
remote sensing  

Article

Hyperspectral Unmixing via Double Abundance
Characteristics Constraints Based NMF
Rong Liu 1, Bo Du 2,* and Liangpei Zhang 1

1 The State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing,
Wuhan University, Wuhan 430079, China; lr@whu.edu.cn (R.L.); zlp62@whu.edu.cn (L.Z.)

2 School of Computer, Wuhan University, Wuhan 430079, China
* Correspondence: gunspace@163.com; Tel.: +86-138-7146-1059

Academic Editors: András Jung, Lenio Soares Galvao and Prasad S. Thenkabail
Received: 11 March 2016; Accepted: 24 May 2016; Published: 31 May 2016

Abstract: Hyperspectral unmixing aims to obtain the hidden constituent materials and the
corresponding fractional abundances from mixed pixels, and is an important technique for
hyperspectral image (HSI) analysis. In this paper, two characteristics of the abundance variables,
namely, the local spatial structural feature and the statistical distribution, are incorporated into
nonnegative matrix factorization (NMF) to alleviate the non-convex problem of NMF and enhance the
hyperspectral unmixing accuracy. An adaptive local neighborhood weight constraint is proposed for
the abundance matrix by taking advantage of the spatial-spectral information of the HSI. The spectral
information is utilized to calculate the similarities between pixels, which are taken as the measurement
of the smoothness levels. Furthermore, because abrupt changes may appear in transition areas or
outliers may exist in spatially neighboring regions, any inappropriate smoothness constraint on these
pixels is removed, which can better express the local smoothness characteristic of the abundance
variables. In addition, a separation constraint is used to prevent the result from over-smoothing,
preserving the inner diversity of the same kind of material. Extensive experiments were carried out
on both simulated and real HSIs, confirming the effectiveness of the proposed approach.

Keywords: hyperspectral unmixing; mixed pixels; abundance smoothness; selected local
neighborhood; nonnegative matrix factorization (NMF)

1. Introduction

Past decades have witnessed the great success of hyperspectral imaging in a wide range of
applications, due to its capacity to synchronously acquire both spatial and spectral information [1,2].
In hyperspectral images (HSIs), the spectral vector of each pixel contains hundreds or even thousands
of elements, which provides rich spectral information to efficiently identify and distinguish different
types of land cover [3]. However, due to the limited spatial resolution and the complexity of surface
features [4], mixed pixels are common in HSIs. The existence of numerous mixed pixels conflicts
with the demands for accurate recognition and interpretation of the material properties of the pixels.
Hyperspectral unmixing (HU), which decomposes the mixed pixels into a set of constituent materials
called “endmembers”, as well as the corresponding mixture coefficients called “abundances”, was
developed to alleviate the mixed pixels problem [5]. HU makes it possible to reveal the material
properties of pixels, so that the recognition and interpretation of pixels can be carried out at the
sub-pixel scale, such as sub-pixel mapping [6] and sub-pixel target detection [7].

The linear mixing model (LMM) and the nonlinear mixing model (NLMM) are the two basic
models used in HU, depending on the mixing degree of each type of material [4]. The LMM assumes
that the mixed pixel spectrum is a linear combination of the pure material signatures weighted by
the corresponding abundance fractions, and has been more widely applied than the NLMM in the
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past decade, on account of its simplicity and suitability, as well as its clear physical meaning. It has
therefore attracted a lot of attention in remote sensing fields [8–11]. Based on the LMM, three general
approaches for unmixing have been developed: (1) geometric theory based approaches; (2) sparse
regression based approaches; and (3) statistical theory based approaches [2].

