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Abstract: The fractional vegetation cover (FCover) is an essential biophysical variable and plays
a critical role in the carbon cycle studies. Existing FCover products from satellite observations are
spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to
meet the requirements of various applications. In this study, an operational method is proposed to
calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS) leaf area index
(LAI) product to ensure physical consistency between LAI and FCover retrievals. As a result, a global
FCover product (denoted by TRAGL) were generated from the GLASS LAI product from 2000 to
present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of
the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1) FCover product indicates
that these FCover products exhibit similar spatial distribution pattern. However, there were relatively
large discrepancies between these FCover products over equatorial rainforests, broadleaf crops
in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency
analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with
ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate
(RMSE = 0.0865, and R2 = 0.8848) than GEOV1 (RMSE = 0.1541, and R2 = 0.7621).
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1. Introduction

The fractional vegetation cover (FCover), defined as the fraction of green vegetation as seen from
the nadir of the total statistical area, is a canopy-intrinsic variable that depends only on the canopy
structural attributes and plays a critical role in climate and hydrologic modeling, natural hazards
monitoring, and soil erosion risk assessment [1,2]. Satellite observations provide the only feasible way
to estimate FCover at regional and global scales.

Many algorithms have been developed to retrieve FCover from satellite remote sensing data [3–5]
and multiple global FCover products have been generated from data acquired by the Advanced Very
High Resolution Radiometer (AVHRR) [1], the Polarization and Directionality of Earth Reflectance
(POLDER) instrument aboard the Japanese space-borne ADEOS-I [6], and SPOT/VEGETATION [3,7].
In general, three types of algorithms are employed, empirical methods, spectral mixture analysis (SMA)
methods and physical methods. Empirical methods are based on statistical relationships between
FCover and vegetation indices or specific spectral reflectance to retrieve FCover from remote sensing
data. They are calibrated for distinct vegetation types using field measurements and concurrently
acquired satellite images [8–12]. The empirical methods are computationally efficient in operating
with large amounts of data and widely used in FCover estimation on a regional scale. The limitation of
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relationship based approaches is that the resulting formulas are influenced by vegetation type and
soil background. SMA methods estimate FCover at a sub-pixel level based on endmembers from
remote sensing data [1,13,14]. These methods assume that the pixel composite spectral responses are
the linear sum of the reflectance measurements of the individual endmembers, weighted by their
relative proportions [15]. The endmembers can be either developed from laboratory or field spectra or
derived directly from remote sensing data. These SMA methods, especially the pixel dimidiate model,
were widely used to estimate FCover and achieved good results at the regional scale [16]. However, it
is difficult to determine the endmembers and the spectral of the endmembers at the global scale for
FCover estimation because the land surface is complex and the spectral characteristics of objects are
varied. Physical methods are based on the inversion of canopy radiative transfer models describing
the transfer of solar radiation in vegetation canopies. Since the physical methods can be adjusted for
a wide range of situations [17], radiative transfer models are increasingly used in the inverse mode
to estimate FCover from remotely-sensed data. However, inversion techniques based on iterative
minimization of a cost function require hundreds of runs of the canopy radiative transfer model for
each pixel; therefore, they are computationally too demanding [17]. For operational applications,
artificial neural networks (ANNs) are popular inversion techniques that are based on a pre-computed
reflectance database [18].

Nevertheless, currently available empirical, SMA, and physical methods generally use only
single-phase remote-sensing data to retrieve FCover values. A consequence of using limited
information during the inversion process is that the FCover products generated by these methods
are spatially incomplete and temporally discontinuous, and also insufficiently accurate to meet the
requirements of various applications [19]. Camacho et al. evaluated the performance of the GEOV1
FCover product and demonstrated that the GEOV1 FCover product presented the higher percentage
of missing values at high latitudes in the northern hemisphere, with a wide variability as a function
of the period of the year, mainly due to snow coverage changes along the year as well as increase in
observations under dark conditions, particularly above the polar circle in winter, and the equatorial
region also presents a large fraction of gaps (up to 50%) as a consequence of the higher cloudiness [19].
The RMSE of the GEOV1 FCover product is around 0.1. It is still unable to meet the threshold accuracy
requirements (˘0.05). The low accuracy and poor quality, in many cases, among existing FCover
products require improvements or new products. Furthermore, currently available inversion methods
are generally parameter-specific algorithms to separately retrieve land surface parameters from satellite
observations, which results in a lack of physical consistency between current land surface parameter
products [20,21].

