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Abstract: In the present paper, a methodological scheme, bringing together common Acoustic Seabed
Classification (ASC) systems and a powerful data decomposition approach, called Independent
Component Analysis (ICA), is demonstrated regarding its suitability for detecting small targets in
Side Scan Sonar imagery. Traditional ASC systems extract numerous texture descriptors, leading
to a large feature vector, the dimensionality of which is reduced by means of data decomposition
techniques, usually Principal Component Analysis (PCA), prior to classification. However, in the
target detection issue, data decomposition should point towards finding components that represent
sub-ordinary image information (i.e., small targets) rather than a dominant one. ICA has long been
proved to be suitable for separating targets from a background, and this study represents a novel
exhibition of its applicability to Side Scan Sonar (SSS) images. The present study attempts to build
a fully automated target detection approach that combines image based feature extraction, ICA,
and unsupervised classification. The suitability of the proposed approach has been demonstrated
using an SSS data-set containing more than 70 manmade targets, most of them metallic, validated
through a marine magnetic survey or ground truthing inspection. The method exhibited very good
performance as it was able to detect more than 77% of the targets and it produced less than seven
false alarms per km2. Moreover, it was compared to cases where, in the exact same methodological
scheme, no decomposition technique is used, or PCA is employed instead of ICA, achieving the
highest detection rate, but, more importantly, producing more than six times less false alarms, thus
proving that ICA successfully manages to maximize target to background separation.

Keywords: target detection; image texture; swath sonar; independent component analysis; principal
component analysis; seabed classification; SonarClass

1. Introduction

In the field of Underwater Acoustic Imaging a large number of Automatic Target Detection
(ATD) systems have long since been developed concerning image-based procedures [1–4] or other
techniques [5]. The present study aims to test the potentiality of using common image based
acoustic classification approaches against small targets detection in Side Scan Sonar (SSS) images
by combining them with powerful data mining techniques. Small targets in this study are defined
as ones that their extent and shape can barely be distinguished due to the system's resolution and
setup. Those targets most often appear in the image scene as local ambiguous anomalies rather than as
distinct objects. Common image based ASC start by extracting numerous features from sliding image
windows throughout the image and forming large Feature Vectors (FVs) [6–9]. In view of the FVs’
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high dimensionality, prior to unsupervised classification, a component analysis technique, typically
Principal Component Analysis (PCA), is performed in most of the cases to decompose them into a few
un-correlated features that explain the majority of the image’s variance. However, small targets belong
to subordinary image information and do not contribute significantly to the total information variance
of the SSS image. In this study, a well-established technique, called Independent Component Analysis
(ICA) [10], which decomposes the FVs into independent sources, is tested against its ability to separate
SSS images into targets and background and lead to accurate target classification.

The proposed methodological scheme consists of the following stages: (1) windowed feature
extraction; (2) ICA decomposition; (3) selection of certain components that enhance potential
targets through a maximum kurtosis criterion; (4) decision of the number of classes that the
selected components need to be clustered into so that they are optimally separated in the Euclidean
space through internal evaluation techniques and specifically cluster validation indexes utilization;
(5) unsupervised classification; and (6) selection of the class or classes that most possibly correspond
to areas containing potential targets via a minimum area definition. The above stages are implemented
through the SonarClass Matlab software tool [11–16].

The classification performance of the proposed system is demonstrated using an SSS dataset from
Alexandroupolis Harbor, N.E. Greece, including more than 70 manmade targets, most of them being
metallic, all detected manually by expert interpreters through coupling SSS and Marine magnetometry
data and most of them having been visually ground-truthed. The method exhibited promising results,
achieving high detection accuracy rate with a few false positive detections. When in the exact same
methodological scheme ICA was replaced by PCA or by no decomposition technique at all, the overall
detection performance was severely degraded and the system’s complexity was increased as cluster
validation indexes suggested that the FVs should be classified in more classes. Figure 1 illustrates an
overview of the proposed methodological scheme while in Section 2 it is provided in detail.
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more in depth description is given in [18]. 

The first order statistics provide information about the variability of grey-levels inside each 
image window and the following four features are considered: (1) Grey Mean; (2) Standard Deviation; 
and (3) Kurtosis which are elementary statistics that quantify reflectivity intensity, contrast and 
existence of outliers (tailedness of the grey levels distribution), respectively; and (4) the 3rd order 
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Scan Sonar (SSS) imageries using feature based acoustic classification and Independent Component
Analysis (ICA). IC6 and IC8 correspond to the 6th and 8th Independent Components of the Feature
Vectors (FVs).

