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Abstract: Automatic post-disaster mapping of building damage using remote sensing images is an
important and time-critical element of disaster management. The characteristics of remote sensing
images available immediately after the disaster are not certain, since they may vary in terms of
capturing platform, sensor-view, image scale, and scene complexity. Therefore, a generalized method
for damage detection that is impervious to the mentioned image characteristics is desirable. This
study aims to develop a method to perform grid-level damage classification of remote sensing images
by detecting the damage corresponding to debris, rubble piles, and heavy spalling within a defined
grid, regardless of the aforementioned image characteristics. The Visual-Bag-of-Words (BoW) is one
of the most widely used and proven frameworks for image classification in the field of computer
vision. The framework adopts a kind of feature representation strategy that has been shown to
be more efficient for image classification—regardless of the scale and clutter—than conventional
global feature representations. In this study supervised models using various radiometric descriptors
(histogram of gradient orientations (HoG) and Gabor wavelets) and classifiers (SVM, Random Forests,
and Adaboost) were developed for damage classification based on both BoW and conventional global
feature representations, and tested with four datasets. Those vary according to the aforementioned
image characteristics. The BoW framework outperformed conventional global feature representation
approaches in all scenarios (i.e., for all combinations of feature descriptors, classifiers, and datasets),
and produced an average accuracy of approximately 90%. Particularly encouraging was an accuracy
improvement by 14% (from 77% to 91%) produced by BoW over global representation for the most
complex dataset, which was used to test the generalization capability.

Keywords: damage detection; feature representation; oblique airborne images; supervised learning;
texture; UAV; Visual-Bag-of-Words

1. Introduction

Rapid damage assessment after a disaster event such as an earthquake is critical for efficient
response and recovery actions. Direct manual field inspection is labor intensive, time consuming,
and cannot assess the damages in inaccessible areas. Remote sensing technology is the most
predominant and early source to provide data for performing such assessments, either manually or
using automated image analysis procedures [1,2]. Various kinds of remote sensing data such as optical,
synthetic aperture radar (SAR), and LiDAR are being used for the damage assessment process [1].
However, optical data are often preferred as they are relatively easy to interpret [1]. Moreover, optical
remote sensing provides very high resolution images ranging from the decimeter to the centimeter
scale through various platforms such as satellites, manned aircrafts, and unmanned aerial vehicles
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(UAVs) [3–5]. This allows for performing comprehensive damage assessment through identifying
different levels of damage evidence, ranging from complete collapse to cracks on the building roof
or façades, by choosing images at appropriate scales. Particularly oblique airborne images are
recognized as the most suitable source, as they facilitate the damage assessment on both roofs and
lateral elements [6,7]. For example, even extensive building damage such as inter-story collapse or
pancake collapse can be identified reliably only with oblique view images, while conventional nadir
views at best provide damage proxies such as external debris [1,7,8]. Although current remote sensing
yields images at a vast range of views and scales, automatic recognition of even heavy damages to
buildings is still challenging [1]. This is due to various reasons such as the complexity of the scene,
uncertain characteristics of damage patterns, and the varying scale problem in oblique view images.

Generally, the regions corresponding to heavy damage are determined through the identification
of damage patterns corresponding to rubbles piles, debris, and spalling in an image region (refer
to Figure 1) [8]. Those damage evidences have a specific meaning and play a major role in damage
classification. For example, the presence of significant amounts of debris/rubble piles around the
building is the strong indication of (partial) building collapse. Spalling is an indicator of minor damage
or partially broken structural elements. The recognition process of those damage patterns can be
performed by analyzing features extracted either at the pixel or the region level [1,9,10]. However,
the pixel level analysis is not meaningful for very high spatial resolution images, particularly in the
context of damage assessment, as the evidences are identified based on the characteristics of their
radiometric distribution pattern, which can be captured more precisely at a region level. However,
in region-level classification the critical step is to define the region that is appropriate to identify the
specific damage patterns. Generally, image regions are obtained either through a gridding approach
or though image segmentation [11]. The most simple, efficient, and straightforward strategy is the
gridding approach, where the image is split into uniform rectangular cells. However, the regions
derived from gridding are often cluttered, as they may comprise different kinds of objects. For example,
a single cell may contain trees, building elements, cars, road sections, debris, etc. Moreover, oblique
images are more complex compared to nadir images, since they also capture façades that frequently
comprise various elements, such as windows, balconies, staircases, etc. They generally also look more
cluttered than nadir images containing largely roofs, and reveal façade information only at the image
border, depending on the lens opening angle. It is quite challenging to identify the damage patterns in
such a cluttered region. This can be alleviated by using a segmentation approach, which segments
the damaged portions and other objects in the scene as separate regions. However, the selection of
appropriate features and a segmentation algorithm that is suitable for a given damaged and cluttered
environment is a challenging problem, one that requires substantial semantic analysis. Apart from
clutter, the regions obtained from oblique images vary in scale. Nevertheless, the identification of
damage patterns regardless of image scale is an important prerequisite in damage assessment. For
example, damage at a building level such as inter-story collapse can be captured better at coarser
scales (e.g., 100 ˆ 100 pixel region in an image of the decimeter scale), while minor damages such as
spalling at a building element level require finer scales (e.g., 100 ˆ 100 pixel region in an image of the
centimeter scale). Therefore, a robust method is required to recognize the damage pattern in a defined
region irrespective of the scale and clutter. This is an analogue of the human visual pattern recognition
system, which is extremely proficient at identifying the damage patterns regardless of the scale and
complexity of the scene.
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Figure 1. An example of debris, rubble piles, and spalling. 
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a key element. Numerous studies reported that textures are the most influential feature for damage 
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led to good results [34–36]. All these features describe the pattern of the given region in a unique 
way, based on the magnitude of gradient along various orientations and scales. Vetrivel et al. [37] 
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however, to our knowledge no work exists that combines the named features in a BoW fashion for 
damage mapping. 