To improve the quality and accuracy of satellite products, the Global LAnd Surface Satellite
(GLASS) product suite was developed, and the phase I products include leaf area index (LAI),
shortwave broadband albedo, longwave broadband emissivity, downwelling shortwave radiation,
and photosynthetically active radiation (PAR) [22,23]. Efforts are being made to generate seven
additional products, including the fraction of absorbed photosynthetically active radiation (FAPAR),
FCover, gross primary production (GPP), Evaportranspiration (ET), net radiation, net longwave
radiations, and land surface temperature (LST). The GLASS LAI product was retrieved from
time-series MODIS and Advanced Very High Resolution Radiometer (AVHRR) surface reflectance
data [24]. Extensive validations for all biome types demonstrate that the GLASS LAI product provides
temporally-continuous LAI profiles with much improved quality and accuracy compared to the current
MODIS and GEOV1 LAI products [25].

This paper aims to develop an operational method to generate a high-quality global FCover
product from the GLASS LAI data to ensure physical consistency between LAI and FCover retrievals.
The method was applied to generate a global FCover product (spanning from 2000 to 2014) from the
GLASS LAI data derived from MODIS surface reflectance data. The spatial and temporal consistencies
of the retrieved FCover values in this study are evaluated by comparison with GEOV1 FCover values,
and the accuracy of the retrieved FCover values was validated against ground-based FCover estimates.
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2. Data

2.1. Satellite Data Sets

The GLASS LAI product was used to derive FCover product, and GEOV1 FCover product was
compared with the FCover product proposed in this study. The main characteristics of the GLASS LAI
product and the GEOV1 FCover product are described below.

2.1.1. GLASS LAI Product

The GLASS LAI product is one of the longest duration LAI products in the world. It has a temporal
resolution of 8 days and spans 1981–2014. For the period 1981–1999, AVHRR reflectance data from
NASA’s Land Long-Term Data Record (LTDR) project [26] were used to retrieve the LAI product, which
was provided in a geographic latitude/longitude projection at spatial resolution of 0.05˝ (~5 km at the
Equator). For the period 2000–2014, the LAI product was derived from MODIS surface reflectance data
and provided in a sinusoidal projection at spatial resolution of 1 km [25]. The GLASS LAI product was
retrieved using general regression neural networks (GRNNs). Unlike existing neural network methods
that use remote sensing data acquired only at a specific time to retrieve LAI, the GRNNs were trained
using fused time series LAI values from MODIS and CYCLOPES LAI products and reprocessed time
series MODIS/AVHRR reflectance. The reprocessed MODIS/AVHRR reflectance values from an entire
year were input to the GRNNs to estimate the one-year LAI profiles. The GLASS LAI product was
generated and released by the Center for Global Change Data Processing and Analysis of Beijing
Normal University [27]. It is also available from the Global Land Cover Facility [28].

2.1.2. GEOV1 FCover Product

The GEOV1 FCover product has been available since 1999 from the Copernicus Land Monitoring
Services [29]. The product is provided in a Plate Carrée projection at 1/112˝ spatial resolution
and a 10-day frequency. The GEOV1 FCover product was derived from SPOT/VEGETATION
sensor data using back-propagation neural networks. The CYCLOPES FCover product was
scaled to train the back-propagation neural networks with the SPOT/VEGETATION top-of-canopy
directionally-normalized reflectance values over the BELMANIP (Benchmark Land Multisite
Analysis and Intercomparison of Products) network of sites [7]. The calibrated neural networks
were used to generate the GEOV1 FCover product from SPOT/VEGETATION top-of-canopy
directionally-normalized reflectance data.

2.2. Field Measured Data

FCover ground measurements are from the Validation of Land European Remote sensing
Instrument (VALERI) project [30]. The FCover ground measurements were calculated from digital
hemispherical photos using the CAN_EYE software package [31]. For the assessment and validation of
the moderate-resolution FCover products, ground “point” measurements are not suitable for making
direct comparisons with moderate-resolution pixels due to the surface heterogeneity. According
to guidelines defined by the CEOS/WGCV LPV subgroup, an empirical transfer function between
high-resolution reflectance data and the FCover ground measurements for a site was established to
derive a high-resolution FCover map that was then aggregated to the moderate-resolution products for
comparison [32]. Forty-seven high-resolution FCover maps over 28 sites from the VALERI project [30]
were collected to validate the accuracy of the FCover product proposed in this study and the GEOV1
FCover product. The characteristics of the validation sites and associated mean values and standard
deviations of the high-resolution FCover maps over 3 km ˆ 3 km regions centered on the location of
the sites are shown in Table 1, and they were also reported in Camacho et al. [19].
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Table 1. Characteristics of the 28 validation sites.

