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Abstract: Polarimetric SAR images are a rich data source for crop mapping. However, quad-pol
sensors have some limitations due to their complexity, increased data rate, and reduced coverage
and revisit time. The main objective of this study was to evaluate the added value of quad-pol
data in a multi-temporal crop classification framework based on SAR imagery. With this aim, three
RADARSAT-2 scenes were acquired between May and June 2010. Once we analyzed the separability
and the descriptive analysis of the features, an object-based supervised classification was performed
using the Random Forests classification algorithm. Classification results obtained with dual-pol
(VV-VH) data as input were compared to those using quad-pol data in different polarization bases
(linear H-V, circular, and linear 45°), and also to configurations where several polarimetric features
(Pauli and Cloude-Pottier decomposition features and co-pol coherence and phase difference) were
added. Dual-pol data obtained satisfactory results, equal to those obtained with quad-pol data
(in H-V basis) in terms of overall accuracy (0.79) and Kappa values (0.69). Quad-pol data in circular
and linear 45° bases resulted in lower accuracies. The inclusion of polarimetric features, particularly
co-pol coherence and phase difference, resulted in enhanced classification accuracies with an overall
accuracy of 0.86 and Kappa of 0.79 in the best case, when all the polarimetric features were added.
Improvements were also observed in the identification of some particular crops, but major crops like
cereals, rapeseed, and sunflower already achieved a satisfactory accuracy with the VV-VH dual-pol
configuration and obtained only minor improvements. Therefore, it can be concluded that C-band
VV-VH dual-pol data is almost ready to be used operationally for crop mapping as long as at least
three acquisitions in dates reflecting key growth stages representing typical phenology differences of
the present crops are available. In the near future, issues regarding the classification of crops with
small field sizes and heterogeneous cover (i.e., fallow and grasslands) need to be tackled to make this
application fully operational.
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1. Introduction

Crop classification is one of the major agricultural applications of remote sensing. Knowing the
crop present on each agricultural field is a very valuable information at a range of scales. At the
local and regional scales this information is a basic requirement to forecast yields and manage crop
production [1], but also to design agricultural policies and manage subsidies (e.g., European Common
Agricultural Policy (CAP) subsidies) [2]. At the continental and global scales this information is key
to ensure food security, but can also impact the market prices of major staple crops, and even affect
forecasts on climate dynamics and water and carbon balances [3].
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Remote sensing is a rich data source for mapping crops at different scales. Typical approaches
based on multispectral imagery rely on the spectral signature of crops [4]. However, this might be of
limited use because several crops might have very similar spectral signatures, since these are mostly
governed by the presence of pigments and the cellular structure of the mesophyll of leaves. Also,
persistent cloud cover imposes serious limits to the viability of optical remote sensing based approaches
in some regions of the world [5]. The multi-temporal approach can potentially circumvent these issues.
In particular, at continental and global scales, moderate resolution instruments (e.g., MODIS and the
alike) with a high revisit frequency have proven successful in identifying major crop types through
the analysis of their temporal signature in relation to crop phenology [6]. However, at more detailed
scales, the increased spatial resolution comes along with a less frequent revisit and the multi-temporal
approach is thus compromised. Some missions, in particular Sentinel-2, can provide a good opportunity
to increase the revisit time through the use of large swaths and twin sensors that double the acquisition
frequency [7].

Another alternative is the use of Synthetic Aperture Radar (SAR) sensors that operate regardless
of solar illumination or cloud cover conditions and provide complementary information to that of
optical ones [8]. SAR sensors transmit an electromagnetic pulse at a microwave frequency towards
the earth surface and receive the echo reflected or scattered back. After calibration, the backscattering
coefficient (0°) can be obtained, which is a physical property depending on the dielectric and geometric
properties of the target and on the configuration of the sensor too. In particular, the frequency (or band)
at which the sensor operates, the incidence angle of the incoming radar pulse and the polarization
of the transmitted and received waves strongly affect the 0° observed for a certain crop cover [9].
Regarding the frequency, most space-borne SARs operate in C-band (~5 GHz) (e.g., RADARSAT-1 and
-2, Sentinel-1 and RISAT-1), but there are some operating in L-band (~1 GHz) (e.g., ALOS/PALSAR-2)
and X-band (~10 GHz) (e.g., TerraSAR-X and CosmoSkyMed). At high frequencies (i.e., short
wavelengths) the incoming waves have a shallow penetration capacity into the vegetation canopy and
only interact with the most superficial elements, whereas at lower frequencies (i.e., longer wavelengths)
the penetration depth increases although it depends on the characteristics of the vegetation. The
incidence angle is also a key element affecting the penetration depth of the SAR signal. Small incidence
angles (close to nadir observation) lead to higher penetration depths than large ones. Most SARs
provide a selectable incidence angle configuration ranging normally between 20° and 50°.

Polarization refers to the orientation of the electric field of the radiation pulse, and in most
cases this can be vertical (V) or horizontal (H). Accordingly, SAR observations can be co-polarized
(i.e., transmitted and received in the same polarization: VV or HH) or cross-polarized (i.e., transmitted
in one polarization and received in the other: VH or HV). Distributed targets (i.e., natural land
covers) normally show reflection symmetry, and thus cross-polarized channels HV and VH can be
assumed to provide the same information. The first SARs launched in the 1990s (ERS-1 and -2, JERS-1,
and RADARSAT-1) were single polarization sensors, and thus imaged the Earth surface on a single
co-polarized channel (HH or VV). This seriously limited their ability for crop mapping [10]. However,
next generation SARs (e.g., ENVISAT/ASAR, RADARSAT-2, ALOS/PALSAR-1, TerraSAR-X, and the
recently launched satellites Sentinel-1 and ALOS/PALSAR-2) provide a multi-polarization capacity
that makes them better suited for crop classification applications [11]. Some of these operate in dual-pol
configurations (normally VV-VH or HH-HV) and some in quad-pol configuration (i.e., VV-VH-HV-HH).
The latter provide a full description of the scattering phenomena through the use of polarimetric
analysis techniques. These techniques exploit the information contained in the 4 x 4 scattering matrix,
whose entries are complex elements describing both the amplitude and the phase of the scattered
pulse [9]. Polarimetry offers a range of analysis techniques that enable the representation of the
scattering signature of a target, the representation of scattering in different polarization bases, the
computation of polarimetric features that enhance a particular property of targets, or the decomposition
of the polarimetric information in some features that relate to canonical scattering mechanisms [12].
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Backscattering coefficients (0°) at different polarization bases can be calculated using polarization
synthesis. This technique enables computing the response of the target to any combination of incident
and received polarization, which might uncover differences in targets otherwise hidden [13,14].
Another interesting polarimetric feature is the linear co-pol coherence, computed as the complex
correlation coefficient between HH and VV polarization channels. Its magnitude (| ppr-yv | ), varies
between 0 and 1, and can be helpful to understand target scattering mechanisms, i.e., surface scattering
leads to coherence values close to 1, whereas volume scattering close to 0 [15]. The phase of pyp.vv
is equal to the phase difference between HH and VV channels ($1-vy), which is a characteristic of
the number of bounces taking place in the reflection. An ideal smooth dielectric surface (single or
odd-bounce) would have a ¢pyy.yy of 0°, whereas an ideal dihedral (double or even-bounce) would
have a ¢ppp.yy of £180°. Natural targets, such as agricultural crops, normally have variable values of
dpp-vy (from —180° to +180°), depending on the characteristics of the target (and the configuration of
the sensor). For instance, crops with vertical canopy architectures might lead to differences in ¢byp.vv
when compared to other crops [16,17].