Figure 1. An example of debris, rubble piles, and spalling.

In the field of computer vision, various methods have been reported for pattern recognition
tasks in various applications, such as object categorization, face recognition, and natural scene
classification [12–14]. These methods are mostly based on supervised learning approaches, which
work well for conventional image classification applications. However, the overall performance of
the learning approach completely depends on the discriminative power of the image descriptors
(features) considered for the classification [15]. Generally, images are described through either global
(e.g., textures) or local features, like point descriptors such as Scale Invariant Feature Transform
(SIFT) [13,16]. However, most global features are very sensitive to scale and clutter [17]. In contrast, the
local descriptors are robust to clutter but cannot capture the global characteristics of the image [18,19].
An alternate feature representation strategy, such as Visual-Bag-of-Words (BoW), captures the global
characteristics of the image through encoding a set of local features, which makes them robust to
scale and clutter [20,21]. For example, in texture-based classification, the global texture pattern of
the image is captured by the frequencies of the co-occurrence of the local texture patterns. This
kind of feature representation outperforms the conventional global feature representation approaches
in image classification [22]. Apart from general image classification, the Bag-of-Words framework
has been demonstrated as a potential approach in many image-based domain specific applications
including image retrieval [23], human action and facial expression recognition [24,25], image quality
assessment [26], and medical image annotation [27]. Conceptually, thus, the BoW approach seems to
be appropriate for identifying the damaged regions in airborne oblique images, which generally look
cluttered and vary in scale.

Pattern recognition methods including BoW are based on a supervised learning approach that
attempts to learn the underlying relationship between the image-derived features and the pattern of
a specific category, in this case the damage pattern. Therefore, apart from a feature representation
strategy, the choice of features that best discriminate the damaged and non-damaged regions is also
a key element. Numerous studies reported that textures are the most influential feature for damage
pattern recognition, as the damaged regions tend to show uneven and peculiar texture patterns,
in contrast to non-damaged regions [28–30]. Many damage classification studies used statistical
textures such as grey level co-occurrence matrix (GLCM)-based features for the damage pattern
recognition [10,31,32]. However, other texture measures such as wavelets have been recognized as
superior to GLCM in many pattern recognition problems, including land cover classification [33].
Particularly for region-level pattern classification problems, descriptors such as Histogram of Gradient
Orientation (HoG), Gabor wavelets, SIFT and Speeded-Up Robust Features (SURF) have led to good
results [34–36]. All these features describe the pattern of the given region in a unique way, based on
the magnitude of gradient along various orientations and scales. Vetrivel et al. [37] demonstrated the
potential of HoG and Gabor features to classify the damaged regions in very high resolution UAV
images. However, they found limitations with the conventional global representation of HoG and
Gabor features, especially with respect to generalization. So far, however, to our knowledge no work
exists that combines the named features in a BoW fashion for damage mapping.
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The objective of this paper is thus to develop a robust method based on the BoW approach that is
suitable especially (but not only) for oblique images to identify the damage patterns related to rubble
piles, debris, and spalling, regardless of the scale and the clutter of the defined region in an image.
Following the above argumentation, a grid-based region definition is pursued. The robustness of the
developed method based on this BoW approach is analyzed by comparing the performance of various
learning algorithms and image descriptors (Gabor and HoG) under both the conventional and the
BoW approach. Also, the generalization capability of the developed method is analyzed, by testing it
on a variety of images corresponding to various scales, camera views, capturing platforms, and levels
of scene complexity.

2. Methods

For the identification of damaged regions in an image, as a preparation step we provide reference
data. That is, the given image is split into M ˆ N regions, which are termed image patches. The image
patches are manually labeled as damaged if any kind of damage pattern related to debris, spalling, and
rubble piles is observed in them. The automatic detection of those damage patterns within the patches
is carried out using two different feature representation approaches: global and BoW representation.
The feature descriptors and learning algorithms considered for both the global and BoW-based damage
classification process are described in the respective sub-sections.

2.1. Damage Classification Based on Global Representation of Features

This process includes two steps: (1) extraction of image descriptors that provide the global
description of the given image patch; and (2) classification of the given image patch as damaged or
non-damaged, based on the extracted feature descriptors using a supervised learning algorithm.

2.1.1. Extraction of Feature Descriptors

The HoG and Gabor wavelets-based feature descriptors are considered for the global feature
representation-based damage classification process.

(a) Histogram of Gradient Orientation (HoG)

The standard approach is used to extract the HoG features (e.g., Dalal Triggs [38]), where the
given image patch is split into a number of overlapping blocks, and histograms of gradient orientation
derived for each block are concatenated to form a feature vector. This gives the global representation
of the image patch.