Considering the relationship between geometric theory and the LMM, it can be found that a
hyperspectral dataset actually lies in a simplex whose vertices correspond to the endmembers. Typical
geometric theory based methods include the pixel purity index (PPI) [12], N-FINDR [13], the simplex
growing algorithm (SGA) [14], vertex component analysis (VCA) [15], and so on. These methods all
assume that there is at least one pure pixel per endmember. The practicability of the above methods
is limited if the pure pixel assumption is violated, since they would not be able to find the exact
endmembers in the image. The minimum volume based methods work whether the pure-pixel
assumption is fulfilled or not. They aim at determining the simplex to enclose the observed data with
the minimum volume. The endmembers are generated instead of selected in the image. The minimum
volume enclosing simplex (MVES) [16], minimum volume simplex analysis (MVSA) [11], and the
simplex identification via split augmented Lagrangian (SISAL) algorithm [17] are typical methods in
this class. Sparse regression based approaches are relatively new developments, which conduct HU
in a semi-supervised fashion by assuming that a spectral library of materials in the scene is available
and that the observed data can be expressed in the form of linear combinations of a certain amount of
signatures from the spectral library [18,19]. Sparse theory based methods have been developed to find
the optimal combinations from the library since the number of materials in one pixel is far less than
the number of signatures in the library [20–22], and the low-rank constraint based on the utilization of
spatial correlation has been used to enhance the unmixing result [23,24]. The statistical theory based
approaches can work under a highly mixed situation [8], and they generally obtain the endmembers
and the corresponding abundances simultaneously. Independent component analysis (ICA) [25] and
nonnegative matrix factorization (NMF) [26] are typical statistical approaches, both of which are blind
source separation (BSS) approaches since they estimate the signals from the observations in the absence
of prior knowledge. ICA is able to separate the original source signals under the assumption that the
sources are statistically independent. However, this assumption is invalid under the LMM of HU since
the sum of abundance fractions within each pixel is constant, which compromises the performance
of the ICA algorithm in hyperspectral unmixing [27]. A number of methods [28–30] have also been
proposed to improve the performance by means of adding auxiliary constraints to the ICA.

NMF approximately factorizes a nonnegative matrix into the product of two nonnegative matrices
by adopting a multiplicative algorithm [26]. NMF has shown great potential for solving HU since
it can obtain nonnegative results with physical significance [31]. Unfortunately, the algorithm may
fall into many local minima due to the non-convexity of the objective function, and may not produce
an accurate result [32]. Additional constraints on the NMF model according to the properties of the
HSIs are needed. A variety of methods based on constrained NMF have been developed in either (or
both) of two ways: imposing constraints on the spectral matrix or on the abundance matrix. In terms
of the geometric features of HSIs, the minimum volume constrained NMF (MVCNMF) [33] method
incorporates a minimum volume constraint into the NMF formulation to force the endmembers to
enclose the data cloud. Considering the properties of the spectra, Wang et al. [34] proposed the
endmember dissimilarity constrained NMF (EDCNMF) method by assuming the endmember spectra
should be smooth and different from each other. Another method named abundance separation and
smoothness constrained NMF (ASSNMF) [35] introduces two constraints, namely, the abundance
separation constraint and abundance smoothness constraint, into the basic NMF. The ASSNMF method
is based on two properties of HSIs: the correlation between different endmembers is weak, and ground
objects usually vary slowly. The abundance matrix is generally supposed to be sparse since most
pixels are mixed by only a few endmembers [9]. Accordingly, this feature has been widely exploited
in HU methods. Among the various sparsity-constrained methods, L1{2sparsity-constrained NMF
(L1{2 ´ NMF) [36] is a very popular approach. The objective of the Lq p0 ď q ď 1q regularizer is to
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minimize the Lq p0 ď q ď 1q norm of the abundance matrix and the definition of the Lq p0 ď q ď 1q
norm can refer to [37]. L1{2 ´ NMF is superior to the L1 regularization method since the L1 regularizer
cannot enforce further sparsity when the full additivity constraint of the material abundance is
used [38]. Furthermore, the sparsity-constrained method has been generalized to Lq ´ NMF for
0 ă q ă 1, and the sparsity imposed by the regularizers upon the unmixing task has been
investigated [36,37], which demonstrated the superiority of the L1{2 regularizer over the L1 regularizer.