2. Methodology Overview

2.1. Feature Extraction

Feature extraction stage was realized through SonarClass [11–16] tool for Matlab [17], utilizing
three feature extraction algorithms, namely first order grey-level statistics, Grey Level Co-occurrence
Matrices (GLCMs) and 2D power spectrum specifications, leading to a total number of 11 texture
descriptors (FVs). A brief description of these features is provided in the following paragraphs, but a
more in depth description is given in [18].

The first order statistics provide information about the variability of grey-levels inside each image
window and the following four features are considered: (1) Grey Mean; (2) Standard Deviation; and
(3) Kurtosis which are elementary statistics that quantify reflectivity intensity, contrast and existence
of outliers (tailedness of the grey levels distribution), respectively; and (4) the 3rd order Invariant
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Moment which is a measure based on central moments that is invariant to translation, rotation and
scale changes of the image [19].

GLCMs are among the methodologies that have mostly been used for textural analysis and image
classification. Statistics over GLCMs are very powerful texture descriptors and are used in many
software applications for swath sonar image classification [6,8]. SonarClass software extracts five
GLCM properties out of the 11 that Haralick [20] first described namely: (1) Contrast; (2) Correlation;
(3) Energy; (4) Entropy and (5) Homogeneity, using an offset of 1 pixel and 4 look directions (average
results of four directions), as described in Reference [11].

The 2D Fourier spectrum descriptives are (1) Directionality and (2) Texture Spacing. They are
based on Bajcsy and Lieberman [21] approach according to which the power spectrum of a square
image is expressed in a polar coordinate system (S(r,θ)) of radius r versus angle θ and decompressed
into two independent one-dimensional functions of r (Sr(θ)) and θ (Sθ(r) ). Peaks in the Sr(θ) indicate
directional texture while peaks in the Sθ(r) mean periodical texture. Analyzing Sr(θ) and Sθ(r) for a
fixed value of r and θ yields the behavior of the spectrum along a circle centered on its origin or a cross
section passing through its origin. High “Directionality” values imply directionally regulated textures
while high “Texture Spacing” values periodical ones. Fakiris and Papatheodorou [11] suggested a
simplified computational approach for Bajcsy and Lieberman descriptors for the needs of SonarClass.

In the case of the proposed methodological scheme where the detection of potential targets in
SSS images is considered, image windows should have dimensions at least 1.5 times the maximum
expected ones of the targets to be detected. They should also be sliding, with an overlap half the size
of the image window, to ensure that any target will be included in just a single image window.

2.2. Component Analysis Towards Maximizing Targets' Separation. ICA vs. PCA

The purpose of using a component analysis technique in the context of target extraction, is to
transform the FVs into a few meaningful components that maximize the difference between the targets
and the background. PCA is a commonly used feature reduction method in image based ASCs [8].
It decomposes the NxM FVs (with N indicating number of features and M number of image window
samples) in N linearly uncorrelated components so that the majority of the features’ information can
be projected into a few of them and reduces data quantity. However, small targets might not show up
from the surrounding background of the highest variance after conventional PCA, as they belong to
sub ordinary image information. A probable solution would be to find which principal component or
combination of components (out of the 11 available ones in our study) correspond to the contribution
of the targets to the FVs’ variance. Normally those principal components would be among the ones
contributing in the smallest amount to the total variance of the feature space.

However, research on hyperspectral imagery suggests that gaussianity, as assumed in PCA, is
not the case in target extraction and small targets in a natural background can be seen as independent
anomalies [10,22,23]. The same statement can be extended to marine remote sensing data, as for
instance in SSS sonographs. A more sophisticated multivariate data analysis method, seeking for
independent rather than uncorrelated components of the data, also described as project pursuit
or blind source separation, is ICA. ICA assumes that the observed multivariate data are linear or
non-linear mixtures of some unknown non-Gaussian and mutually independent latent variables, called
independent components, which are attempted to be determined. ICA decomposes the NxM FVs into
N independent sources and can be seen as an extension of PCA and Factor Analysis (FA).