Site Name Lat (˝) Lon (˝) Biome Type Year DOY Mean
FCover

Uncertainties
of FCover

Alpilles2 43.8103 4.7146 Broadleaf crops 2002 204 0.349 0.264
Barrax 39.0569 ´2.1041 Broadleaf crops 2003 193 0.236 0.294
Cameron ´32.5983 116.2542 Broadleaf forests 2004 63 0.414 0.079
Chilbolton 51.1640 ´1.4306 Broadleaf crops 2006 166 0.647 0.192
Counami 5.3471 ´53.2377 Broadleaf forests 2001 269 0.838 0.030

2002 286 0.858 0.003
Demmin 53.8921 13.2071 Broadleaf crops 2004 164 0.586 0.215
Donga 9.7701 1.7783 Grasses and cereal crops 2005 172 0.423 0.161
Fundulea 44.4061 26.5830 Broadleaf crops 2001 128 0.341 0.203

2002 144 0.374 0.263
2003 144 0.319 0.192

Gilching 48.0818 11.3204 Broadleaf crops 2002 199 0.676 0.214
Gnangara ´31.5338 115.8823 Broadleaf forests 2004 61 0.221 0.035
Gourma 15.3247 ´1.5546 Grasses and cereal crops 2000 244 0.236

2001 275 0.126
Haouz 31.6592 ´7.6002 Broadleaf crops 2003 71 0.248 0.182
Hirsikangas 62.6438 27.0114 Needleleaf forests 2003 226 0.644 0.201

2004 190 0.537 0.234
2005 159 0.442 0.210

Hombori 15.3309 ´1.4750 Savannah 2002 242 0.2
Hyytiälä 61.8513 24.3076 Needleleaf forests 2008 188 0.461 0.223
Jarvselja 58.2987 27.2622 Needleleaf forests 2000 188 0.705 0.169

2001 165 0.783 0.141
2002 178 0.793 0.108
2003 208 0.803 0.142
2005 180 0.842 0.118
2007 112 0.535 0.295
2007 199 0.731 0.189

Laprida ´36.9904 ´60.5526 Grasses and cereal crops 2001 311 0.722 0.117
2002 292 0.534 0.049

Larose 45.3804 ´75.2170 Needleleaf forests 2003 219 0.847 0.156
Larzac 43.9375 3.1229 Grasses and cereal crops 2002 183 0.3 0.065
Nezer 44.5679 ´1.0382 Needleleaf forests 2000 211 0.499 0.149

2001 99 0.363 0.193
2001 175 0.785 0.194
2002 107 0.304 0.136

Plan-de-Dieu 44.1986 4.9481 Broadleaf crops 2004 189 0.172 0.130
Puéchabon 43.7245 3.6519 Broadleaf forest 2001 164 0.54 0.157
Rovaniemi 66.4556 25.3514 Needleleaf forests 2004 161 0.423 0.137

2005 166 0.497 0.182
Sonian 50.7681 4.4110 Needleleaf forests 2004 174 0.903 0.028
Sud_Ouest 43.5062 1.2375 Broadleaf crops 2002 189 0.352 0.219
Turco ´18.2350 ´68.1836 Shrubs 2001 208 0.106 0.026

2002 240 0.02 0.013
2003 105 0.044 0.011

Wankama 13.6449 2.6353 Savannah 2005 174 0.036 0.035
Zhang_Bei 41.2787 114.6877 Grasses and cereal crops 2002 221 0.353 0.143

3. Methodology

3.1. Calculation of FCover

In this study, the estimation of FCover is based on the measures of the transmittance of light
through the canopy considering the vegetation elements as opaque. As light passes downward through
the top of a canopy, the fraction of the light transmitted through the canopy can be approximated
using an exponential model [33]:

Ptr pϕq “ e´
?

aˆkcpϕqˆΩˆlai (1)
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where lai is the leaf area index of the canopy, Ω is the clumping index taking into account the
non-random spatial distribution of phyto-elements within the canopy, a is the absorptivity of leaves for
radiation, ϕ is the solar zenith angle, and kc pϕq is the canopy extinction coefficient. For an ellipsoidal
leaf angle distribution, kc pϕq is calculated as follows:

kc pϕq “

a

x2 ` tan2 pϕq

x` 1.774ˆ px` 1.182q´0.733 (2)

where x is the ratio of average projected areas of canopy elements on horizontal and vertical surfaces.
Different values are assigned to x for different vegetation types. x is set to 0.8 for grasses and crops,
1.0 for shrubs and savannah, and 1.2 for forest [33]. FCover corresponds to the complement to unity of
the transmittance of light in the nadir viewing direction:

f Cover “ 1´ Ptr p0q (3)

To quantify the importance of the input parameters for Equation (3) on FCover and
characterize their effects, a sensitivity analysis of FCover to target composition and architecture
was performed using the extended Fourier amplitude sensitivity test (EFAST) originally developed
by Cukier et al. [34,35] and extended by Saltelli et al. [36]. EFAST is a variance based method and
has proven one of the most reliable methods among these techniques [37], although computationally
expensive [38]. It provides a first-order and a total-order sensitivity index for each input parameter.
The first-order sensitivity index expresses the additive effect of the corresponding input parameter,
whereas the total-order sensitivity index is the overall measure of importance and incorporates the
interactions of the input parameters.