Procedure:

(1) Derive gradient magnitude and its orientation for each pixel in the image patch.
(2) Split the gradient image into A ˆ B cells.
(3) Again split the gradient image into a number of overlapping blocks, where each block contains

C ˆ D cells with 50% of overlapping cells between the blocks.
(4) Define the bin size for the histogram of gradient orientation, where each bin corresponds to a

specific orientation (the bin size remains fixed for all experiments later).
(5) For each cell, compute the histogram of gradient orientation by adding the magnitude of the

gradient to its corresponding orientation bin. Therefore, the size of the feature description of each
cell is equal to the number of bins.

(6) Concatenate the histograms of gradient orientation of all cells within each block to get the block
level description. Normalize the histograms’ magnitude within the block to compensate for the
local illumination variations [39].

(7) Concatenate all block level descriptors to form the global descriptor of the patch.
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(b) Gabor wavelets descriptors

The Gabor wavelets descriptors are obtained by convolving the image with a set of Gabor
wavelet filters. These filters are derived by appropriate rotation and scaling of the mother Gabor
wavelet function, where each filter is tuned to capture the pixel information at a specific orientation
and frequency. The detailed procedure for Gabor wavelets filter generation can be found in
Arivazhagan et al. [40]. After obtaining the Gabor filter responses for each pixel in the image patch, the
region-level Gabor wavelet descriptor is represented by the histogram of magnitude of filter responses
for all combinations of orientations and frequencies (cf. Jun Fei [41]). This histogram is computed for
three consecutive pyramid levels of image patches, in order to capture the variation across scales, in
addition to the variation across frequencies and orientations. The procedure used for extracting the
global Gabor feature descriptors for an image patch is described below.

Procedure:

(1) Generate I ˆ J number of 2D Gabor wavelet filters, where I and J are the number of frequencies
and number of orientations used to generate the Gabor wavelet filters, respectively.

(2) Convolve the image patch with the generated filter banks, which results in I ˆ J number of
feature images.

(3) Normalize each feature image using l2 normalization.
(4) Compute the histogram of Gabor filter responses, where each histogram bin corresponds to a

specific frequency and orientation. Therefore, the number of histogram bins is equal to I ˆ J,
which is the size of the final feature vector.

(5) Also, extract the Gabor wavelet features for the other two pyramid levels of the image patch, by
subsampling it to ½ and ¼ of the image patch size.

(6) Feature vectors derived at different scales are concatenated to form the final feature vector.
Therefore, this final feature vector will comprise features extracted at multiple scales, multiple
frequencies, and multiple orientations.

2.1.2. Damage Classification Using the Derived Global Feature Descriptors

Supervised learning approaches are adopted to classify the given image patch as damaged
or non-damaged, based on the global feature descriptors. Three state-of-the-art and widely used
supervised learning algorithms, Support Vector Machines (SVM) [42], Random Forests (RF) [43], and
Adaboost [44], are considered for the damage classification process. These learning algorithms belong
to the families of different learning paradigms, which learn the underlying relationship between the
input features and the output label in a unique way. Three different learning paradigms are considered
in order to analyze whether the considered feature descriptors are independent of the supervised
algorithm, i.e., how the classification task is solved independently of the applied learning strategy.
Also, each learning algorithm has a number of tunable parameters, referred to as hyper-parameters,
which have a significant impact on the performance of the learning model [45]. Therefore, the
hyper-parameters are tuned for the best model by searching the parameter space using the grid space
search approach [46]. This approach constructs a number of learning models for different settings
of the hyper-parameters, using the training set. The performance of each model is assessed using
a cross-validation procedure. The best performing model is selected as the final model with tuned
hyper-parameters, and then evaluated using the testing set.

2.2. Damage Detection Using Visual-Bag-of-Words

The standard BoW framework is adopted for the damage classification process. The BoW
framework comprises different components, such as feature point detection, feature descriptors,
visual word dictionary, and a classifier. The algorithms used for each component and the overall
procedure are described below.
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Overall, the BoW-based damage classification process is carried out in two stages: (1) construction
of visual word dictionary; and (2) representation of the image in terms of BoW (histogram of visual
words), and training the classifier based on them.

Stage 1:

(a) Feature point detection

The basic idea behind this step is that an image can be described by a small number of significant
pixels (salient points). For example, pixels corresponding to edges and corners contain the most
significant information compared to pixels of homogenous regions. Salient point descriptors that are
invariant to scale and orientation are most appropriate to build an image classification model that
is robust to scale and rotation. Numerous such salient point detection methods are available, with
SIFT and SURF commonly being used in the BoW context [19]. In this study, SURF was used since it
is faster than SIFT and its descriptor is suitable to be used as the feature in the BoW framework, as
discussed in the following sub-section. A description of the SURF points detection process can be
found in Bay et al. [47].

(b) Feature extraction

The purpose of this step is to extract the local feature descriptor for each salient point in the
given image patch. The feature descriptors HoG and Gabor wavelets, which are used in the global
representation-based damage classification, are also considered here for the local description of
salient points in the BoW-based damage classification. This allows us to compare the potential of
BoW and global feature representation irrespective of the features. In the BoW approach the SURF
descriptor is additionally used to describe the salient points. This is because SURF is a well-proven
point descriptor (local descriptor), widely used in BoW-based image classification processes [48].
Furthermore, SURF descriptors are based on wavelet responses, which also describe the image region
in terms of textures, similar to HOG and Gabor feature descriptors. Therefore, the three feature
descriptors HoG, Gabor wavelets, and SURF are used independently to describe each salient point in the
given image patch for the BoW-based damage classification. The local pattern description for each
salient point is derived by considering a local neighborhood of P ˆ Q pixels around the salient point.
The same procedure as described in Section 2.1.1 is followed to extract the Gabor and HoG features.
The standard procedure is used to extract the SURF feature descriptor (cf. Bay et al. [47]).