Polarimetric decompositions resume the full polarimetric information into few features that
can be interpreted in terms of the main scattering mechanisms occurring at each target, and hence
its bio-geophysical characteristics [18]. The Pauli decomposition expresses the scattering matrix as
a function of three components that represent, namely surface scattering (|Syy + Syv |), volume
scattering (1Spy |) and double-bounce (ISyy — Syv |). These three components can be arranged
in informative RGB color-composites that can be easily interpreted in terms of the main scattering
mechanisms. Alternatively, the Cloude—Pottier decomposition [18] is based on the eigen-decomposition
of the polarimetric coherency matrix and yields three features: entropy (H), alpha angle (x),
and anisotropy (A). Entropy measures the degree of disorder or mixture of different scattering
mechanisms on a target, with 0 = one single scattering mechanisms and 1 = several mixed scattering
mechanisms. Alpha angle represents the scattering mechanism, with 0° corresponding to surface
scattering, 90° to double bounce and intermediate values around 45° to volume scattering. The average
alpha angle (x) represents the average scattering mechanism on a target, whereas the dominant alpha
angle (o) indicates the scattering mechanism that is predominant on a target. The latter is more
informative in targets with high entropy (no single dominant scattering mechanism) [19]. Finally,
anisotropy represents the relative importance of the secondary and tertiary scattering mechanisms,
and thus should be evaluated only when more than one scattering mechanism exists (i.e., H > 0.7) [12].

All this information can be useful to describe the physical properties of the targets being imaged
and even to perform non-supervised classifications [20,21]. However, quad-pol sensors have limitations
due to their complexity, their increased data rate and reduced coverage and revisit time. For instance,
RADARSAT-2 dual-pol Standard Beam Mode images have a nominal swath of 100 km, whereas
Standard Quad Polarization Beam Mode images have a nominal swath of only 25 km. Therefore, it is
necessary to assess the added value of quad-pol observations with regard to different applications,
and in particular to crop classification.

Previous studies have shown that quad-pol data can successfully classify major crop types [22,23]
and even monitor crop phenology [24,25] or detect crop lodging [26]. A basic requirement for this is
that scenes should be acquired on dates when crops show differences apparent to the sensor, that is,
they behave differently when the electromagnetic pulse impinges on them. Different crops may
have different planting and harvest dates and also phenology can evolve differently. In this sense,
previous studies [11,25,27-30] stressed the importance of multi-temporal data for an adequate crop
identification. Classifications done using as input several SAR scenes acquired in key dates of the crop
cycle can yield accurate results [11,13,31]. However, it is still necessary to know whether quad-pol
data could add or not significant information on a classification framework based on multi-temporal
SAR imagery. Therefore, the objective of this study is to evaluate the added value of quad-pol datain a
multi-temporal crop classification framework based on SAR imagery.
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In [30], five RADARSAT-2 scenes acquired between March and July 2010 were used to investigate
the optimal dates for crop identification. Using as input just three scenes acquired between May and
June (each with quad-pol backscatter coefficients and their ratios), overall classification accuracies of
82% were obtained, successfully discriminating most crops. In this study, we started from the same
three scene configuration. Then, the analysis was extended investigating whether comparable results
were obtained using just dual-pol data. Finally, we evaluated whether quad-pol data represented
in other polarization bases or the inclusion of different polarimetric features lead to enhanced
classification results.

2. Study Site and Dataset

The study site corresponds to the agricultural areas surrounding the city of Pamplona (Figure 1),
in central Navarre (North of Spain). The region has a rolling topography with cultivated areas normally
located in plains and areas of gentle slopes (below 5%), and grasslands and forests occupying steeper
areas. Field sizes are variable, but most fields range between 1 and 3 ha.

Figure 1. Location of the study area in Navarre, Spain (a) and ground truth data used over an optical

image (b). Training and test set areas are presented in purple and yellow, respectively.

In this region, an area of 25 km x 25 km was selected, where rain-fed agriculture is the main land
use. In particular, winter cereals are the most frequent crops. In the year studied, wheat represented
55% of the total cultivated area, whereas barley and oats accounted for 16% and 15%, respectively.
Other crop types, found in much lower abundance, were sunflower, rapeseed, peas, vetch, permanent
grasslands, and fallow. Photographs of the crops studied are given in Figure 2.

The agricultural calendar in this area is typical of rain-fed winter crops. Crops are normally sown
in October and harvested in the beginning of July (Figure 3), with the exception of sunflower (planted
in April and harvested in September). Although phenological stages develop very similarly in the
three cereal crops (barley, wheat, and oats), barley plants flower and mature earlier. Barley stems
are weaker than those of wheat and, as a result, after heading barley plants normally bend and their
ears are inclined. On the contrary, wheat plants remain erected with vertical ears until harvest. Oat’s
phenological events mimic wheat, but its inflorescences are different (i.e., panicles instead of ears).
Rapeseed is sown earlier (in September) and flowers in April. In its vegetative phase rapeseed grows
vigorously and develops a dense, bush-like canopy that can reach a height of 1-1.5 m. During May
rapeseed fruits (pods) develop and then start to ripen. Afterwards, senescence starts and ends at the
end of June when plants die and pods are completely dry and hard. Peas and vetch are legume crops
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grown as forage in this area. Their calendar is also typical of winter crops, although their sowing date
is usually later (end of October or November). They are shorter than cereal plants and their canopies
have a dense random structure. After flowering they develop pods that ripen and get dry and hard.
Pea pods are longer and thicker than vetch’s. Sunflower is the most different crop in terms of calendar
and canopy configuration. Sunflower is a broadleaved plant with thick and long stems (compared to
the other crops of this study), which is planted in April. Plants usually have a separation of 20-30 cm
between each other and after a short and quick vegetative phase they develop large circular flowers
that fill in with seeds. Flowers dry and senescence occurs during summer; the crop is finally harvested
in September.