Various ranges of input parameters used to calculate FCover are shown in Table 2. An input
sample of 49,995 combinations of input parameters was provided by EFAST and used to calculate
49,995 FCover values using Equation (3). Sensitivity analysis was performed on this set of FCover
values (Figure 1). The first-order and total-order indices of sensitivity analysis demonstrate that LAI
is the only sensitive parameter. Therefore, FCover values calculated from Equation (3) are primarily
influenced by LAI of the vegetation canopy.

For the above scheme, the GLASS LAI product and the clumping index map derived by
He et al. [39] was used to calculate the FCover values in this study. The clumping index map has
a spatial resolution of 500 m and was aggregated to 1 km resolution to maintain a spatial resolution
consistent with the GLASS LAI product using a simple spatial averaging method.

Table 2. Range of input parameters for Equation (3).

Factors Unit Range of Variation Distribution

Leaf area index m2/m2 [0, 8] uniform
Clumping index – [0.5, 1.0] uniform
Solar zenith angle Degrees 0.0 –
Absorptivity of leaves – 1.0 –
Ratio of average projected areas of canopy
elements on horizontal and vertical surfaces – [0.5, 2.0] uniform
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3.2. Comparison and Analysis

For clarification, the FCover product derived in this study is denoted by TRAGL. Just like the
GLASS LAI product, the TRAGL FCover product has 8-day temporal and 1 km spatial resolution and
is provided in a sinusoidal projection from 2000 to 2014. The spatial and temporal consistencies of
the TRAGL FCover product are assessed by comparison with the GEOV1 FCover product, and the
accuracy of the TRAGL FCover values was evaluated against ground-based FCover estimates.

For comparisons of spatial consistency, the TRAGL and GEOV1 FCover products were re-projected
onto the geographic latitude/longitude projection using nearest-neighbor resampling and were
aggregated to 0.05˝ resolution using spatial averaging for the sake of computation efficiency.
The average value over a 0.05˝ pixel was computed if more than 70% of the pixels projected into the
0.05˝ pixel had FCover values. The FCover products were then aggregated into a monthly time step
by computing the monthly average from the FCover values. The global maps of mean FCover for
the TRAGL and GEOV1 FCover products from 2001 to 2005 in January and July were computed to
investigate spatial patterns specific to a given product as well to check the fraction and distribution in
space of the missing data. Histograms of the TRAGL and GEOV1 FCover products from 2001 to 2005
were generated for each biome type according to the MODIS land-cover type product (MCD12Q1)
to analyze the similarities and differences between these FCover products. To further evaluate the
consistency between the TRAGL and GEOV1 FCover products, the differences between these FCover
products from 2001 to 2005 were computed as a function of latitude and as a function of the biome
type to qualitatively assess the main discrepancies between these FCover products.

Temporal consistency between TRAGL and GEOV1 FCover products was evaluated over a sample
of VALERI sites with different biome classes. Detailed information about the sites and mean values
and standard deviations of the high resolution FCover maps over the 3 km ˆ 3 km regions centered
on the location of the sites are given in Table 1. For comparison of temporal consistency, the original
temporal resolution for each FCover product was considered. Average FCover profiles for the TRAGL
and GEOV1 FCover products over 3 ˆ 3 pixels centered on the selected sites were calculated to reduce
effects from co-registration errors between them. The average FCover value over the 3 ˆ 3 pixels
was computed if there were more than five FCover values among the nine pixels [19]. The average
FCover profiles over one year were compared for each site to provide a qualitative assessment of
seasonal variations between the products. The specific years used for comparison were not the same
for all sites, but varied according to the availability of the high resolution FCover maps derived from
ground measurements.
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The TRAGL and GEOV1 FCover products were compared with high-resolution FCover maps to
evaluate differences in FCover magnitude between the products. The high-resolution FCover maps
and the TRAGL and GEOV1 FCover products were aggregated over 3 km ˆ 3 km regions centered on
the location of the validation sites using spatial averaging. TRAGL and GEOV1 FCover values were
linearly interpolated to the acquisition date of FCover ground measurements if the two closest FCover
values were within ˘10 days from that date. A total of 28 sites, providing 47 high resolution FCover
maps were retained for which TRAGL or GEOV1 FCover products provided FCover values.

4. Result Analysis

4.1. Comparison with GEOV1 FCover Product

4.1.1. Spatial Consistency

Figure 2 show the global maps of the mean values for the TRAGL and GEOV1 FCover products
for January and July 2001´2005. Areas masked in dark gray correspond to pixels where the FCover
values are zero, and areas masked in light gray correspond to pixels where the FCover values are
missing. GEOV1 FCover product has many missing pixels in rainforest regions and in mid- and
high-latitude zones of the northern hemisphere, especially in January. Camacho et al. [19] reported
that the GEOV1 products presented the higher percentage of missing values at high latitudes in the
northern hemisphere, with a wide variability as a function of the period of the year (it maximize in
winter time), mainly due to snow coverage changes along the year as well as increase in observations
under dark conditions particularly above the polar circle in winter, and also presented a large fraction
of gaps (up to 50%) over the equatorial region as a consequence of the higher cloudiness. However,
there are no missing data for the TRAGL FCover product, because the retrieval algorithm uses the
spatially and temporally complete GLASS LAI product.