The main difference between PCA and ICA is that PCA is seeking for orthogonal projections that
best explain (maximize) the variance of the data, while ICA for random projections that maximize
higher order statistical criteria, such as absolute normalized kurtosis, a 4th order statistic, yielding
non Gaussianity. More generally, PCA is finding the direction of space (basis vector) with the highest
sample variance, moving on to finding the next highest variance in an orthogonal subspace of the first
direction, and iterates until discovering all N ordered orthogonal basis vectors of the data. The analytic
solution to finding those basis vectors is the eigenvectors of the data’s covariance matrix. PCA is
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suitable for data describing normal (Gaussian) processes, as their covariance is indeed diagonal in an
orthogonal basis. An advantage of PCA is that the resulting vectors come with a “PCA score”, i.e., the
variance of the data projected along the direction they define. In ASC literature, after using PCA for
dimension reduction, the subspace defined by the first three PCA vectors with the highest scores is
chosen, on the basis that they usually explain the largest possible fraction of the total variance.

However for strongly non-Gaussian mixing sources (processes), separating them should be done
by looking at fine details of the data distribution, such as its tails, rather than just their variance.
In the case where data anomalies (outliers) are of interest, such as targets in a smoothly varying
background, those tails are that contain the majority of the information needed. ICA makes a
convenient simplification that finding the independent sources out of such data can be reduced
to finding maximally non-Gaussian ones. The projections maximizing nongaussianity of data is
pursued in an optimization manner by trying to maximize kurtosys or other higher order statistical
criteria. The first basis vector is changed until data shape a least-Gaussian PDF, the data explained
by this vector are subtracted from the initial signal and this sequence iterates until all basis vectors
have been found. In the context of the present study, the widely used FastICA implementation for
Matlab [24] has been employed. Evidence on FastICA efficiency and computational complexity can be
found in Reference [25].

Conclusively, although both PCA and ICA aim to linearly decompose the original data into a
set of meaningful, mutually independent, underlying processes, it is the definition of independency
and the way that it is pursued that makes ICA more appealing for separating targets from the image
background. Firstly ICA is unhooked from pursuing orthogonal projections and secondly it is using
optimization criteria that maximize non-Gaussianity rather than just covariance. Targets’ information
is inherently highly non-Gaussian as they are outliers and an ideal component highlighting only them
and flattening the background would have heavy tails, deviating severely from the normal distribution.

No matter which data decomposition technique is used, there still is the problem of automatically
defining the components that most likely reflect the targets’ contribution to the FVs. A common practice
to determine the optimal components for target detection is to rank them according to their kurtosis and
use the ones with the highest values [23]. As mentioned above, Kurtosis, considered an outlier indicator
(related to the tailedness of the distribution), should be much higher for components that emphasize
small targets than for components reflecting larger scale seafloor characteristics (e.g., seafloor dynamics,
morphology or sedimentology) or systematic ambient and self noises (e.g., caused by the sea column
stratification or SSS platform movements).

2.3. Unsupervised Classification

After the components that highlight targets have been determined, unsupervised classification
(clustering) is performed to them so that the reduced feature space is partitioned in meaningful clusters.
Although simple thresholding techniques could be able to detect the targets in the reduced feature
space, using unsupervised classification is more robust (assuming that targets are well represented),
especially when more than one component has been selected. After ICA, generating just a few
clusters should be enough to ensure that at least one of them will correspond to areas that include
potential targets. SonarClass image based ASC software provides a large list of available unsupervised
classification algorithms, including Gaussian Mixture Models, k-means, k-medoids, Fuzzy C-means,
Fuzzy Gustafson-Kessel and Fuzzy Gath-Geva classifiers. Gaussian mixture models (distribution-based
algorithm) and k-means (centroid-based algorithm) classifiers are the ones more often used is image
based ASCs [3,8] owing to that the former uses the Expectation Maximization (EM) algorithm that
allows the calculation of posterior probabilities for each class and the latter is the least computationally
expensive one. A main drawback of most centroid and distribution based clustering algorithms is that
the number of classes must be a priori determined manually or through some criterion optimization
techniques. The use of cluster validation indexes that quantify the discrimination of the specified data
clusters in the Euclidean space is a common practice among statisticians towards determining the
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optimal number of classes. Specifically, the FVs are repetitively clustered (using a certain classifier) by
sequentially increasing the number of clusters, the validation index is estimated for each attempt and
finally the number of clusters providing the maximum discrimination between them is determined
(see Figure 2). Although many cluster validation indexes are available in SonarClass software, the
Davies-Bouldin index is proposed due to its computational speed and efficiency [26].
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Figure 2. Details of the proposed automatic target detection system concerning: (a) choosing the
optimal combination of components; (b) choosing the optimal number of classes and (c) selecting the
class that most probably corresponds to seafloor targets.