(c) Visual words dictionary construction

The feature descriptors of salient points from all image patches (regardless of their class) are
concatenated into a single feature vector. Numerous feature encoding methods have been reported
for visual word dictionary construction [49]. We adopted the most commonly used iterative k-means
clustering algorithm [48]. The obtained feature vector is clustered into k clusters using the iterative
k-means clustering [50]. Each cluster center is considered as the visual word, and the cluster centers
are collectively referred to as a visual word dictionary.

Stage 2:

(a) Image description based on visual words

To represent the given image patch in terms of BoW (histogram of visual words), the salient points
in the image patch are detected and feature descriptors are obtained for each point. The detected points
in the image are assigned to their closest visual word in the dictionary. Subsequently, the frequency of
occurrence of the visual words in the image is represented as a single histogram, which is referred to
as the BoW representation of the image, which will be fed into the classifier in the next step.
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(b) Classification of visual words using machine learning algorithms

Again, the three learning algorithms SVM, RF, and Adaboost are used as classifiers for classifying
the damage and non-damaged image patches based on BoW. The procedure described in Section 2.1.2
is followed to develop the supervised learning models based on the BoW features.

The overall workflow of BoW-based damage classification process is depicted in Figure 2.
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Figure 2. Overall process of the BoW-based damage classification.

3. Experiments and Results

The damage classification method was evaluated using four different datasets, with each differing
in its image characteristics such as scale, camera view, capturing platform, and scene complexity.
Each data set was independently analyzed for the damage classification process based on the three
feature descriptors HoG, Gabor wavelets, and SURF. The performances of HoG and Gabor wavelets for
damage classification were analyzed by representing them in both a conventional and BoW framework.
Also the potential of the SURF descriptor was analyzed for damage classification by representing it in
a BoW framework and comparing it with BoW-based Gabor and HoG.
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Three supervised learning algorithms, SVM, RF, and Adaboost, were used for analyzing the
performance of the feature descriptors. Therefore, each dataset was tested with different combinations
of feature descriptors and supervised learning algorithms, as depicted in Figure 3.

The conducted experiments for the damage classification process include a number of algorithms,
and each algorithm was associated with a number of parameters. The values used for the parameters
of the algorithm are shown in Table 1. The hyper-parameters considered for tuning the learning
algorithms (cf. Section 2.1.2) are described in Table 2.
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Table 1. Definition of parameters associated with each algorithm/method used in the experiment.

Algorithm/Method Parameter Values Description Reference

Image patch
generation M = 100; N = 100 To generate 100 ˆ 100 image patches Section 2

HoG procedure
A = 25; B = 25 Cell size A ˆ B–25 ˆ 25 pixels

Section 2.1.1C = 4; D = 4 Block size C ˆ D–4 ˆ 4 cells

bin size = 9 Bin size of histogram of the
gradient orientations

Gabor wavelet
descriptor I = 5; J = 8

I, J are the number of frequencies and
orientations respectively to generate the

Gabor wavelet filters
Section 2.1.1

Feature extraction P = 10; Q = 10
10 ˆ 10 local neighborhood is

considered for deriving descriptor for
each salient point

Section 2.2

Visual word
dictionary

construction
k = 500 k value for k-means clustering Section 2.2

Supervised model
for damage

classification

10-fold cross validation
Cross-validation to identify the optimal
hyper-parameters for a learning model

based on the grid search approach Section 2.1.2

The dataset is split into
70% and 30% for training
and testing, respectively

Training set is used to train the model
and also for cross-validation for tuning

the hyper-parameters. Testing set is
used for evaluating the trained model.
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Table 2. Definition of grid search space for tuning the hyper-parameters of the classifiers.

Supervised
Classifier Hyper-Parameter Grid Search Space Description

SVM

C 0.001 to 100, step
size—multiples of 10

Regularization parameter which has a
significant effect on the generalization

performance of the classifier.

Kernel
Linear, radial basis function

(RBF) and histogram
intersection

The function used to compute the
kernel matrix for classification.

gamma 0.0001 to 1.0, step
size—multiples of 10

Regularization parameter used in RBF
kernel (Gaussian kernel function) which

has significant impact in the
performance of the kernel.

RF

N_estimators 3 to 20, step size 2 Number of trees in the forest.

Max_depth 1 to 5, step size 1 Maximum depth of the tree.

Min_samples_split 1 to 4, step size 1 Minimum number of samples required
to split a node.

Min_samples_leaf 1 to 3, step size 1 Minimum number of samples required
in newly created leaf after the split.

Adaboost
N_estimators 100 to 1000, step size 100

The maximum number of estimators
that can be used to build the ensemble

learning model.

Learning rate 0.01 to 0.1, step size 0.01 Regularization parameter that scales the
contribution of each weak estimator.