The TRAGL and GEOV1 FCover products are generally consistent in their spatial patterns. Higher
FCover values are produced over equatorial forest regions and around 50˝N´60˝N, whereas they are
intermediate at mid- and high-latitude zones, and very low over sparsely vegetated areas. However,
discrepancies are evident in the relative magnitude of the FCover products. In January, TRAGL FCover
values are between 0.05 and 0.15 lower than those of GEOV1 for tropical rainforests in Amazon River
Basin and Southeast Asia. At these regions, the GEOV1 FCover values can reach 0.99. However, the
GEOV1 FCover values are significantly lower than the TRAGL FCover values over the Congo Basin
and the Gulf of Guinea. The largest difference between the TRAGL and GEOV1 FCover values at
these regions goes up to 0.4. In July, GEOV1 FCover values are slightly lower than those of TRAGL in
Amazon rainforest region, but clearly higher than those of TRAGL over broadleaf crops in East-central
United States and needleleaf forests in Europe and Siberia. The GEOV1 FCover algorithm proposed to
correct for the systematic underestimation of CYCLOPES FCover product by applying a scaling factor.
These discrepancies between the TRAGL and GEOV1 FCover products should be partly explained by
a slightly too large scaling factor, resulting in more dynamic FCover values. These discrepancies should
probably also be explained by a lack of representativeness of the training data base used to calibrate
the algorithm [19]. Compared with the GEOV1 FCover product, the TRAGL FCover product reports
a more uniform signal. The TRAGL FCover values for tropical rainforests present almost no seasonality,
as expected for these evergreen forests, which is consistent with the findings of Camacho et al. [19].
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greater than 0.85. Similar distributions of FCover values are also observed for evergreen broadleaf 
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Figure 2. Global mean FCover for TRAGL (a,b) and GEOV1 (c,d) products from 2001´2005.
Left panels: January. Right panels: July. Areas masked in dark gray correspond to pixels where
the FCover values are zero and areas masked in light gray correspond to pixels where the FCover
values are missing.

Statistical distributions of the FCover values for 2001–2005 for each biome type according to the
MODIS land cover type are shown in Figure 3 to illustrate the similarities and differences between the
TRAGL and GEOV1 FCover products. For grasses and cereal crops, shrubs, evergreen needle forests,
and deciduous needle forests, the histogram distributions of the TRAGL FCover values are generally
consistent with those of the GEOV1 FCover values. For the savannah biome type, the frequencies of
TRAGL FCover values between 0.1 and 0.6 are significantly larger than those of GEOV1 FCover values,
while the frequencies of TRAGL FCover values greater than 0.6 are significantly less than those of
GEOV1 FCover values and reduce to 0 when FCover values are greater than 0.85. Similar distributions
of FCover values are also observed for evergreen broadleaf forests and deciduous broadleaf forests. For
the evergreen broadleaf forests, TRAGL and GEOV1 FCover values have distributions with a narrow
peak, but the TRAGL frequency distribution peak (approximately 0.8) is slightly lower than that
of GEOV1.
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Figure 3. Histograms of the TRAGL and GEOV1 FCover products for 2001–2005 for different biome types. 
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Figure 4 shows mean values of the FCover differences for different 10˝-latitude bands in each
month for 2001–2005. In most latitude bands for each month, the mean FCover differences between
TRAGL and GEOV1 FCover products are within ˘0.05, indicating that the TRAGL FCover values for
these regions are in good agreement with the corresponding GEOV1 FCover values. However, there
are slight discrepancies between them for low and high latitudes. The TRAGL FCover values were
smaller than those of GEOV1 over the 5˝N–15˝N latitude band from July to October, and the 5˝S–15˝S
latitude band from January to April. The mean values of the FCover differences over these regions
reach 0.14. The TRAGL FCover values were also smaller than those of GEOV1 over the 65˝N–75˝N
latitude band, especially in October. However, the TRAGL FCover values were larger than those of
GEOV1 over the 55˝N–65˝N latitude band in February and April and the 65˝S–75˝S latitude band,
especially in May and August.
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Figure 4. Hovmoller diagram of mean values of the FCover differences between TRAGL and GEOV1
FCover products for different 10˝-latitude bands in each month for 2001–2005.