@)

Figure 2. Photographs of the different crops studied: (a) wheat; (b) barley; (c) oats; (d) sunflower;
(e) rapeseed; (f) peas; (g) vetch; (h) grasslands; and (i) fallow.

Grasslands in this area are mostly permanent covers with no sowing and harvest dates.
Instead they are cut (some of them grazed) several times during the season (normally three times),
and experience different phenological events depending on their species composition. This cover is
therefore very heterogeneous and diverse in terms of management. Finally, fallow fields are normally
present for a one-year duration in a rotation cycle of approximately five years. Fallow fields are
also quite heterogeneous depending on the techniques used for weed management (e.g., mechanical,
chemical, etc.).
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Figure 3. Agricultural calendar of the crops cultivated in the area. Sowing and harvest dates are shown,
as well as main phenological stages (their duration is approximate).

During the year 2010, a series of RADARSAT-2 scenes were acquired over the area. Based on a
previous analysis [30], the following three acquisition dates were selected: 12 May, 5 June, and 29 June,
since they represented optimal dates for accurate crop separation and classification, and in fact,
including earlier acquisition dates did not result in higher accuracies [30]. All scenes were acquired in
Fine Quad-Pol mode and as Single-Look-Complex products with a spatial resolution of 5.4 m in range
and 8.0 m in azimuth. In all cases, the average incidence angle was around 30°.

The ancillary data used consisted of a digital elevation model (DEM) of 5 m, a vector file with field
boundaries, and ground truth data resulting from the inspections of the EU CAP program (information
not publicly available). The EU CAP program provides subsidies to European farmers depending on
the crops being cultivated on each field and the management techniques used. Local administrations
are required to inspect a sample of these CAP declarations, so as to verify that farmer declarations
conform to reality (i.e., the crops declared by farmers are actually grown on each field). In this particular
case, the Government of Navarre inspected a 5% sample of fields selected at random. The total area of
the fields inspected within the studied area was above 1600 ha. With this information, a database of
928 fields with known crop class was generated. The number of fields per class varied proportionally
to the area covered by each crop in the region. Accordingly, the database had the following number
of fields per class: Wheat, 476; Barley, 168; Oats, 165; Sunflower, 24; Rapeseed, 10; Peas, 8; Vetch,
26; Grassland, 17; and Fallow, 34. One portion (2/3) of this information was used as ground truth
to build the crop signatures (622 fields), and the rest for accuracy assessment (306 fields); both sets
were obtained at random, keeping the same training/test proportions for each class. It should also be
taken into account that field size varied strongly with average field size being the largest for fields
corresponding to sunflower and rapeseed (>3 ha), followed by grasslands (~2 ha), cereals and fallow
(1-2 ha), and lastly peas and vetch (<1 ha).

3. Methodology

Figure 4 shows the general work-flow of this study. In the following subsections different tasks
are explained in detail.
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Figure 4. Work-flow chart of the methodology.

3.1. Image Processing

Image processing consisted of the following steps: (1) slant range to ground range conversion;
(2) orthorectification; (3) calibration; and (4) speckle filtering. Orthorectification was carried out using a
rigorous sensor model that required no ground control points and provided location accuracies below
1 pixel. Image calibration was performed using local incidence angle values computed from the DEM
available, to correct radiometric effects of topography. A 3 x 3 window Gamma-MAP filter was used
for speckle reduction. This adaptive filter is effective for reducing speckle while preserving linear
characteristics and discrete scatterers [32]. The resulting processed images were resampled to a pixel
size of 5 m. Finally, field medians were computed excluding border pixels by applying a 1-pixel buffer
to the field boundary vector file. Image processing was performed using Geomatica 10.3, NEST-5.1
and PolSARpro 5.0.

In addition, different polarimetric features were calculated. Backscattering coefficients (0°) at
different polarization bases were calculated using polarization synthesis. In particular, circular and 45°
linear polarization bases were used. The first consists of right-handed and left-handed polarization
states, leading to two co-polarized (RR and LL) and two cross-polarized (RL and LR) channels. And
the second consists of +45° and —45° polarization states, leading to two co-polarized (++,——) and two
cross-polarized (+—,—+) polarization channels. As already explained, for each polarization basis only
one cross-polarized channel was used since agricultural fields can be assumed to be reciprocal targets
and provide the same information in both cross-polarized channels. Next, backscatter ratios were
calculated for the three polarization bases. The polarimetric features considered were, the magnitude
(I ppp-vv ) and phase (dpp-vy) of linear co-pol coherence, the Pauli decomposition components
surface scattering (| Syy + Syy |), volume scattering (| Sgy |) and double-bounce (1 Syp — Syy |) and
the Cloude-Pottier decomposition components entropy (H), average alpha angle (), dominant alpha
angle (o7) and anisotropy (A). Accurate estimation of H/A/alpha and co-pol coherence parameters
requires spatial averaging, thus a 5 x 5 window was considered for alpha and co-pol coherence, and a
9 x 9 for H and A that are more affected by speckle noise [33]. This averaging limits the utility of these
polarimetric features for small fields.
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3.2. Separability Analysis

Separability or statistical dissimilarity is a measure of difference between two targets
(e.g., agricultural crops) as observed on a particular channel or feature. Different separability
measures exist and their underlying assumptions and interpretation differ. Backscatter coefficients
and polarimetric features do not necessarily follow Gaussian probability distribution functions (pdfs).
Therefore, separability measures not restricted to Gaussian pdfs need to be used to analyze SAR
data. With this aim, the Jeffries—-Matusita (JM) distance was used (Equation (1)), as it does not make
previous assumptions about observations’ pdfs [34]. In this work, separability analysis consisted of
the evaluation of the JM distance between pairs of crops for different features and dates.