3.1. Dataset 1: UAV Images

UAV images captured over two different areas were considered: (1) a small region around a
church (“Church of Saint Paul”) in Mirabello, Italy, damaged by a 2012 earthquake; (2) a small region
around a partly demolished industrial facility in Gronau, Germany. Both regions possess similar
characteristics, and they contain only a few buildings that are largely disconnected. One building in
each region was partially collapsed and produced a significant quantity of debris and rubble piles
(cf. top left image in Figure 4—UAV image-subset of the Mirabello church). The UAV images were
captured at different heights, positions, and views (nadir and oblique) with a spatial resolution of
1–2 cm. The images of both regions corresponding to various orientations and heights were split into
100 ˆ 100 pixel rectangular image patches for framing of the training and testing datasets for the
damage classification process. The patches are labeled as damage if at least 25% of their area represents
damage evidences (debris/rubble or spalling) that are unambiguously recognizable by human analyst.
For example, the samples of damaged and undamaged image patches of each dataset are shown to
provide better insights (refer to Sections 3.1–3). Since the image resolution is very high, the defined
rectangular patches cover only a small region (approximately 1 m2) and, therefore, most of them
contain only either damage evidences or single homogenous object, i.e., the defined regions are mostly
uncluttered; refer to the image training samples in Figure 4. In total 966 samples (482 damaged, 484
non-damaged) each of size 100 ˆ 100 pixels, were considered. The dataset was constructed by selecting
the specific samples across different regions within the scene that highly vary in their characteristics to
avoid a large number of repetitive samples. The damage classification was performed for this dataset
based on different combinations of feature descriptors and learning algorithm as described above, and
the results are reported in Table 3.
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Table 3. Performance of feature descriptors when associated with different learning algorithms
for dataset 1 comprising patches from the UAV images (training samples = 676, testing
samples = 290)—bold numbers indicate best performance per indicator.

Dataset1
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.91 0.87 0.90 0.99 0.92 0.95 0.81 0.76 0.79
HoG 0.87 0.86 0.86 0.94 0.93 0.93 0.71 0.67 0.69

BoW-Gabor 0.96 0.93 0.95 0.99 0.98 0.98 0.96 0.71 0.83
BoW-HOG 0.98 0.97 0.98 0.97 0.95 0.95 0.95 0.87 0.90
BoW-SURF 0.97 0.92 0.94 0.90 0.88 0.90 0.80 0.81 0.81

3.2. Dataset 2: Oblique View Manned Aircraft Images

The airborne oblique images (Pictometry) with a Ground Sampling Distance (GSD) between 10 cm
(foreground) and 16 cm (background) captured over Port-au-Prince after the 2010 Haiti earthquake
were considered. The images cover almost the entire city, and contain numerous buildings ranging
from simple to complex. Most of the buildings are densely clustered in such a way that it is difficult to
differentiate each building even visually from the images. Numerous buildings are partially covered
with densely leafed tall trees, adding to the clutter of the scene. A significant number of buildings
are damaged, ranging from complete/partial collapse to heavy spalling on the intact elements of the
building (cf. Figure 5). The images are split into 100 ˆ 100 pixel images/patches to frame the training
and testing datasets for the damage classification process. The defined image patches are highly
cluttered as they cover a large area (at least 10 m2) and comprise different kinds of objects, such as
trees, building elements, cars, road sections, and debris (cf. Figure 5). The dataset was constructed by
selecting the specific samples across different regions within the city that vary highly in terms of their
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characteristics. Again, the selection of samples was driven by the idea of covering different damage
characteristics rather than piling up redundant information. In total 1256 samples (698 damaged,
558 non-damaged) were selected and tested for the damage classification based on the developed
approach. The patches cover an area of approximately 13,000 m2. The results are reported in Table 4.
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Table 4. Performance of feature descriptors when associated with different learning algorithms for
dataset 2, comprising patches from Pictometry images (training samples = 879, testing samples = 377).

Dataset2
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.81 0.76 0.79 0.82 0.76 0.79 0.78 0.61 0.72
HoG 0.78 0.61 0.72 0.67 0.61 0.66 0.62 0.58 0.63

BoW-Gabor 0.89 0.86 0.88 0.88 0.88 0.88 0.80 0.79 0.79
BoW-HOG 0.93 0.89 0.91 0.85 0.83 0.84 0.80 0.69 0.75
BoW-SURF 0.91 0.89 0.90 0.84 0.82 0.83 0.80 0.78 0.80

3.3. Dataset 3: Street View Images

Street view close-range images of damaged buildings captured by hand-held cameras after
earthquakes in different geographic locations were used. These images were collected from two
sources: (1) Governmental organization: the German Federal Agency for Technical Relief, THW;
(http://www.thw.de); and (2) the Internet (various websites). The collected images vary in scale;
however, the actual scale is unknown. Therefore, the 100 ˆ 100 pixel patches generated from those
images may cover small areas (e.g., an element of the building) or large areas (e.g., entire or major
portion of the building). The collected images contain buildings with various kinds of damages, such
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as complete collapse, partial collapse, inter-story collapse, and heavy spalling. In total 887 samples
(384 damaged, 503 non-damaged) were considered to construct and evaluate the supervised model for
the damage classification. Sample image patches used for the training and testing of the supervised
model are depicted in Figure 6. The results are reported in Table 5.
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Table 5. Performance of feature descriptors when associated with different learning algorithms for
dataset 3, comprising patches from street view images (training samples = 620, testing samples = 267).