After the FVs have been clustered into the specified number of classes, the question is which
class or classes refer to image windows containing potential targets. An obvious solution would be to
visualize their spatial distribution in conjunction to the SSS imagery and manually judge which ones
do correspond to image windows with targets, but this does not conform to the aspect of completely
automated detection of potential targets. Tian [3] performed hierarchical analysis to the posterior
probabilities of the generated classes in order to detect the most uncorrelated ones and associate them
to SSS targets (coral reefs in that case). The proposed methodology in the present study does no
restriction about exclusively using Bayesian classifiers and, thus, the above approach is not always
feasible. Instead, the following approach is proposed as an alternative: the class occupying the
least area (smallest number of raster cells) in the sonar images can be safely considered as the one
representing potential targets (Figure 2).

3. Method Validation

3.1. Case Study, Data Acquisition and Pre-Processing

The dataset used for the validation of the proposed methodological scheme was collected in
2008 from the Alexandroupolis Harbor, NE Greece (Figure 3), where a marine geophysical survey
utilizing an EG&G model 272-TD [27] sidescan sonar and a SeaSpy [28] Marine Magnetometer and
intended to detect all objects on the seafloor that could be hazardous during a dredging procedure,
was conducted. The sidescan sonar survey consisted of 10 survey lines with a total length of 13.2 km,
while the marine magnetic survey consisted of 104 ones having a total length of 106 km, both covering
a total surface of 0.73 km2. The height of the SSS towfish about the seabed was approximately 7 m and
the pulse frequency and slant range were set to 100 kHz and 100 m respectively. The spacing between
survey lines was 75 m, ensuring a 25 m wide overlapping strip between parallel tracks. The above
set-up is not considered optimal for target detection surveys, where higher frequency systems, lower
heights of the towfish about the seabed and closer proximity of sequential survey lines are preferred,
in order to achieve maximum target to background contrast levels, well developed acoustic shadows
and larger (preferably >100%) overlapping areas to ensure that all targets have been recorded at least
twice through different views and incidence angles.
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man made targets that have been manually detected are indicated with white circles.

The raw SSS records underwent suitable radiometric and geometric corrections, the former ones
including beam-pattern correction and ping energy level normalization while the latter onesslant range
correction and ping by ping spatial registration, leading to 10 georeferenced images (one for each
survey line, in GeoTiff format) each having 6 ˆ 6 cm pixel sizing. Figure 3 illustrates the final seafloor
backscatter map after a mosaicking stage of the SSS images took place. The marine magnetic data
underwent advance processing [29] including deculturing, despiking, spline smoothing and tie-line
leveling, to finally produce a fully corrected magnetic map of the area.

Combining SSS and Marine magnetic data offered means of cross-checking all metallic targets
lying on the seafloor (Figure 4). Buried metallic targets have also been detected but no reference needs
to be made to them in the context of the present study. Proud targets were manually detected by expert
interpreters on the basis of their backscatter intensity and shape, as well as their magnetic responses
(small scale magnetic anomalies). A total number of 71 small (<1.5 m) proud targets have been detected
in the survey area (Figure 3), all of them being clearly discrete in the SSS imagery. A large proportion of
them were metallic, having a strong magnetic signature (magnetic dipole) and leading the interpreters
to the safe assumption that they are man-made ones. Non-magnetic targets have been ground truthed
by divers and their human origination was also validated.

3.2. Automatic Target Detection: Target Detection Models

The promise of the proposed system is sought not only through its target detection accuracy
but also regarding whether or not improvement is gained against similar procedures not utilizing
ICA or component analyses at all. In view of the above, three more target detection methodological
schemes, now on called “models”, all being modifications of the proposed model, are validated and
compared to it.
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The feature extraction stage is the same for all models, during which the 11 first and second
order image descriptive are extracted from sliding windows throughout the sonar images, forming the
FVs. Another common stage in all models is the Davies-Bouldin validation index utilization towards
automatic selection of the number of classes the feature space should be optimally clustered into and
Gaussian mixture models utilization. All models, except for the first one, involves component analysis
prior to the clustering procedure; PCA in the Models 2 and 3 and ICA in the Model 4. The exact
components to be used are automatically selected through the kurtosis criterion in Models 3 and 4,
while, in Model 2, the first three principal components (explaining the most of the FVs variance) are
chosen, following the most common practice about principal components met in the ASC literature.
The main characteristics of the models are summarized in Table 1. The concept behind those models
is that:

1. Model 1 is the base for comparisons as it uses all the available information extracted without any
decomposition or interfering between feature extraction and clustering stages;

2. Model 2 represents a common practice met in the literature of texture based ASC [8] and it
is intriguing to exploit how well it performs in the case of separating small targets from the
environment in an unsupervised way;

3. Model 3 includes all the proposed stages described in this work but utilizing PCA for
decomposing the FVs in a few meaningful data representations. That are chosen through the
Kurtosis criterion.

4. Model 4 is the proposed one, making use of all stages described in the context of this work and
ICA consideration.
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Table 1. Details and detection accuracy statistics regarding the 4 automatic target detection models
considered here, as applied to the case study of Alexandroupolis Harbor. The 4th model corresponds
to the proposed approach in this study.

Target Detection Model No. 1 2 3 4

Model Details
Decomposition Method - PCA PCA ICA

Components - 1,2,3 8,11 * 6,8 *
No of classes 10 ** 8 ** 4 ** 3 **

Detection
Accuracy

Precision 34.6% 30.1% 49.0% 87.3%
Recall 62.0% 56.3% 71.8% 77.5%

F-measure 44.4% 39.2% 58.3% 82.1%
False Alarms/km2 65.2 73 41.6 6.3

* Selected through the Maximum Kurtosis criterion; ** Selected using Davies-Bouldin validation index.

The feature extraction stage in all models took place for each individual SSS record and before any
stitching (mosaicking) has been applied. This is to ensure that any target recorded twice in overlapping
records will have double possibility to be detected. Bottom ranges with incidence angles (under the
implicit flat seabed assumption) less than 15˝ or more than 80˝ have been excluded from the analysis
to avoid areas where high rates of artifacts (e.g., in the nadir zone and at the far slant ranges) is present.
The size of the sliding window, which textural features were extracted from, has been set to 3 m
(50 ˆ 50 pixels) and the slide step (windows overlap) to 1.5 m (25 ˆ 25 pixels). An illustration of the
4th model (proposed one) as applied in the context of the present case study is given in Figure 5.Remote Sens. 2016, 8, 373 8 of 12 

 

 
Figure 5. Illustration of the SSS image decomposition, component selection and clustering stages, as 
applied in a single sonograph of the case study. 

3.3. Detection Accuracy Metrics and Results 

The detection accuracy for each model considered was assessed in the context of the number of 
its true positive (tp), false positive (fp) (else false alarms) and false negative (fn) detections, using the 
following, widely used in binary classification, metrics: 

1. Precision, else termed Positive Predictive Values (PPV), is given as tp/(tp + fp). Values close to 
one indicate that the detector managed to detect most ground truthed targets, making no 
mention about the ones that it did not manage to detect. 

2. Recall, also called sensitivity, Possibility Of Detection (POD) or Hit Rate, is defined as tp/(tp + 
fn). It quantifies the ability of the system to detect all existent targets in the dataset, 
independently on how many false detection it has made. 

3. F-Measure combines the above metrics in a more robust one taking in account the overall 
performance of a detector. It is defines as 2 × (Precision × Recall/(Prediction + Recall)) and it gives 
means of a robust evaluation for each model. 

4. False Alarms/km2 is the number of false alarms (positives) per area unit (set to 1 km2). 

To simplify accuracy metrics calculation, no special treatment has been made to multiple 
detection instances of the same target in overlaping records, i.e., two detection instances of the same 
target in overlapping SSS records were considered as two different targets. This way, the accuracy 
metrics should be interpreted as indicators about the overall models’ efficiency, not accounting for 
any performance gain that fusion of results from multi-aspect target views would offer. This way, 
False Alarms/km2 for instance were not estimated using the true insonified area but rather the sum 
of the areas of all individual swaths, ignoring if they have overlaps or not. 