Jij = {J [\/P(xwi)—\/l’ (x|wj)]2dx} 1)

where, J; is the JM distance between a pair of classes w; and wj, x refers to the observed feature
(e.g., backscatter coefficient or polarimetric feature), and p(x | w;) and p(x | w;) are the conditional
probability density functions for x given w; and wyj, respectively.

The JM distance ranges from 0 to 2, with J;; = 0 representing two classes that completely overlap,
and J;; = 2 two classes that are completely separable. Values below 1 represent poor separability,
1-1.5 corresponds to intermediate separability, and 1.5-2 corresponds to high separability [35].

3.3. Classification Algorithm

This study used the Random Forests (RF) classification algorithm [36] to classify different crop
types based on RADARSAT-2 derived features. RF is a nonparametric supervised classification scheme
with no a priori assumptions on the input data sets” pdfs. RF is an ensemble learning technique that
generates many decision trees that are aggregated to classify. Tree diversity is guaranteed because
trees are trained using different subsets and use different split rules at their nodes. In particular, each
tree within the ensemble is trained on a random subset of the original data, resampling the data with
replacement. Then, tree nodes are split using the best split variable among a subset of randomly
selected predictive variables. As a result, different classification results are obtained from each tree,
and a simple majority vote is used to create the final classification result. The RF technique has been
applied to a wide variety of disciplines, and in the last decade it has been used with success in remote
sensing applications including SAR classification studies [14,37,38].

In this work different RF classifications were performed using the package “randomForest” run
on the free software for statistical computing R. The number of trees (“ntree”) was optimized and
set to 200. The number of input variables considered for the random selection of the best splitting
variable at each node (“mtry”) was taken as the square root of the total number of input variables
considered for each classification. Similar to most classifiers, RF produces weak results when learning
from heavily imbalanced training datasets, favoring the majority classes and resulting in a poor
prediction of the minority classes [38]. To avoid this behavior different strategies can be followed, such
as down-sampling the majority classes or over-sampling the minority classes so that they obtain the
same training sample size as the majority ones [39]. In this work the latter option was implemented,
but as in [40], rather than simply replicating the minority training sites, synthetically generated training
sets were created by randomly perturbing each training site at around one standard deviation of the
feature space. This way synthetic training sets statistically equal to the original ones were obtained
with a size equal to that of the most frequent class (i.e., wheat).

Different RF classification models were constructed using the same training set but different input
features (described in Section 3.1). Results were compared with an independent test set to quantitatively
assess classification performance. For this aim, standard accuracy assessment metrics were calculated,
i.e., overall accuracy (OA), Kappa coefficient, producer’s (PA), and user’s accuracies (UA).
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4. Results

4.1. Descriptive Analysis

As a preliminary step to the separability analysis and classification, a descriptive analysis of
crops’ behavior was made for the different features and dates. Figure 5 shows scatterplots of the most
significant results that were obtained.
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Figure 5. Different scatterplots for the three studied dates: (a) 0°yy vs. 0°yv; (b) | pguvy | vs. dupVV;
() Hos. o; (d) Hovs. otg;(e) |Sypvy | vs. 1Sy | (£) |Sgp-vy | vs. |Spy |. Colors represent different
dates, blue = 12 May 2010, green = 5 June 2010 and red = 19 June 2010. Points represent class means
and error bars +1 standard deviation.

Rapeseed produced a significant volume scattering contribution and this can be clearly seen in its
high o°py value, its alpha value around 45°, and its high |Syy | component, especially for the 5 June
scene; similar results for rapeseed were obtained in [41]. The heterogeneous structure of the rapeseed
canopy caused a strong depolarization of waves and for this reason the value of H was the highest and
the | pgp.yv | the lowest.

Due to the late sowing date of sunflower, at the time of image acquisition this crop was in its
vegetative phase, with rather small plants (20-50 cm high) that did not completely cover the soil.
As a result, its main scattering mechanism was surface scattering, illustrated by a high | pgp.vv | and a
duHp-vv close to 0° with a very low dispersion (much lower than that of the other crops). This was also
confirmed by the lowest values of H and alpha angle, identifying surface scattering as the dominant
mechanism. As sunflower plants grew, | pgp.vy | decreased and H increased, illustrating a transition
to other scattering mechanisms (volume and double bounce).
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Generally, dominant alpha (x;) took lower values than the average alpha (x) but both
angles were quite similar if different crops were compared. Sunflower and fallow fields took the
lowest values (i.e., surface scattering) and rapeseed and oats the highest, with values close to 45°
(i.e., volume scattering).

H values were quite high for all crops except for sunflower (as mentioned above), with values
above 0.7 for most crops and dates. After rapeseed (already discussed), peas and vetch had the highest
H values; these are crops with a short, bush-like canopy structure. Cereals had slightly lower H values,
although barley had a distinctive peak in H on 5 June, likely corresponding to barley ears filling.
As ears fill in, barley plants lose their vertical structure and bend at random angles before the plants
ripen, which actually takes place earlier than in other cereal crops. This effect is also visible in other
polarimetric features. For instance, | pypvy | had quite a high value in barley for the 29 June scene,
probably indicating that harvesting had already taken place. Again, this was confirmed by the decrease
in H and alpha angle.

For most of the crops, the increase of Pauli surface scattering (| Syp+vy |) on 29 June was clearly
apparent. At this time, most winter crops were senescent or even harvested, so electromagnetic
radiation could penetrate further in the canopies, leading to an increased surface contribution.

Overall, rapeseed and sunflower were the crops with the largest dynamic range over the time
period studied. In contrast, grasslands and fallow remained mostly constant for any of the features
studied without showing any clear pattern. These classes showed a very high variability (see error
bars in Figure 5), which could probably be a consequence of great differences in management
(grassland cutting and weed control in fallow lands) and phenology of these covers.

4.2. Separability Analysis

JM distance was computed to evaluate the separability between each pair of crops for each feature
and date. Then, average distance values for each crop with the rest were computed for each date,
as well as the average separability of all crop pairs for each feature. It can be observed that JM distance
values obtained have a clear temporal variability (Tables 1-5).

Table 1. Average JM distance for each crop and date, as well as the average of all crop pairs, for
0°HH, 0°Hy, 0°yy and their ratios. Colors represent values above 1.00 (blue) and above 1.50 (green),
and shades represent the different dates evaluated.