Dataset 3
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.89 0.85 0.87 0.88 0.80 0.85 0.91 0.85 0.89
HoG 0.95 0.74 0.86 0.94 0.81 0.89 0.84 0.84 0.85

BoW-Gabor 0.99 0.91 0.95 0.92 0.77 0.86 0.92 0.72 0.84
BoW-HOG 1.0 0.93 0.96 0.98 0.94 0.96 0.98 0.82 0.90
BoW-SURF 0.99 0.89 0.94 0.98 0.82 0.91 0.98 0.77 0.89

3.4. Dataset 4: Datasets 1, 2, and 3 Are Combined

The samples from datasets 1, 2, and 3, which vary in scale, camera view, and platform and scene
complexity, were combined into a single dataset in order to assess the generalization capability of the
damage classification methods. In total 3109 samples (1564 damaged, 1545 non-damaged; subsequently
termed COM3109) were used to develop and test the supervised models for damage classification. The
results are reported in Table 6. For visual analysis, an UAV image of dataset 1 and a Pictometry image
of dataset 2 were classified for the damage detection using the best performing model (BoW-Gabor
with SVM). The classified images are depicted in Figure 7. The classification is quite accurate, showing
only very few false positives and false negatives, which are also highlighted in the classified images
(cf. Figure 7). The false positives and negatives are the examples where our assumption fails: i.e., a
surface with unusual radiometric characteristics is assumed to be damaged, while manmade objects
are assumed to have a regular shape and uniform radiometric characteristics. For example, in Figure 7b
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the leaf-off tree was misdetected as damage, since it shows a strong irregular texture pattern. Similarly,
the damaged regions are not detected as they show smooth texture.
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Figure 7. Damage classification of images based on best performing supervised model: (a) UAV
image of dataset 1 (left); detected damaged regions are highlighted in red, and the false positives are
highlighted using yellow circles (right); (b) Subset of Pictometry image of dataset 2 (left); detected
damaged regions are highlighted in red, and the false positives and false negatives are highlighted
using yellow and green circles, respectively (right). Images © Pictometry; (c) Street view image of
dataset 3 (left); detected damaged regions are highlighted in red, and the false positives and false
negatives are highlighted using yellow and green circles, respectively (right).
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Table 6. Performance of feature descriptors when associated with different learning algorithms for
dataset 4 (COM3109) comprising patches from UAV, Pictometry, and street-view images (training
samples = 2176, testing samples = 933).

Dataset 4
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.79 0.75 0.77 0.76 0.64 0.72 0.62 0.58 0.62
HoG 0.81 0.62 0.73 0.79 0.64 0.71 0.71 0.57 0.61

BoW-Gabor 0.95 0.88 0.91 0.93 0.79 0.86 0.64 0.68 0.67
BoW-HOG 0.89 0.87 0.88 0.83 0.76 0.80 0.80 0.64 0.74
BoW-SURF 0.90 0.84 0.87 0.83 0.77 0.80 0.79 0.75 0.77

4. Observations and Analysis

For convenient analysis of the results, datasets 1 and 3, which were not cluttered and less affected
by shadows and trees, are referred to as non-complex datasets, while datasets 2 and 4, where the image
patches were mostly cluttered and severely affected by shadows and trees, are referred to as complex
datasets. Also for convenience, the datasets are named based on the image characteristics and number
of samples as described in Table 7.

Table 7. Naming of datasets based on the image characteristics and number of samples.

Dataset Name Description Scene Complexity

Dataset 1 UAV966 966 image patches generated from UAV images. Non-complex
Dataset 2 PIC1256 1256 image patches generated from Pictometry images. Complex
Dataset 3 SVI887 887 image patches generated from street view images. Non-complex

Dataset 4 COM3109
Comprehensive dataset, where datasets 1, 2 & 3 are

combined, containing 3109 image patches. Complex

4.1. Global Representation of HoG and Gabor Wavelet for Damage Classification

The results show that the global representations of HoG and Gabor wavelet feature descriptors
have great potential to identify the damaged regions in the image, if the defined image patches are
non-complex. For example, the supervised models constructed for UAV966 (non-complex) based on
the global representation of Gabor wavelet and HoG features resulted in accuracies of 95% and 93%,
respectively (Table 3). However, the same feature descriptors Gabor and HoG produced accuracies of
82% and 72%, respectively for PIC1256 (Table 4), where the defined image patches were mostly complex.
Moreover, the same features Gabor and HoG produced highly inferior results for COM3109, which was
more complex than the other datasets (Table 6). This clearly indicates that the robustness of the global
representation of HoG and Gabor features declines with an increase in image patch complexity. This is
because in the global representation the radiometric characteristics of the complex region (e.g., clutter,
shadows, and trees) resemble the radiometric characteristics of damaged regions, which are generally
more non-uniform than radiometric patterns of non-damaged regions (cf. Figure 8). Consider an image
patch that contains different objects with different dominant orientations. The global description of this
image patch based on gradient orientation is the aggregation of all gradient orientation information
within this patch. In such a case the image patch would seem to possess gradient orientations in
many directions, which resembles the radiometric characteristics of damaged regions. For example,
consider Figure 8a as an image patch that contains four different objects (annotated as A, B, C, and D)
with different gradient orientation patterns. The gradient pattern derived locally for each object was
overlaid on the corresponding object with a black background. These local patterns show that each
object possesses dominant orientations that were more uniform. However, the global gradient pattern
derived for the whole image patch was non-uniform and resembles the characteristics of damaged
regions (cf. Figure 8a). Thus, it is difficult to classify an image patch based on global features in case it
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is cluttered. Also, trees and shadows possess irregular shapes and non-uniform gradient orientations,
which also resemble the radiometric characteristics of the damaged regions. Hence, global feature
descriptors-based damage classification did not efficiently classify the image patches that were strongly
affected by trees and shadow.
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4.2. BoW-Based Feature Representation for Damage Classification