Figure 5 shows mean values of TRAGL and GEOV1 FCover products for different biome
types in each month for 2001–2005. The standard deviations and the relative differences
[100ˆ|FCoverTRAGL-FCoverGEOV1|/FCoverTRAGL] for the mean values are also shown in
Figure 5. The numbers of pixels to calculate the mean values and standard deviations across different
biomes for each month are shown in Table 3. The largest relative differences between TRAGL and
GEOV1 FCover products occur for grasses/cereal crops and savannah, where the TRAGL FCover
values were always lower than the GEOV1 FCover values in all months. For the grasses/cereal
crops, the TRAGL FCover values were between 15% and 35% lower than the GEOV1 FCover values,
whereas for the savannah, the TRAGL FCover values were between 20% and 30% lower than the
GEOV1 FCover values. For shrubs, there are large differences between the TRAGL and GEOV1 FCover
products from April to November, when the relative differences were more than 15% and the TRAGL
and GEOV1 FCover values also show the largest standard deviation. There is an excellent agreement
between TRAGL and GEOV1 FCover products for evergreen broadleaf forests in all months, with
maximum relative differences of only 3.75% in July. The TRAGL and GEOV1 FCover products also
show an excellent agreement for evergreen needleleaf forests, where the relative differences are less
than 5% for all months except March, November, and December. The largest differences for the
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evergreen needleleaf forests are observed in December, when the TRAGL FCover values were 27%
lower than the GEOV1 FCover values.Remote Sens. 2016, 8, 337 11 of 18 
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Figure 5. Mean values of TRAGL and GEOV1 FCover products for different biome types in each 
month for 2001–2005 and their relative differences. 
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values are between 0.05 and 0.1 lower than those of GEOV1 from June to August, but the TRAGL 
FCover values are slightly higher than those of GEOV1 for the other months. For deciduous 
needleleaf forests, the TRAGL and GEOV1 FCover products show good consistency in all months 
except February, October, November, and December. The largest relative difference of 90.75% is 
observed in December.  
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between the TRAGL and GEOV1 FCover products during the growing seasons, which may result 
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mainly situated in the higher northern hemisphere and optical remote sensing in February is 
extremely difficult in high latitudes. 
  

Figure 5. Mean values of TRAGL and GEOV1 FCover products for different biome types in each month
for 2001–2005 and their relative differences.

For deciduous broadleaf forest, small differences between the TRAGL and GEOV1 FCover
products are observed from January to August, while the TRAGL FCover product achieves good
agreement with the GEOV1 FCover product from September to December. The TRAGL FCover values
are between 0.05 and 0.1 lower than those of GEOV1 from June to August, but the TRAGL FCover
values are slightly higher than those of GEOV1 for the other months. For deciduous needleleaf forests,
the TRAGL and GEOV1 FCover products show good consistency in all months except February,
October, November, and December. The largest relative difference of 90.75% is observed in December.

For grasses/cereal crops, shrubs and deciduous broadleaf forest, there are large discrepancies
between the TRAGL and GEOV1 FCover products during the growing seasons, which may result
from the difficulty of acquiring cloud-free images in this time period due to the high humidity in
the atmosphere. In addition, there are high relative differences between the TRAGL and GEOV1
FCover products in the spring or winter for some biome types, such as evergreen needleleaf forests and
deciduous needleleaf forests, which may partly result from the limited number of pixels to calculate
the mean values and standard deviations (Table 3). For instance, there are only 788 pixels for which
TRAGL and GEOV1 FCover products provided FCover values in February for the deciduous needleleaf
forests. In other words, less than 1% of the pixels in summer contributed to the February values. The
main reason for this limited number of pixels is that deciduous needleleaf forests are mainly situated
in the higher northern hemisphere and optical remote sensing in February is extremely difficult in
high latitudes.
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Table 3. The number of pixels to calculate the mean values and standard deviationsacross different
biomes for 12 months.

Month GCC SHB SVN EBF DBF ENF DNF

Jan 985,636 451,663 641,547 372,828 128,491 55,625 4510
Feb 1,025,756 451,616 641,364 357,647 122,924 78,354 788
Mar 1,178,315 455,838 648,645 364,684 153,906 85,715 2804
Apr 1,350,668 458,903 690,889 374,780 231,431 219,956 11,055
May 1,397,863 588,449 895,854 360,526 253,126 325,827 85,608
Jun 1,456,798 1,058,810 946,856 357,754 251,286 336,228 88,049
Jul 1,524,155 1,094,476 930,176 362,374 246,499 339,242 88,050

Aug 1,501,161 1,094,436 904,858 368,948 245,460 337,507 88,050
Sep 1,555,865 1,094,892 942,266 391,350 250,847 340,780 88,050
Oct 1,470,197 866,052 944,379 401,671 253,335 341,358 87,477
Nov 1,383,669 486,386 729,848 380,965 235,894 242,110 21,725
Dec 1,161,229 454,034 654,806 360,736 173,795 87,783 6812

GCC = Grasses and cereal crops; SHB = Shrubs; BLC = Broadleaf crops; SVN = Savannah; EBF = Evergreen
broadleaf forests; DBF = Deciduous broadleaf forests; ENF = Evergreen needleleaf forests; DNF = Deciduous
needleleaf forests.