Wheat Barley Oats Sunflower Rapeseed Peas Vetch Grassland Fallow Average

0.24 020 033 0.25 0.58 035 022 0.46 0.36 0.33
o°ug 052 059 050 0.66 1.57 052 039 0.62 0.41 0.64
0.31 034 030 0.92 0.85 036 040 0.77 0.55 0.53

0.49 066 059 0.87 1.16 123 0.70 0.51 0.50 0.75

c°uv 073 .01 091 0.81 1.90 1.03 067 0.62 0.56 0.92
0.47 053 043 1.00 1.59 044 045 0.50 0.42 0.65

0.84 116  1.07 1.03 0.86 1.07  0.78 0.61 0.79 0.91

o°yy 083 068  1.11 1.12 1.75 0.80 056 0.82 0.62 0.92
0.64 046 089 1.27 1.26 058 043 0.63 0.59 0.75

. 0.72 111 092 1.36 0.76 076 057 0.53 0.58 0.81
/‘LOHH 0.58 069 077 0.83 0.96 091 045 0.46 0.49 0.68
W o072 060  1.08 0.72 0.69 054 063 0.54 0.56 0.68

. 0.40 066 041 0.95 1.01 0.89 048 0.46 0.45 0.63
/" AV 044 048 055 1.01 1.42 075 038 0.41 0.39 0.65
O HH 34 042 032 0.65 1.55 042 034 0.74 0.31 0.57
. 0.47 054 057 1.76 0.85 0.83 045 0.48 0.82 0.75
/‘LOVH 0.41 0.75 043 1.47 1.12 082 048 0.49 0.50 0.72
VW 037 035  0.69 0.99 0.95 055 037 0.75 0.41 0.60

\ 12 May | 5 June \ 29 June |
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Table 2. Average JM distance for each studied crop and date as well as the average of all crop pairs,

for 0°gRr, 0°Rr1, 0°LL, and their ratios. Colors and shades as in Table 1.

Wheat Barley Oats Sunflower Rapeseed Peas Vetch Grassland Fallow Average
0.37 0.51 0.46 0.91 1.01 0.88  0.59 0.55 0.39 0.63
0°RR 0.55 0.89 0.65 0.74 1.82 093 048 0.56 0.50 0.79
0.38 0.45 0.43 0.83 1.65 039 043 0.63 0.51 0.63
0.58 0.80 0.81 1.07 0.75 0.80 046 0.51 0.66 0.72
0°RL 0.76 0.67 0.92 1.12 1.47 057 052 0.76 0.53 0.81
0.50 0.44 0.56 1.56 1.07 062 052 0.76 0.58 0.73
0.39 0.51 0.45 0.92 1.10 099 0.1 0.58 0.51 0.67
o°LL 0.55 0.95 0.64 0.69 1.85 092  0.58 0.65 0.61 0.83
0.41 0.49 0.47 0.89 1.50 037 049 0.77 0.59 0.67
0.18 0.20 0.20 0.25 0.33 035 031 0.16 0.19 0.24
0°RrR/0°1L 0.17 0.18 0.21 0.39 0.59 018 045 0.16 0.25 0.29
0.17 0.17 0.14 0.47 0.28 022  0.39 0.14 0.16 0.24
0.46 0.60 0.47 1.72 1.06 072 046 0.47 0.82 0.75
0°RrL /0°RR 0.39 0.53 0.39 1.48 1.03 0.63  0.39 0.46 0.49 0.64
0.40 0.35 0.61 1.04 1.21 040 048 0.46 0.42 0.60
0.47 0.55 0.53 1.74 0.95 077 047 0.48 0.95 0.77
0°RL /0°LL 0.41 0.55 0.40 1.47 1.09 057 049 0.47 0.56 0.67
0.37 0.40 0.61 1.15 1.09 036 046 0.74 0.47 0.63
\ 12 May \ 5 June ‘ 29 June ‘

Table 3. Average JM distance for each studied crop and date as well as the average of all crop pairs,

for 6°,4, 0°,_, 0°__, and their ratios. Colors and shades as in Table 1.

Wheat Barley Oats Sunflower Rapeseed Peas Vetch Grassland Fallow Average
0.56 0.74 0.73 0.63 0.54 054 045 0.49 0.51 0.58
04 0.81 0.56 0.90 0.92 1.46 049 057 0.78 0.64 0.79
0.53 0.46 0.52 1.38 1.16 0.62 052 0.73 0.57 0.72
0.31 0.46 0.33 0.94 1.06 049 054 0.55 0.38 0.56
0 R+- 0.48 0.81 0.56 0.74 1.81 079  0.58 0.67 0.60 0.78
0.35 0.39 0.39 0.65 1.45 043 047 0.76 0.63 0.61
0.49 0.77 0.73 0.91 0.64 058  0.34 0.47 0.52 0.61
o°_ 0.79 0.58 0.97 0.96 1.57 0.75  0.50 0.72 0.51 0.82
0.56 0.50 0.57 1.43 1.30 0.67 047 0.86 0.51 0.76
0.22 0.24 0.22 0.59 0.36 046 042 0.22 0.24 0.33
0°44l0°- 0.17 0.23 0.19 0.70 0.17 019  0.28 0.40 0.16 0.28
0.23 0.19 0.35 0.58 0.28 040 0.38 0.41 0.20 0.33
0.55 0.70 0.63 1.60 1.05 1.06 051 0.49 0.77 0.82
0°4. /044 0.47 0.38 0.53 1.47 0.65 047  0.38 0.49 0.49 0.59
0.47 0.36 0.66 1.24 0.92 056  0.35 0.45 0.54 0.62
0.43 0.71 0.53 1.48 0.87 042 041 0.40 0.71 0.66
0°4 /o 0.48 0.39 0.51 1.48 0.87 045 0.38 0.54 0.51 0.62
0.44 0.35 0.66 1.21 1.04 039 0.38 0.49 0.51 0.61
\ 12 May \ 5 June ‘ 29 June |

Table 4. Average JM distance for each studied crop and date as well as the average of all crop pairs,

for the Cloude-Pottier features H-A-« and «;. Colors and shades as in Table 1.

