown in Figure 3 and summarized in Table 4. Three measurements of the fitting statistics were compared: R-square (R2), root mean square error (RMSE), and bias. The computational times are also given in Table 4 for better comparison. In the present study, all the models were implemented under the Microsoft Windows 7 system on a Intel Core 3.20 GHz PC with 8 GB memory.


Figure 3. The scatterplots of the comparison results of the predictions from the four models: (a) LM; (b) MARS; (c) GRNN; (d) SVR.
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Table 4. The statistic results of the four models.










	
	R2
	RMSE (Wm−2)
	Bias (Wm−2)
	Training Time
	Fitting Time





	LM
	0.90
	39.57
	−0.18
	<60 s
	<60 s



	MARS
	0.91
	36.98
	−0.26
	<60 s
	<60 s



	GRNN
	0.93
	33.49
	−0.62
	>72 h
	>72 h



	SVR
	0.94
	32.28
	−1.11
	>72 h
	>48 h









Based on these comparison results (mainly R2 and RMSE values since the bias values are relatively small), it is clear that the predictive abilities of the GRNN and SVR models were similar and also better than those of the other two models. The LM model performed the worst and the MARS model’s performance was intermediate. However, the computational times for model training and fitting differed considerably between the four models (see Table 4). In short, the computational efficiencies of the GRNN and SVR models were very low when large datasets were applied, and these two models are unsuitable for generating the long-term GLASS daytime Rn product. Extensive experiments were then performed to determine if the sample sizes could be reduced without decreasing the data fitting accuracy using these two machine learning models. Taking the SVR model as an example, it was found that the fitting accuracy linearly decreased when the training samples were reduced in size (Table 5), resulting in a data fitting accuracy very close to the result of the MARS model (Table 4) when the time for training and fitting was acceptable. The situation for the GRNN model was similar. Given the trade-off between computational time and prediction accuracy, the MARS model was accepted as the first option for GLASS daytime Rn production.


Table 5. Fitting accuracy in SVR with different sample sizes.


	Sample Size
	R2
	RMSE (Wm−2)
	Bias (Wm−2)





	218,516
	0.94
	32.28
	−1.11



	22,298
	0.93
	34.22
	−2.23



	11,395
	0.92
	35.62
	−2.73



	7755
	0.92
	36.01
	−2.06









To achieve a better understanding of the applicability of the MARS model, all samples were grouped into four categories in accordance with Jiang et al. [43], and the prediction accuracy of the MARS model for these four categories was compared. Jiang et al. [43] found that NDVI = 0.2 can be used as the threshold to identify vegetated surfaces, and three more classes can be roughly divided based on albedo according to the different relations between Rsi and Rn when NDVI < 0.2 (see Table 6). The comparison fitting results are shown in Table 7. In general, the four categories correspond to the major land cover types found on Earth: S1–wetland; S2–desert or barren land with sparse vegetation; S3–snow/ice; and S4–the remaining vegetated surfaces. Furthermore, the seasonal information can also be represented by these categories. The results shown here were similar to our previous study [43] whereby the simulation accuracies are much better for S1 and S4, because the Rsi is the dominant factor for Rn for these two categories. Keep in mind that the statistical values are considerably different for snow/ice surfaces (S3) due to the high albedo and clustering of all points. The results proved the robustness of the MARS model in Rn estimation.


Table 6. Four classifications based on combinations of Normalized Difference Vegetation Index (NDVI) and albedo (see Table 2, with their corresponding numbers of samples.


	Class
	Classification Criteria
	No. of Samples





	S1
	NDVI < 0.2 and albedo ≤ 0.25
	8967



	S2
	NDVI < 0.2 and 0.25 < albedo < 0.7
	8317



	S3
	NDVI < 0.2 and albedo ≥ 0.7
	10,064



	S4
	NDVI ≥ 0.2
	167,739








Table 7. Validation statistics for the MARS model for these four categories.