The accuracy results for the four models considered are given in Table 1. It is proved that the 
proposed methodological scheme (Model 4) outperformed the others considering all detection 
accuracy metrics. An additional interesting finding is that by using component analysis methods, the 
targets’ information is concentrated in just a couple of components that need no more than three to 
four classes to be optimally separated in the Euclidean space through clustering. On the other hand, 
using PCA with the common handle about principal components (i.e., using just the first three ones 
that contain the majority of the image information) performed even worse than using no 
decomposition at all. The above confirms that targets, being sub ordinary image information, cannot 
be captured in the first few principal components that describe prevailing mechanisms that control 

Figure 5. Illustration of the SSS image decomposition, component selection and clustering stages, as
applied in a single sonograph of the case study.

3.3. Detection Accuracy Metrics and Results

The detection accuracy for each model considered was assessed in the context of the number of
its true positive (tp), false positive (fp) (else false alarms) and false negative (fn) detections, using the
following, widely used in binary classification, metrics:



Remote Sens. 2016, 8, 373 9 of 13

1. Precision, else termed Positive Predictive Values (PPV), is given as tp/(tp + fp). Values close to
one indicate that the detector managed to detect most ground truthed targets, making no mention
about the ones that it did not manage to detect.

2. Recall, also called sensitivity, Possibility Of Detection (POD) or Hit Rate, is defined as tp/(tp + fn).
It quantifies the ability of the system to detect all existent targets in the dataset, independently on
how many false detection it has made.

3. F-Measure combines the above metrics in a more robust one taking in account the overall
performance of a detector. It is defines as 2 ˆ (Precision ˆ Recall/(Prediction + Recall)) and it
gives means of a robust evaluation for each model.

4. False Alarms/km2 is the number of false alarms (positives) per area unit (set to 1 km2).

To simplify accuracy metrics calculation, no special treatment has been made to multiple detection
instances of the same target in overlaping records, i.e., two detection instances of the same target in
overlapping SSS records were considered as two different targets. This way, the accuracy metrics should
be interpreted as indicators about the overall models’ efficiency, not accounting for any performance
gain that fusion of results from multi-aspect target views would offer. This way, False Alarms/km2

for instance were not estimated using the true insonified area but rather the sum of the areas of all
individual swaths, ignoring if they have overlaps or not.

The accuracy results for the four models considered are given in Table 1. It is proved that the
proposed methodological scheme (Model 4) outperformed the others considering all detection accuracy
metrics. An additional interesting finding is that by using component analysis methods, the targets’
information is concentrated in just a couple of components that need no more than three to four classes
to be optimally separated in the Euclidean space through clustering. On the other hand, using PCA
with the common handle about principal components (i.e., using just the first three ones that contain
the majority of the image information) performed even worse than using no decomposition at all.
The above confirms that targets, being sub ordinary image information, cannot be captured in the
first few principal components that describe prevailing mechanisms that control the image scene and
not randomly induced seabed features, but they are rather included in one or more of the last ones.
Model 3, concerning PCA utilization (instead of ICA) and component selection, gave better overall
results than Models 1 and 2, indicating that appropriate component selection is essential for successful
target detection.

Figure 6 shows examples of true positive detections that have been made by each model. Typical
targets, posing clear shapes and shadows, have been detected by all models and some examples are
provided in Figure 6a. Figure 6b–d regard some less typical targets, having preserved no clear shape or
shadow details due to radiometric and geometric distortions caused by ambient and self noises. Some
of them, being metallic (strong acoustic reflectors) and recorded at far slant ranges (high incidence
angles), were distorted by acoustic “ringing”, seen as multiples parallel to the survey track-lines,
induced by the sea-level. Figure 6b regards targets that have been detected by all models as they
are clearly separated from a relatively uniform background. Detection of very small targets on a
uniform background or average sized ones lying on a background with higher backscatter variability
was only feasible through the models concerning component analysis coupled with component
selection (Figure 6c). Very small targets (<1 m) on a rougher background and targets not well
separated from the background have exclusively been detected by the proposed model (4th) that
makes use of ICA (Figure 6d), signifying its suitability for target extraction applications even under
non-favorable conditions.
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At the same time, Model 4 showed even higher superiority in minimizing false alarms. This is
evident through the high precision values it provided but mainly through the False Alarms/km2 metric
that is 7 to 10 times lower than that of the other models. Regarding Model 3, even though its recall is
quite high, signifying that most of the ground truthed targets have been detected, its precision is low,
which means that a lot of false detections have been made. This is due to the high amount of image
ambient or self noise that has been misclassified as targets (false alarms) through PCA utilization.
Examples of such false alarms are presented in Figure 7a, along with their corresponding image
windows that the FVs have been extracted from. On the other hand, Figure 7b regards characteristic
false alarms generated by Model 4 (employing ICA). Those, in some cases regard minor but still distinct
seabed anomalies, that might be targeted that had been missed or evaluated as very low significance,
during the manual detection stage.Remote Sens. 2016, 8, 373 10 of 12 
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4. Discussion