Wheat Barley Oats Sunflower Rapeseed Peas Vetch Grassland Fallow Average
0.56 0.62 0.58 1.81 1.21 0.63 0.56 0.57 0.98 0.83
102 0.51 0.61 0.56 1.74 1.22 0.50 0.48 0.62 0.76 0.78
0.55 0.45 0.94 1.26 1.34 0.52 0.44 0.64 0.58 0.75
0.20 0.17 0.17 0.22 0.60 0.15 0.34 0.32 0.17 0.26
A 0.23 0.16 0.25 0.40 0.52 0.15 0.23 0.25 0.14 0.26
0.19 0.19 0.18 0.42 0.28 0.30 0.26 0.19 0.14 0.24
0.59 0.68 0.63 1.68 1.38 0.56 0.79 0.48 0.61 0.82
H 0.53 0.52 0.62 1.54 1.58 054 0.58 0.50 0.65 0.78
0.39 0.36 0.38 0.80 1.63 0.32 0.31 0.48 0.43 0.57
0.60 0.89 0.81 1.69 0.83 1.00 0.53 0.54 1.06 0.88
o 0.56 0.73 0.71 1.73 0.76 075 0.53 0.83 0.79 0.82
0.75 0.55 1.27 1.46 0.83 0.88 0.57 0.94 0.74 0.89
\ 12 May \ 5 June ‘ 29 June |




Remote Sens. 2016, 8, 335 12 of 19

Table 5. Average JM distance for each studied crop and date as well as the average of all crop pairs,
for Pauli decomposition features (1 Sy — Syv |, ISuv |, and 1Sy + Syy 1), | paH-vv |, and dyap-vv.
Colors and shades as in Table 1.

Wheat Barley Oats Sunflower Rapeseed Peas Vetch Grassland Fallow Average

0.52 0.54 0.68 0.88 0.86 1.02 0.40 0.52 0.72 0.68
ISy — Svv! 0.68 0.47 0.85 0.80 1.32 0.58 0.37 0.44 0.38 0.66
0.36 0.24 0.46 0.99 0.86 0.25 0.25 0.38 0.24 0.45
0.40 0.50 0.54 0.83 0.89 0.69 0.52 0.32 0.39 0.56
[Suv | 0.73 0.91 0.97 0.68 1.82 1.02 0.68 0.53 0.54 0.88
0.42 0.41 0.34 0.68 1.39 0.29 0.32 0.30 0.32 0.50
0.32 0.33 0.36 1.20 0.92 0.73 0.34 0.37 0.34 0555
ISuu + Svv 0.42 0.66 0.45 0.58 1.55 0.33 0.36 0.37 0.40 0.57
0.29 0.34 0.36 0.36 1.30 0.26 0.30 0.45 0.42 0.45
0.49 0.53 0.52 1.70 0.86 0.51 0.44 0.45 0.85 0.71
PIE— 046 049 046 1.66 0.85 042 039 0.60 0.71 0.67
0.41 0.42 0.71 1.27 1.02 0.37 0.37 0.58 0.50 0.63
0.26 0.45 0.34 0.89 0.31 0.30 0.26 0.26 0.38 0.38
SHH-VV 0.49 0.46 0.38 0.80 0.29 0.67 0.33 0.31 0.27 0.44
0.55 0.44 0.42 0.88 0.33 0.49 0.35 0.35 0.36 0.46
\ 12 May | 5 June ‘ 29 June |

Average JM distances were low (<1.0) in most cases. This was somewhat expected, due to the
averaging and the similarities existing between many of the crops studied, in terms of their agricultural
calendar and morphology (see Section 2). However, sunflower and rapeseed showed a separability
> 1.0 (and even >1.5 in some cases) with the rest for certain dates and features. Average JM distance
values for cereals (i.c., wheat, barley, and oats) were normally low due to their mostly similar behavior
during the growing season. In particular, wheat had a separability < 1 in all the linear backscatter
coefficients and their ratios. Barley had three separability peaks above 1.0, one on 12 May in 0°yy,
a second one on 5 June in 0°yy, and a third on 12 May in 6°yy/0°yy. The first and third correspond
to the moment where the flag leaf was deployed, whereas the second could be related to the influence
of barley ears. In turn, oats had a separability >1.0 in 0°yy on the first two dates and in 6%/ 0°yy on
the last (Table 1). This results were mostly in coincidence with [35].

The average JM distance of peas was quite good (>1.0) for 0°y and 0°yy, obtaining better results
on 12 May and 5 June, corresponding with the phase of fruit (pod) development. In general, backscatter
ratios did not result in significantly higher separability values than backscatter coefficients. Grasslands,
fallow, and vetch were the crops with the lowest separabilities in all the features and dates studied.

Different polarization bases did not appear to provide significant improvements in the outcome
of separability (Tables 2 and 3). In general, sunflower and rapeseed had high JM distances (>1.0 and
even >1.5 in some cases) with other crops in circular and +45°—45° bases. On the contrary, for cereals,
neither cases obtained higher separabilities than those obtained with linear (H-V) basis. As in the
previous case, backscatter ratios did not seem to provide enhanced separabilities, with the exception
of sunflower, which was best separated on 12 May in both the circular and +45°—45° cross-pol ratios
(1.74 and 1.60, respectively). Furthermore, a very low separation (<0.6) was observed for all crops in
the circular and +45°—45° co-pol ratios.

JM distances obtained for H-A-a Cloude-Pottier decomposition parameters were variable
(Table 4). The highest distance values were obtained by o4, followed by «. Therefore, it seems
that for this type of target (crops) o is more informative than «. However, there were some exceptions,
like sunflower, which showed the highest JM distances with «, although closely followed by H and &
on 12 May and 5 June. Also, H and « obtained the highest separabilities for rapeseed, particularly on
29 June. For cereals, JM distances were, in general, low because of their similar characteristics, already
mentioned above. However, oats had quite a high JM distance for o; on 29 June (and slightly lower
for o), this represented the highest separability for this crop in all the features studied. This is due
to higher o values for oats (~33°) compared to wheat (~26°) and barley (~20°) (see Figure 5) in the



Remote Sens. 2016, 8, 335 13 of 19

last part of the season, demonstrating that oats ripen slower and keep a certain volume scattering
component, whereas wheat and barley move faster to a surface scattering behavior.

Peas and vetch showed low separability values with the only exception of x; on 12 May for
peas (Table 4), coinciding with the phenological stage of pod development. It must be taken into
account that peas and vetch had the smallest field sizes and this might seriously compromise the
accuracy of these polarimetric features due to the spatial averaging required for their calculation.
On the contrary, the larger field sizes of sunflower and rapeseed might also favor the ability of H and
« to separate them. Finally, anisotropy yielded very low separability distances for all crops, indicating
no predominance of a second scattering mechanism (i.e., the second and third scattering mechanisms
were at the same level).