	
	S1
	S2
	S3
	S4





	R2
	0.87
	0.54
	0.13
	0.91



	RMSE (Wm−2)
	42.89
	47.46
	18.21
	36.81



	bias (Wm−2)
	−0.13
	0.51
	−0.53
	−0.28










4. GLASS Rn Daytime Product Generation


4.1. GLASS Daytime Rn Product


After the MARS model was chosen as the GLASS daytime Rn algorithm, the global GLASS daytime Rn product was generated and evaluated. For the global data production, the GLASS Rsi product was applied as the input instead of the in situ Rsi measurements. The GLASS Rsi product was generated from multiple polar-orbiting and geostationary satellite datasets with a look-up table algorithm. The validation results demonstrated that this product was superior to other products [44]. The instantaneous 3-hourly GLASS Rsi was first aggregated into a daytime temporal scale, then the climatic factors from the MERRA reanalysis product were resampled into 5 km spatial resolution to match the GLASS Rsi. The GLASS NDVI and GLASS ABD products were also used as inputs. Their spatial resolution is 5 km but temporal resolution is eight-day; therefore, each day during the eight-day period was set to be the same, assuming little variation at the surface over the period.



More than 8000 samples from 25 sites in 2008 were extracted for independent validation of the GLASS daytime Rn product. All other samples from 251 sites were used for the MARS model training. The MARS model was then used to produce the GLASS daytime Rn product. Finally, the GLASS daytime Rn product from 2000 to the present with spatial resolution 0.05 deg (~5 km) in global coverage was generated in this study.



Figure 4b shows the GLASS daytime Rn in day 274 of 2008 (30 September 2008), a randomly selected date. The MERRA daytime Rn for the same day is also shown in Figure 4a for comparison. From the two plots, we concluded that the spatial distribution of Rn is visually similar between the two products, but large discrepancies occur over many regions, such as the northern part of South America and over the Chinese mainland. In addition, the GLASS daytime Rn product gives more details compared with the MERRA dataset because of its higher spatial resolution. To identify which product is more accurate, more validation results of the two products compared with the site observations will be provided in Section 4.2. Note the missing values over part of the Arctic region and the entire Antarctic region due to the missing inputs of the GLASS Rsi product.


Figure 4. The MERRA (a) and GLASS (b) daytime Rn products in day 274 (30 September) of 2008. The white spaces indicate the missing data.
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4.2. Validation and Comparison


For further evaluation, one remotely sensed product (CERES-SYN) and two model reanalysis products (MERRA and JRA55) were used for inter-comparison with the GLASS Rn product; spatio-temporal information about the datasets is given in Table 1. The CERES-SYN product is obtained by merging CERES observations aboard the NASA Terra and Aqua satellites with radiances observed from five geostationary satellites [18,45]. The MERRA product is provided by NASA’s Global Modeling and Assimilation Office (GAMO); it is designed to integrate with NASA’s Earth Observing System (EOS) satellite data for use in climate analysis [46]. JRA55 is offered by the Japan Meteorological Agency (JMA) by using the TL319 version of JMA’s operational data assimilation system in which several newly available and improved past observations were used. JRA55 is recognized as an upgrade to JRA 25 and is considerably better than JRA25 [16,47]. After transferring to the local time of each pixel, the three products were integrated into a daytime temporal scale according to the sunrise and sunset time, and then, along with the GLASS daytime Rn product, they were validated against the respective in situ measurements; the results are shown in Figure 5.


Figure 5. Scatterplots of the four daytime Rn products (GLASS (a); CERES-SYN (b); MERRA (c); and JRA55 (d) against the in situ measurements.
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Based on the results, the GLASS and CERES-SYN daytime Rn products were superior to the other two reanalysis products, MERRA and JRA55. By comparing the average RMSE and bias values, it becomes clear that the GLASS daytime Rn product is better than the CERES-SYN product. The average RMSE of GLASS daytime Rn was 31.61 Wm−2 and the average bias was −17.59 Wm−2, compared to 35.58 Wm−2 and −31.00 Wm−2 for CERES-SYN’s average RMSE and average bias. Comparison also showed that the GLASS product had increased low values and decreased high values (Figure 5a), whereas the CERES-SYN product was larger overall than the measurements (Figure 5b). In addition, the validation accuracy of each site between GLASS and the measurements are shown in Table 8. The R2 values of most sites were larger than 0.85, the RMSE values were mostly around 30 Wm−2, and the bias values were chiefly smaller than 25 Wm−2, thereby demonstrating that the accuracy of the GLASS daytime Rn product is satisfactory with most applications.


Table 8. Validation results between GLASS daytime Rn and the observations of 25 validation sites.