A common problem in analyzing measurements in the natural environment is searching for
suitable representations of the multivariate data. Towards this, linear decomposition methods become
natural choice due to their computational and implementational simplicity. PCA is an established
method for reducing large datasets, and earth scientists often tend to use it without realizing its
limitations. When subordinal phenomena are sough through measurements, PCA seems not to
be the ideal decomposition method, as it is inherently designed to identifying components that
include the dominant information of the environment, rather than separating irregular or subordinal
elements from their natural background. Manmade targets are small-scale anomalies that usually
represent a negligible portion of the overall scene that is under analysis. Being different, not only
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from the background, but also from each other, they cannot be all included just in one or in a few
uncorrelated components. Small man made targets in an image scene of the natural environment are
by definition artificially introduced anomalies. Thus, they represent absolutely separate in-natural
processes; inducing random features in the environment, and this separation is reflected in their
statistical independence.

In the present study that small man made targets were sought in the natural seafloor through
sonar images, target detection methods based on the assumption of gaussianity (i.e., PCA) were quite
unsuccessful. ICA, making no assumption of gaussianity and maximizing independencies in the
natural background seemed to be a very capable tool about reducing the sonar information in just a
few components that contain the most subordinal (and not the most prevailing) information of the
image scene.

Even though PCA utilization (instead of ICA) in the context of the present study, gave a high rate
of true positive detections, the false positives were also unacceptably high. This is because PCA was
unable to separate noise from other irregularities, as they were all the least uncorrelated features of
the image (they explained a very small proportion of the image variance), and they were dropped
all together in the last few principal components. However, although small irregular targets are
not the most uncorrelated features on the SSS imagery (ambient noise should be equally or more
uncorrelated), they are the most independent ones. While ambient noise is usually governed by some
natural mechanisms, creating correlated features in the scene, small targets are introduced to the
background in a truly independent way, without any mechanism to control their characteristics.

Not conforming to common target detection survey setups (i.e., higher frequency SSS systems,
closer proximity to the seabed and >100% overlapping between sequential records) the SSS dataset
of the selected case study made automatic small target detection a very challenging task. Under
the present SSS survey set-up (intended for low resolution–high coverage surveying), the shapes of
very small targets are often severely distorted, their appearance is vague and target shadows rarely
are extended enough to be reliable indicators of the targets’ existence and shape. Thus, seeking for
random irregularities in the image scene, as by utilizing ICA, rather than trying to quantify target
characteristics, seems much more realistic and appealing when dealing with data retrieved from more
general-purpose surveys.

5. Conclusions

In this paper, an attempt to detect targets in Side Scan Sonar (SSS) imagery by coupling traditional
feature based Acoustic Seabed Classification (ASC) systems and Independent Component Analysis
(ICA) has been presented and validated for one dataset concerning a harbor floor containing more
than 70 validated manmade small targets. The core of the implemented system combines texture based
unsupervised classification and a well-validated approach in anomaly detection and blind source
separation studies, called ICA. ICA is a powerful data decomposition technique able to separate the
image information into anomalies (i.e., targets) and background. An efficient technique based on the
kurtosis of the independent components is utilized so that only those independent components that
emphasize targets are used, leading to more accurate and unbiased classification results. The validation
of the proposed approach was conducted on the basis of comparing its effectiveness to automatically
detect the ground truthed targets against using PCA or no decomposition method instead. Although
coupling PCA with the same component selection criterion has also proved to be an acceptable
approach, detecting more than 71% of the targets (against more than 77% in the case of ICA), the
superiority of utilizing ICA is evident through managing to reduce false alarms by more than 6 times.
Despite methodological and computational improvements that the presented method may need, it
represents a considerable demonstration of using ICA towards finding meaningful representations of
the swath images that could be the basis for similar future work in the fields of target detection and
habitat mapping. Future improvement to this work should regard performance assessment, algorithm



Remote Sens. 2016, 8, 373 12 of 13

optimization, extensive validation using different datasets and comparison to other available target
detection algorithms for swath sonars.
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