4.1.2. Temporal Consistency

Figure 6 shows the temporal FCover profiles to evaluate temporal consistency between the TRAGL
and GEOV1 FCover products over several sites with different biome classes. The temporal FCover
trajectories for the Zhangbei, Larzac, and Laprida sites with grass and cereal crop biome types are
shown in Figure 6a. For the Zhangbei site, the TRAGL FCover values were slightly higher than the
GEOV1 FCover values of nearly zero during the non-growing season, but the TRAGL FCover values
were slightly smaller than the GEOV1 FCover values during the growing season. The GEOV1 FCover
values for days 225, 236, and 358 were missing. The TRAGL FCover values were in agreement with the
mean value of the high resolution FCover map. For the Larzac and Laprida sites, the GEOV1 FCover
values were higher than those of TRAGL throughout the entire year in 2002. The TRAGL FCover values
were slightly overestimated with values of 0.12 compared with the mean value of the high-resolution
FCover map at the Larzac site, whereas the TRAGL FCover values became slight underestimates when
compared to the mean value of the high resolution FCover map at the Laprida site.

The temporal FCover profiles for the Demmin, Apilles2, and Barrax sites are shown in Figure 6b.
The biome type for these sites is broadleaf crops. At these sites, the GEOV1 FCover values were
larger than those of TRAGL, especially during the growing season, although some GEOV1 FCover
values were missing. At the Demmin site, the GEOV1 FCover displays very high values up to 0.96 for
days 155, 165, 175, and 185. However, the TRAGL FCover values demonstrated exceptionally good
agreement with the mean values of the high resolution FCover maps. The absolute differences between
the TRAGL FCover values and the mean values of the high resolution FCover maps were less than
0.05 at these sites.

The temporal FCover trajectories for broadleaf forest sites are shown in Figure 6c. For the Counami
site, most GEOV1 FCover values for 2001 are missing, whereas TRAGL FCover values have continuous
trajectory. For the Cameron and Puechabon sites, TRAGL FCover profiles are in good agreement with
those of GEOV1 in terms of seasonal patterns and absolute FCover values. For the Counami and
Cameron sites, the TRAGL and GEOV1 FCover values are approximately constant for the entire year
and present almost no seasonality as expected for these evergreen forests, which is consistent with the
findings of Camacho et al. [19]. The agreement of the TRAGL FCover values with the mean values of
the high-resolution FCover maps is very good with overestimates less than 0.054 at these sites.
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Figure 6d shows the temporal FCover trajectories for needleleaf forest biome sites. For the Sonian
and Rovaniemi site, the temporal FCover trajectories of TRAGL and GEOV1 show good agreement,
although some FCover values are missing in the GEOV1 FCover product. However, the TRAGL
FCover values are between 0.1 and 0.31 higher than those of GEOV1 at the Larose site. For the Larose
and Rovaniemi sites, the TRAGL FCover values demonstrated excellent agreement with the mean
values of the high-resolution FCover maps, but at the Sonian site, the TRAGL FCover values were
slightly underestimated with values of 0.12 compared with the mean values of the high-resolution
FCover maps.

The temporal FCover profiles for the Hombori and Wankama sites with savannah biome type are
shown in Figure 6e. There are large discrepancies for the Hombori site. Many GEOV1 FCover values
were missing at the beginning of the growing season. During the non-growing season, the GEOV1
FCover values, at nearly zero, are almost 0.05 lower than those of TRAGL. For the Wankama site, the
TRAGL FCover values are in generally good agreement with the GEOV1 FCover values, in terms of
seasonal patterns. Similarly to the Hombori site, the GEOV1 FCover values are slightly lower than
those of TRAGL during the non-growing season. However, the GEOV1 FCover values are slightly
higher than those of TRAGL during the growing season.

The temporal FCover trajectories for Turco site with shrub biome type in 2001 and 2003 are shown
in Figure 6f. The TRAGL and GEOV1 FCover products show very low values as expected, with little
seasonality. The FCover values for both FCover products were less than 0.1 during these years. TRAGL
FCover shows slightly higher values than GEOV1 FCover, especially during the non-growing season.
At this site, the TRAGL FCover values were slightly underestimated with values of 0.051 in 2001 and
slightly overestimated by 0.036 in 2003 when compared to the mean values of the high-resolution
FCover maps.

4.2. Direct Validation

Scatterplots of the FCover products versus the mean values of the high-resolution FCover maps
are shown in Figure 7. The majority of points in Figure 7b are above the 1:1 line, which indicates that
GEOV1 FCover values are higher than the mean values of the high-resolution FCover maps, especially
for high FCover values. These overestimation of high FCover values should be partly explained by
a slightly too large scaling factor which was applied to scale CYCLOPES FCover values [7]. Compared
with GEOV1 FCover values, those of TRAGL are distributed more closely around the 1:1 line against
the mean values of the high-resolution FCover maps (Figure 7a), showing that TRAGL FCover product
achieves better agreement across the FCover range than the GEOV1 FCover products.