	Site
	R2
	RMSE (Wm−2)
	Bias (Wm−2)
	Site
	R2
	RMSE (Wm−2)
	Bias (Wm−2)





	E01
	0.92
	30.00
	10.91
	E21
	0.88
	36.24
	6.11



	E03
	0.89
	34.20
	18.57
	E22
	0.89
	28.62
	16.01



	E04
	0.87
	34.54
	12.53
	E24
	0.91
	28.52
	6.41



	E05
	0.90
	32.78
	16.90
	E27
	0.90
	30.51
	21.88



	E06
	0.89
	32.19
	21.70
	SF_BND
	0.86
	38.26
	22.42



	E07
	0.91
	32.16
	28.34
	SF_DRA
	0.67
	37.81
	10.18



	E11
	0.92
	29.10
	17.12
	SF_FPK
	0.83
	37.13
	27.34



	E12
	0.89
	32.39
	2.74
	SF_GCM
	0.86
	38.12
	15.71



	E13
	0.92
	27.42
	15.61
	SF_PSU
	0.88
	35.03
	34.29



	E15
	0.92
	28.07
	18.15
	SF_SXF
	0.88
	37.85
	18.18



	E19
	0.91
	27.36
	16.48
	SF_TBL
	0.75
	42.35
	20.89



	E20
	0.91
	28.65
	22.32
	
	
	
	









Two site examples are also given in Figure 6. Here, the CERES-SYN product was selected because of its best performance among the three products. The two plots show that the GLASS daytime Rn matched the site observations very well and that the CERES-SYN product was larger than the measurements and the GLASS product although the variations were reasonable. Overall, the GLASS daytime Rn product has the potential to be one of the best Rn products available for future applications.


Figure 6. Temporal profiles of site measurements, GLASS, and CERES-SYN values of the ARM_E01 site (a) and SF_SXF site (b) for the year 2008.
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5. Summary


A new Rn product that offers high spatiotemporal resolution, high accuracy, and global coverage over long time periods is urgently needed for a variety of applications. To achieve this goal, we developed the GLASS daytime Rn product. To determine the GLASS daytime Rn production algorithm, four models (LM, MARS, GRNN, and SVR) that convert incident shortwave radiation to all-wave net radiation were trained for Rn estimation and validated with high-quality measurements made in the United States. The validation results indicate that the GRNN and SVR models had the best prediction accuracy over the other two empirical models, although it was unacceptably time consuming, and that the performance of the MARS model is promising. A further experiment also demonstrated that the MARS model is robust under various conditions. Therefore, as a result of the trade-off between the practical requirements of applications and data fitting accuracy requirements, the MARS model was selected as the final GLASS daytime Rn product algorithm. Finally, a global coverage GLASS daytime Rn product with a 5 km spatial resolution and daytime temporal resolution in 2008 was generated using the MARS model.



The new daytime Rn product was validated against measurements from 25 independent sites, and was also compared with one remotely sensed Rn product, CERES-SYN, and two reanalysis Rn products, MERRA and JRA55. The validation results illustrate that the new GLASS daytime Rn product delivers more detail at the global scale due to its relatively high spatial resolution and does so without spatial gaps, except for the Arctic and Antarctic regions, and that it has a continuous time series because the all-sky conditions were considered in the MARS algorithm and the GLASS incident shortwave radiation product. The validation results of the GLASS daytime Rn product at the 25 sites were very satisfactory with most applications, with an overall coefficient of determination of 0.88, an average RMSE of 31.61 Wm−2, and an average bias of 17.59 Wm−2. The results of comparing the GLASS with three other products also proved that this new daytime Rn product performed much better than the two reanalysis products and similar to CERES-SYN but with a much higher spatial resolution. Overall, the results in the present study show that the GLASS daytime Rn product generated by the MARS model is superior to other presently available products.



Although it is common practice in the literature, validating satellite products and reanalysis datasets at a spatial resolution scale from a few to hundreds of kilometers using “point” ground measurements directly provides questionable results. It is valid only if the atmospheric and surface conditions are homogeneous. An upscaling process using intermediate-resolution products is necessary for many heterogeneous landscapes and atmospheric conditions [48]. A further project conducted by us for addressing the scaling issue is underway, and the results will be presented in the near future.
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Appendix


Three empirical models for Rn estimation



A. Linear Regression (LM) Model


Jiang et al. [43] developed a new linear regression model based on a previous study [49] by incorporating NDVI and RH. The validation results demonstrated that this new model performed better than other popular linear regression models under various conditions. Thus, this model was one choice for GLASS daytime Rn production and is denoted as “LM” in this study:


[image: there is no content]



(A1)




where D = [image: there is no content] is an empirical constant suggested by Swinbank [50], a, b, c, d, and e are regression coefficients, [image: there is no content] is the absolute mean air temperature, and [image: there is no content] is Stefan-Boltzmann constant ([image: there is no content]). The definition of the other variables can be found in Table 2.