The Gabor and HoG features produced superior results for all datasets when represented in a
BoW framework than represented in conventional global scale for damage classification. Although
the BoW approach produced superior results to the conventional approach, there was no significant
difference in the performance between them when the considered image regions were not complex, e.g.,
UAV966 (cf. Table 3). However, in complex image regions there was a significant performance difference
between the BoW and conventional feature representation. This is evident from the results for PIC1256,
where the BoW-based Gabor and HoG produced maximum accuracies of 88% and 91%, respectively,
which are 9% and 19% higher than the accuracies obtained by those features when represented at a
global scale (cf. Table 4). This shows that BoW-based Gabor and HoG features are more robust to clutter,
trees and shadows than when they are represented at a global scale. The following characteristics
made the BoW approach more robust compared to the global representation:

(1) Unlike the global representation, the BoW approach does not aggregate the radiometric
patterns within the image patch. Instead, it describes the image patch based on the number of salient
points, where each point is described by the local radiometric pattern derived from its neighborhood.
Therefore, in case of no damage, the image patch will be represented by points with a uniform
radiometric pattern (gradient orientation), even if the image patch contains objects with different
dominant orientations. On the other hand, if the image patch contains damage it will be represented
by the points with non-uniform gradient orientations. The final damage classification is performed by
analyzing the pattern of the occurrences of local radiometric patterns within the image patch. This
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eliminates the ambiguity caused by mixed radiometric pattern typical for the global representation,
making the BoW comparatively more robust.

(2) The BoW approach considers only the salient points as representatives to describe the image
patch. The salient point selection method based on SURF mostly did not consider the pixels of shadows
and trees as salient points. Figure 9a,b show the strongest 300 SURF points in the image, where most
of the detected points are not corresponding to trees and shadows. Thus, the BoW approach largely
eliminates the shadows and trees in the damage classification process, which was one of the major
problems in the global descriptors-based damage classification. Moreover, the pixels corresponding to
the damaged regions were often detected as salient points, as they show a stronger gradient than other
objects (cf. Figure 9a). This ensures that the number of points corresponding to the damaged portion
will always be proportional to the number of points corresponding to the non-damaged objects, even
if only a small portion of the image patch is damaged (cf. Figure 9a,b). This specific characteristic of
the SURF points made the BoW-based damage classification approach invariant to scale, clutter, and
scene complexity.
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Figure 9. Detected SURF points are plotted on the image. (a) Strongest 300 SURF points among
4032 ˆ 3024 pixels; (b) strongest 300 SURF points among 977 ˆ 835 pixels. Images © Pictometry.

4.3. Impact of Choice of Learning Algorithm

The results show that the choice of learning algorithm has a significant impact on damage
classification performance, since the feature descriptors performed differently for different datasets
when associated with different learning algorithms. The accuracies produced by SVM, RF, and
Adaboost for all datasets when they were associated with different feature descriptors are depicted
in Figure 10. The plot shows that (1) SVM and RF mostly outperformed Adaboost; (2) using the
global feature descriptors the performances of RF and SVM varied with the datasets: RF produced
superior results compared to SVM for UAV966 and SVI887, whereas it produced inferior results than
SVM for PIC1256 and COM3109. This shows that the performance of the learning algorithm is highly
dependent on the characteristics of the datasets, with SVM performing well for complex datasets
and RF performing well for non-complex dataset. However, using the BoW approach the SVM
mostly outperformed RF in the classification for all datasets, irrespective of the feature descriptors
(cf. Figure 10). One overall conclusion from this is that the SVM-based, supervised models were
more reliable and mostly showed better generalization performance than RF, particularly for the
complex datasets.
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Figure 10. The accuracy produced by the feature descriptors for each dataset when associated with
different classifiers.

5. Discussion

The primary objective of this paper was to develop a damage classification method that classifies
a given image patch as damaged or non-damaged, irrespective of scale, image characteristics, and
scene complexity. The damage classification method was developed by considering various feature
descriptors (HoG, Gabor, and SURF), different feature descriptor representations (Global and BoW),
different learning algorithms (SVM, RF, and Adaboost) and image datasets with different levels of
scale and scene complexity. It was shown that the feature representation has a significant impact on the
performance of the damage classification compared to other components such as features descriptors
and learning algorithms. For all datasets, the BoW-based damage classification models performed
well for all combinations of feature descriptors and learning algorithms, compared to the models
developed based on global representation. Particularly, concerning COM3109 (the comprehensive
dataset), the accuracy obtained with the best-performing feature descriptor (Gabor) and learning
algorithm (SVM) with the global representation improved by 14% (from 77% to 91%), when tested
with the BoW representation (cf. Table 6). The choice of learning algorithm was found to be the
second significant factor in the performance of the damage classification model: the SVM produced
significantly better results than RF and Adaboost for all feature descriptors in the BoW representation
(cf. Table 6). The considered feature descriptors performed equally well and, hence, the choice of
feature descriptor was found to have least impact on the performance of the model. The Gabor features
led to a 3% and 4% improvement in accuracy compared to HoG and SURF, respectively, when the
image patches were classified with SVM in the BoW framework. This small improvement also may be