Finally, Pauli decomposition parameters, co-pol coherence and phase difference were assessed
(Table 5). In this case, and in agreement with the results showed above, sunflower and rapeseed
yielded the highest distance values. Sunflower had its highest separabilities in | pyp.vy |, particularly
on 12 May and 5 June (1.70 and 1.66, respectively), whereas rapeseed was best separated in | Sy |
and Sy + Syy | on 5 June and 29 June (1.55 and 1.30, respectively). For the other crops, |Spy |
and |Syyg — Syv | (particularly on 5 June) resulted in the highest separabilities in this set of features.
However, separabilities were not higher than those obtained with the backscatter coefficients and
ratios with linear (H-V) basis.

4.3. Crop Classification

RF classification algorithm was used to evaluate the added value of quad-pol data by testing
different polarization bases and polarimetric features in a multi-temporal crop classification scheme.
Different classification models were built considering different inputs. First, model 0 consisted
of VV-VH dual-pol configuration with just two backscattering coefficients in the two polarization
channels. Then quad-pol configurations including three backscattering coefficients and their ratios
were evaluated considering three polarization bases, i.e., linear H-V, circular and linear 45°, leading to
models 1, 2, and 3, respectively (Table 6).

Table 6. Classification accuracy measures using as input dual-pol vs. quad-pol with different

polarization bases.
Quad-Pol Overall
Model No A Kappa
Dual VV-VH Linear H-V * Circular ¥ Linear45° ¥ ccuracy
0 x 0.79 0.69
1 x 0.79 0.69
2 x 0.66 0.53
3 x 0.70 0.57
* 0°up, 0°Hy, 0°vv, and their ratios; ¥ 6°rg, 0°Rr, 0°11, and their ratios; ¥ 6°,., 0°,_, 0°__, and their ratios.

The same results were obtained using either the dual-pol VV-VH (model 0) or the quad-pol
configuration in linear H-V basis (model 1), providing OA and Kappa values of 0.79 and 0.69,
respectively. However, quad-pol data in circular or 45° bases lead to lower accuracies (Table 6),
particularly in the circular case.

Figure 6 shows the accuracy obtained for individual crop classes on each model (0 to 3)
representing the producer’s and user’s accuracy (%). PA represents the probability that a certain
crop class on the ground is correctly classified, whereas UA refers to the probability that any field
classified as a certain crop class in the image is actually this class on the ground. PA corresponds to
errors of omission (fields of a certain class not classified as such) and UA to errors of commission
(fields included erroneously in a certain class).
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Figure 6. UA and PA for the different crops and classification schemes (models) tested.

The best PA results were achieved for sunflower and rapeseed. Sunflower obtained a PA of 100%
in the four modes tested, and so did rapeseed in models 0, 2, and 3. These results are in agreement with
the high separability values obtained for these two classes, except for rapeseed in model 1, where a
high proportion of fields were erroneously classified as peas. UA results for these two crops were
slightly lower than PA values, and were highest for models 0, 2, and 3 for rapeseed and model 3 for
sunflower. Wheat and barley yielded high accuracies for models 0 and 1, with PA and UA values
above 75%. The third cereal crop, oats, had lower PA accuracies (mostly due to some oat fields being
classified as wheat) with values around 70% for models 0, 1, and 2 and even lower for model 3. The UA
values of oats were above 75% for models 0 and 1 but dropped down to 50% for models 2 and 3.

Minor crops (i.e., peas, vetch, and grasslands) had normally lower accuracies, since most
classification models tested failed at classifying these crops. In particular, pea fields obtained the
best results for model 0 with PA = 67% and UA = 50%; these values were lower for the other models
tested. Vetch achieved even poorer results with a maximum PA of only 50% for model 1; circular
and 45° bases resulted in even lower accuracies. The small field sizes of these two classes might be
partly responsible of these poor results. Grasslands were also poorly classified with model 0 but its
results improved clearly for model 1 and, especially for model 3, with PA values of 100%, although
UA only reached 42%. This means that all grasslands test sites were classified as such, but several
test fields of other classes (mostly wheat) were also incorrectly classified as grasslands. Finally, fallow
fields had varying accuracies depending on the models tested. Overall, the high accuracies obtained
with the VV-VH dual-pol configuration (model 0) and the quad-pol in 45° bases (model 3) seem very
remarkable, with PA and UA values around 75% and 50%, respectively.

The inclusion of the different polarimetric features in the RF classification scheme improved
classification accuracy measures in all cases (Table 7). In particular, the inclusion of coherence
(I ppp-vv ) and phase difference (¢yp-vy) in model 4 outperformed the OA and Kappa values
obtained with model 1 (with improvements of 0.05 in OA and 0.07 in Kappa). The other three models
(models 5, 6, and 7) resulted in only minor accuracy enhancements. The best results were obtained
when all the polarimetric features were used as input (model 8), with an OA of 0.86 and a Kappa value
of 0.79. When compared to the VV-VH dual-pol configuration (model 0 in Table 6), these values
represented improvements of 0.07 and 0.10 in terms of OA and Kappa, respectively.
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Table 7. Classification accuracy measures when different polarimetric features were added to the H-V
linear quad-pol data.

Feature Combination Overall
Model No - - A Kappa
Linear H-V*  lpgnp.yv!, dunvv  Pauli o, H, A  oq,H A ccuracy
4 x X 0.84 0.76
5 x x 0.81 0.72
6 x x 0.82 0.73
7 x x 0.82 0.73
8 X X x x x 0.86 0.79

* 0°4H, 0°Hy, 0°vy, and their ratios.