B. General Regression Neural Network (GRNN) Model


The GRNN is a generalization of radial function networks and probabilistic neural networks developed by Specht [51]. Jiang et al. [37] applied the GRNN model for daytime Rn estimation, and the evaluation results proved that this model worked very well and was stable under various conditions. The architecture of the GRNN model used in this study is shown in Figure A1. The GRNN has a multi-input-output (one output in this study) architecture, and includes four layers: the input layer, the pattern layer, the summation layer, and the output layer. The input layer provides all of the variables to the neurons in the pattern layer; each neuron represents a training pattern, and its output is a measure of the distance of the input from the stored patterns. The summation layer has two types of summation neurons: one to compute the sum of the weighted outputs of the pattern layer, and the other to calculate the unweighted outputs of the pattern neurons. Finally, the output layer performs a normalization step to yield the predicted value of the output variable. In accordance with Jiang et al. [37] and Xiao et al. [52], the Gaussian kernel function was used for GRNN training in the present study, and the smoothing parameter in the kernel function was the only free parameter that needed to be determined. Thus, GRNN training was essentially optimization of the smoothing parameter and the architecture and weights of a GRNN were determined when the input was given. More details for the optimal smoothing parameter selection can be found in Xiao et al. [52]. Because all of the parameters in a GRNN can be determined automatically, the entire training dataset was used for GRNN training, as was the case for the LM and MARS models, and all of the inputs were linearly scaled before training, as was done by Jiang et al. [37]. The GRNN modeling was implemented on the C platform.


Figure A1. General regression neural networks (GRNN) with multi-input-one-output architecture. The inputs xi (i = 1,…, n) are shown in Table 2, and the output y represents Rn.
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C. Support Vector Regression (SVR) Model


The SVR is a method proposed by [53] to solve regression problems using support vector machines (SVM). Intuitively, SVR works by performing a nonlinear mapping of the data from the input space to a higher dimensional feature space where linear regression can then be performed. In the case of a linear SVR model, if the training data are of the form [image: there is no content] ([image: there is no content], and n is the sample number), then the solution function takes the form:


[image: there is no content]



(A2)




where [image: there is no content] represents the dot product of two points and the variables [image: there is no content], [image: there is no content], and b are calculated by the SVR algorithm. It is noted that only some of the patterns will have an impact on the final solution when the term [image: there is no content] is nonzero, and these nonzero patterns are referred to as the support vectors. However, the input data must first be transformed into a higher dimensional feature space using a nonlinear mapping function when the SVR model is nonlinear. In accordance with Mercer’s theorem, a kernel function was used without ever explicitly computing the mapping, then the original solution function was changed according to the following equation:


[image: there is no content]



(A3)







This solution is obtained by solving the convex optimization problem:


[image: there is no content]



(A4)







Subject to [image: there is no content] and [image: there is no content] where [image: there is no content] and [image: there is no content] are the input-output pairs of the training data, [image: there is no content] and [image: there is no content] are the variables to be discovered, and [image: there is no content] and C are constants. The constant [image: there is no content] represents the SVR algorithm’s tolerance for errors. The area within [image: there is no content] of the learned function is referred to as the SVR regression tube, and any errors that fall within this tube are ignored. The constant C is referred to as the penalty factor, which controls the trade-off between the complexity of the function and the frequency with which errors are allowed to fall outside of the SVR regression tube. The constants ɛ, C, and the parameter to be set in the kernel function are usually called “hyper-parameters”; previous studies proved that the simulation results of SVR were sensitive to the selection of the hyper-parameters.



In the present study, the “eps-regression” was selected as the SVR regression type, and the radial basis kernel function was used. Thus, three parameters (ɛ, C, and γ) must be determined for SVR training. To obtain the optimal SVR model, the training dataset was further randomly divided into 80% and 20% proportions for model building and testing, respectively, and the step-by-step search method was applied to model building to obtain the optimal hyper-parameters. Thus, the range of hyper-parameters was predefined as ([image: there is no content], [image: there is no content], and [image: there is no content]). Several combinations of the hyper-parameters were then tried for SVR building and testing, and finally the optimal combination was determined based on which combination provided the best testing accuracy. SVR modeling was also implemented on the R platform with the“e1071” package [54], and all inputs were Z-score normalized before training.
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