Remote Sens. 2016, 8, 231 18 of 22

due to the additional information that Gabor features possess compared to HoG. For example, in Gabor,
the gradient orientations information is extracted based on five different frequency scales, whereas in
HoG the gradient orientation information is extracted at only one frequency scale (cf. Section 2.1.1).
However, these improvements are significantly more modest when compared to the 14% improvement
in accuracy between BoW and global representation (cf. Table 6). This highlights the importance of
feature representation, regardless of the potential of features. Overall, SVM associated with Gabor
feature descriptors in the BoW framework was found to produce the most robust and generalized
damage classification model. Even visually, the damage classification was found to be more accurate
when the images of different scales, camera views, and capturing platforms, and different levels of
scene complexity, were classified by the best performing model (cf. Figure 7). Shadowed areas continue
to pose a major problem in damage classification. Since the damaged regions covered by shadows
show low contrast, they were not detected by our BoW-based approach (no SURF points in those
areas). However, it is important to identify the damages in low-contrast regions as well; therefore,
further tuning of the methods or identifying the optimal strategy that can make our approach work
even in low contrast regions is required to increase the robustness of the model.

The BoW framework consists of various components such as feature descriptors, learning
algorithms, and the visual word dictionary construction. The algorithms used for each component
are associated with a number of parameters (cf. Table 1). The performance of the BoW-based
damage classification model might be further improved by tuning the parameters of the algorithm
or modifying/replacing the algorithm of the specific component. For example, the iterative k-means
clustering was used to construct the visual word dictionary, whereas other feature encoding methods
such as auto-encoders (e.g., Vincent et al. [51]), which encode the features differently compared to
k-means, may produce a better visual word dictionary and thereby can potentially improve the
performance of the model as well. Concerning the feature descriptors, all three-feature descriptors
were used independently to construct the damage classification models, whereas the combined use of
feature descriptors may also improve the performance of our model. Similarly, concerning the learning
algorithm we used a single kernel-based SVM for constructing the damage classification model,
whereas the multiple-kernel (e.g., Bucak et al. [52]) based learning may improve the performance of the
model as well. We did not attempt to fine-tune the model by exploring all those possible approaches,
because the principal focus of this paper was to analyze the potential of the BoW framework in
damage classification.

The developed method can identify the damages related to debris/rubble piles that are strong
indicators of building collapse or severe structural damage, which would be very useful for first
responders involved in disaster response, but also other stakeholders such as governmental agencies
assessing post-disaster construction needs, or insurance companies. However, for detailed building
level damage assessment, this evidence alone is not sufficient to infer the complete damage state of
the building, nor the total damage cost, as the latter also depends on internal (invisible) damage,
and on building functions being affected, which is not always visible. However, along with other
damage evidences such as cracks, inclined elements, etc., this evidence is also important in the damage
classification process. From a practical point of view, especially, the observations we made using the
combined dataset 4 (COM3109) are very interesting. Although the used patches vary significantly in
terms of scale and complexity, an overall accuracy of around 90% was reached (cf. Table 6). Transferred
to an actual disaster scenario, where quick interpretation of image data is needed, this would mean
that an already existing database can be used to train a model and new images can be readily classified,
and a similar overall accuracy might be expected. Hence, at least for a first damage assessment, the
tedious manual referencing might not be necessary.

6. Conclusions and Outlook

A damage classification based on BoW was developed to classify a given image patch as
damaged or non-damaged, irrespective of scale, image characteristics, and scene complexity. Various



Remote Sens. 2016, 8, 231 19 of 22

combinations of image features (Gabor wavelets, HoG, and SURF) and supervised classifiers (SVM, RF,
and Adaboost) are tested in both the BoW framework and conventional global feature representation
approach using four different datasets. The BoW framework outperformed conventional global
feature representation approaches in all scenarios (i.e., for all combinations of feature descriptors,
classifiers, and datasets) and produced an average accuracy of approximately 90%. Although the
developed model can identify the damaged regions in the images well, it cannot classify the detected
damaged regions into specific types, such as debris, rubble piles, spalling, and inter-story collapse.
We need contextual information and 3D geometric features such as shape, location, characteristics
of the neighboring elements, and local height variation of the damaged region to identify the actual
category of damage. For example, the damage patterns on large intact planar elements could be
classified as spalling, whereas the damage pattern on the ground with large local height variations
and no large 3D segments could be classified as debris. Therefore, the potential extension of this work
will be the development of methods for classification of the detected damaged regions into actual
damage categories.

As stated earlier, the feature descriptor component in the BoW framework has a significant impact
on the performance of the model. Here, the texture features are chosen to examine our BoW framework
as their potential in damage detection has been demonstrated well by previous studies, as highlighted
in the Introduction. However, recent studies report that supervised feature learning methods such
as convolutional neural networks (CNN) could learn the feature and its representation directly from
the image pixel values chosen for a specific application [53]. Hence, these features are referred to as
data-adaptive features and are found to be superior to well-proven handcrafted features such as Gabor
and HoG for many computer vison applications including image classification [54,55]. Therefore, we
intend to explore the potential of CNNs for damage classification in the future.
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