The results per crop (Figure 7) showed that polarimetric features contributed to slight
improvements for wheat, barley, and oats; with PA and UA values increasing around 10% in the
best cases. For wheat the addition of | pypy.yy | and ¢yp.vy provided the best results, whereas for
barley it was Pauli features and for oats | pyrryy | and ¢dppvy and oo/H/A. Sunflower obtained good
results regardless of the polarimetric features added, with highest accuracies for model 6 (PA = 100%
and UA = 89%). In turn, rapeseed clearly benefited from the addition of polarimetric features; with
models 4 and 5 having PA and UA values around 65% and models 6, 7, and 8 topping 100%. The poorest
results were obtained for peas, where none of the polarimetric features improved the accuracy values
obtained for the VV-VH dual-pol case (Figure 6); models 1, 6, and 7 obtained the same results and
models 4 and 8 were unable to correctly classify a single pea field (Figure 7). On the other hand, vetch
yielded PA values of 50% for all cases regardless of the polarimetric features added; in this crop UA
values were lower, with a maximum of 36% for model 8. Grasslands were quite successfully classified,
with PA values of 80% for models 1-7; however, these values were exceeded when quad-pol data were
transformed to 45° basis (model 3 in Figure 6). Similarly, fallow fields were reasonably identified in
model 3 (Figure 6). This class achieved lower PA values for models 4-6 (Figure 7), whereas it increased
again for models 7 and 8. This corresponds to the higher separability achieved by «; for this class
(Table 4). These results are also visible in the classification maps provided in Figure 8, where the
results of model 0 and model 8 are compared. It can be observed that their similarity is very high,
with differences corresponding mainly to grasslands and minor crops like vetch and peas.

100 - T
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Sunflower  Rapeseed Peas Vetch Grasslands Fallow
0 4 - - T T -
£ :
< :
25 4 - 5' :
& “ :
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Figure 7. UA and PA for the different crops and classification schemes (models) including
polarimetric features.
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| Wheat Barley ‘ Oats Sunflower | Rapeseed | Peas Vetch ‘ Grasslands - Fallow

Figure 8. Classification maps for a sample agricultural district: (a) corresponds to classification model
0 (dual pol) and (b) to model 8 (quad pol including all the polarimetric features).

5. Discussion

The analyses performed (descriptive analysis, separability study, and classification) highlight
the importance of linear backscatter coefficient values for crop classification. Using just three scenes
acquired in key dates, a VV-VH dual-pol configuration was sufficient for accurately classifying most
crops in the area (i.e., wheat, barley, oats, sunflower, and rapeseed). This result is remarkable and
demonstrates the suitability of the Sentinel-1 nominal operational mode (dual-pol VV-VH) over land
for agricultural applications. Although previous studies demonstrated the benefits of quad-pol data
compared to single or dual-pol configurations for crop classification when just one acquisition date was
available [22,42], when multi-temporal configurations were tested these differences were minor [8,43].
In fact, some studies [44,45] reported high classification accuracies with just three scenes acquired
in key dates in dual-pol configurations, in coincidence with our results. Therefore, it seems that
rather than a single-date quad-pol dataset, a multi-date dual-pol option provides enhanced crop
classification accuracies.

However, results for minor crops (peas, vetch, grasslands, and, to a lesser extent, fallow) were
not that successful and varied for the different models evaluated. It should be taken into account
that the rather small size of fields of these classes (particularly peas and vetch) might have affected
the accuracy of the calculation of some polarimetric features tested here, which required spatial
averaging. On the other hand, the grasslands class can be very variable in terms of management
practices; subdivision of this class into two or three classes according to their management would
probably result in higher accuracies, but this could not be tested with our dataset. Similarly, fallow
fields might also be difficult to identify because they can be very heterogeneous due to differences
in weed management, previous crops cultivated, etc. Nonetheless, the classification based on V-H
dual-pol data achieved an intermediate accuracy for peas, as did the quad-pol configuration for vetch.
In turn, grasslands and fallow fields were accurately identified in some of the models tested, and these
results are encouraging because of the heterogeneity of these classes in terms of management practices.

Overall, quad-pol data in different polarization bases (circular and 45° linear) showed worse
results than those obtained with H-V linear basis. However, certain crops (i.e., grasslands and fallow)
showed enhanced accuracies at 45° basis. Regarding the inclusion of different polarimetric features,
co-pol coherence (| pygp.vv | ) and phase difference (¢yp-vy), clearly improved the overall accuracy
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results obtained with quad-pol backscatter coefficients and ratios. Although, the other polarimetric
features evaluated (Pauli and Cloude-Pottier decomposition features) showed some sensitivity to
crop characteristics and good separabilities for some particular crops, their inclusion in the RF
classifications did not result in clear improvements in the overall accuracy, probably because the
information they provided was somehow redundant with that of the backscatter coefficients and ratios.
Nonetheless, some improvements in the classification of some crops were observed after adding Pauli
or Cloude-Pottier decomposition features. The inclusion of all the polarimetric features evaluated lead
to overall classification performance metrics of OA = 0.86 and Kappa = 0.79; these values represented
improvements of 0.07 and 0.10 in terms of OA and Kappa, respectively, when compared to the VV-VH
dual-pol configuration.

All in all, this approach is almost ready to be used to operationally classify agricultural areas and,
for instance, to reduce the number of fields inspected for the EU CAP program by local administrations.
The accuracies obtained here suggest the operational readiness of this technique, at least for identifying
major crops. Further improvements need to be done to successfully classify minor crops with small
field sizes and heterogeneous classes like grasslands and fallow fields.

6. Conclusions

The results of this study demonstrate that C-band SAR data can be effectively used for crop
classification. Major crops in the area achieved high classification accuracies, and in particular
cereal crops (wheat, barley, and oats) could be adequately identified, which is remarkable due to
their similarities in terms of morphology and agricultural calendar. It was observed that the use
of different polarimetric bases (circular and 45° linear) did not produce clear benefits in terms of
overall classification accuracy, although improvements were reported in the identification of some
particular crops (i.e., grasslands and fallow). Regarding the addition of polarimetric features, co-pol
coherence and phase difference clearly enhanced classification results, but Pauli and Cloude-Pottier
decomposition features did not provide additional improvements. The classification using all the
polarimetric features evaluated led to an overall accuracy of 0.86 and a Kappa value of 0.79; these
values represented improvements of 0.07 and 0.10, respectively, when compared to the VV-VH dual-pol
configuration. Hence, a VV-VH dual-pol configuration was still considered sufficient for accurately
classifying major crops in the area as long as acquisitions in at least three key dates of the agricultural
calendar were available. However, the method still needs to be adjusted to improve the classification of
some crops that had small field sizes in this study (i.e., peas and vetch), heterogeneous cover (i.e., fallow
and grasslands), and crops that are common in other parts of the world (e.g., corn, potato, or sugar
beet). Today, Sentinel-1 data provide opportunities to make this application fully operational.
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