It is apparent that the TRAGL FCover product provides slightly better accuracy against the mean
values of the high-resolution FCover maps (RMSE = 0.0865, and bias = 0.0171) compared with the
GEOV1 FCover product (RMSE = 0.1541, and bias = 0.0754). The correlation between the TRAGL
FCover values and the mean values of the high-resolution FCover maps (R2 = 0.8848) is also superior to
the correlations of the GEOV1 FCover values (R2 = 0.7621) with the mean values of the high-resolution
FCover maps.
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5. Discussions 

The method proposed in this study calculated TRAGL FCover values from the GLASS LAI 
product to ensure physical consistency between LAI and FCover retrievals. The GLASS LAI retrieval 
algorithm estimated the LAI annual profile using annual observations. The GRNNs used in GLASS 
LAI production use the surface reflectance for a one-year period as their input. The output is a 
one-year LAI profile for each pixel. Extensive validation and analysis demonstrated that the GLASS 
LAI product is spatially complete and temporally continuous, and the accuracy of GLASS LAI 
product is better than several existing LAI products. Therefore, the TRAGL FCover product also 
shows temporally continuous and smooth FCover profiles and better performance as compared to 
ground-based estimates. 

On the downside, the surface-reflectance data for a one-year period were entered into the 
GRNNs to estimate the one-year LAI profiles. The GLASS LAI retrieval algorithm is essentially a 
reanalysis method. It is impossible to provide near-real-time retrievals for the GLASS LAI retrieval 
algorithm. Therefore, the method proposed in this paper also cannot carry out real-time/near 
real-time estimation of FCover values because of the dependence on the GLASS LAI product.  

Additionally, the quality of the GLASS LAI product has a direct impact on the quality of the 
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Figure 7. Scatterplots of (a) TRAGL and (b) GEOV1 FCover products versus mean values of the high
resolution FCover maps. The R-squared, RMSE, and bias values are also shown. N is the number of
matched data pairs for each case.

5. Discussions

The method proposed in this study calculated TRAGL FCover values from the GLASS LAI
product to ensure physical consistency between LAI and FCover retrievals. The GLASS LAI retrieval
algorithm estimated the LAI annual profile using annual observations. The GRNNs used in GLASS
LAI production use the surface reflectance for a one-year period as their input. The output is
a one-year LAI profile for each pixel. Extensive validation and analysis demonstrated that the
GLASS LAI product is spatially complete and temporally continuous, and the accuracy of GLASS
LAI product is better than several existing LAI products. Therefore, the TRAGL FCover product also
shows temporally continuous and smooth FCover profiles and better performance as compared to
ground-based estimates.

On the downside, the surface-reflectance data for a one-year period were entered into the GRNNs
to estimate the one-year LAI profiles. The GLASS LAI retrieval algorithm is essentially a reanalysis
method. It is impossible to provide near-real-time retrievals for the GLASS LAI retrieval algorithm.
Therefore, the method proposed in this paper also cannot carry out real-time/near real-time estimation
of FCover values because of the dependence on the GLASS LAI product.

Additionally, the quality of the GLASS LAI product has a direct impact on the quality of the
TRAGL FCover product. The GLASS LAI retrieval algorithm can remove abrupt spikes and dips,
which may lead to the loss of neighboring smaller peaks in LAI profiles. Therefore, The TRAGL FCover
product also cannot describe more local (in time) impacts of disturbances such as fire, disease, and
insect damage.

6. Conclusions

A pragmatic method is proposed to derive physically consistent FCover values from the GLASS
LAI product and other ancillary information. The quality and accuracy of the generated FCover
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product (TRAGL) were evaluated by comparison with GEOV1 FCover product and directly validated
against ground-based FCover estimates.

The TRAGL FCover product is spatially and temporally complete. Comparison with GEOV1
FCover product showed that both FCover products were generally consistent in their spatial patterns.
However, there were relatively large discrepancies in the relative magnitude of the FCover products
over equatorial rainforests, broadleaf crops in east central United States and needleleaf forests in
Europe and Siberia. TRAGL FCover product had continuous trajectories. The temporal profiles of
TRAGL and GEOV1 FCover products showed consistent seasonal variations. Direct validation with
ground-based FCover estimates showed that TRAGL FCover product provided the better accuracy
against the mean values of high-resolution FCover maps compared with the GEOV1 FCover product.
The GEOV1 FCover product shows a slight overestimation of the ground-based FCover estimates,
particularly for high FCover values.

The proposed method was used to calculate FCover values based on the GLASS LAI data derived
from MODIS reflectance data. In the near future, we will extend this method to calculate FCover values
based on the GLASS LAI data derived from AVHRR reflectance data and perform more extensive
validation and analysis of TRAGL FCover values.
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