In recent years, researchers have made attempts to use the spatial information between different
pixels as prior knowledge to enhance HU [39–42]. To further improve the performance of the sparse
NMF algorithm, the graph-regularized L1{2 ´ NMF (GLNMF) [42] method was proposed. This
method utilizes the latent manifold structure of the data during the decomposition by incorporating an
additional manifold regularization term into L1{2 ´ NMF, which can keep the close link between the
original image and the material abundance maps. Although the existing abundance characteristic based
NMF methods have achieved good performances, we still believe that there is room for improvement.

Firstly, the smoothness levels may not be correctly described. Take Figure 1 as an example.
Figure 1a shows that the ground objects between adjacent pixels in homogeneous areas vary slowly;
that is to say, HSIs are spatially smooth. The abundances also possess the same smoothness feature
since each abundance map characterizes the distribution of a certain kind of ground object. The
method in [35] exploits the smoothness feature by assuming that two pixels are more similar if they
are spatially closer, and assigns the same smoothness weight to the pixels which are the same spatial
distance from the observation pixel. However, in some cases, as shown in the close-ups of Figure 1a,
it is not always true that the smoothness levels of two-pixel pairs (a pixel pair is composed of the
observation pixel and one of its spatially neighboring pixels in the surrounding local window) are the
same if the spatial distances between them are the same. A more reliable measurement of smoothness
levels should be used to reflect this difference.
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objects have their own dominant regions and they are dispersed in a convex. (a) An HSI and 
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Secondly, the spatial structure information in a local area may not be fully explored. The use of 
the smoothness constraint is based on the precondition that the pixels being constrained are similar. 

Figure 1. Three observations from the figure: the adjacent pixels vary slowly; pixels of a closer spatial
distance are not always more similar; the abundance variables dominated by different ground objects
have their own dominant regions and they are dispersed in a convex. (a) An HSI and close-ups of two
patches in it; (b) 3-D scatter plot of the abundance samples of zoom 1 in (a); (c) 3-D scatter plot of the
abundance samples of zoom 2 in (a).

Secondly, the spatial structure information in a local area may not be fully explored. The use of
the smoothness constraint is based on the precondition that the pixels being constrained are similar.
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However, this precondition is violated when abrupt changes appear in transition areas or outliers exist
in the spatially neighboring regions, as shown in the close-ups of Figure 2a. Methods such as those
proposed in [35,39] impose a smoothness constraint on all the spatially neighboring pixels in the local
window. The spatial structure information is not fully explored by these methods since they lose sight
of the pixels that are inappropriate for the smoothness constraint. In this condition, the smoothness
constraint may be imposed on pixels which are actually dissimilar to the observation pixel, leading to
extra error in the unmixing result.
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Figure 2. The concept of the selected local neighborhood weight method. (a) A hyperspectral image
and close-ups of two patches in it; (b) An example of local neighborhood weights for xi, which locates
in the boundary of two classes; (c). An example of local neighborhood weights for xj, which is spatially
adjacent to outliers; In (b) and (c), the different colors represent different materials, and different
shades of the same color represent the diversity of the same material; the dots denote a zero value of
the assigned weight; the stars denote an assigned weight that is greater than zero, and a larger star
represents a larger weight for more similar pixels.

Finally, the dispersed characteristic of the abundance variables is not fully taken into consideration.
Actually, the dispersed characteristic of the abundance variables describes the statistical characteristics
of the abundances, as reflected in Figure 1b,c. The 3-D scatter plots of the abundance samples show that
the abundance variables dominated by different ground objects (an abundance variable dominated
by a kind of ground object means that the pixel corresponding to this abundance variable is mainly
composed of the ground object) have their own dominant regions and they are dispersed in a convex,
which indicates that the abundance variables corresponding to different kinds of materials should be
separate and only have a faint correlation. The method proposed in [39] only adds the smoothness
constraint to NMF, which may lead to over-smooth results with the increase in iteration times. A
constraint to exploit the dispersed characteristic can prevent these undesirable results by pulling the
variables toward their own dominant region through minimizing the correlation between any two of
the abundance variables.

Based on the above problems, we propose a novel double abundance characteristics constrained
NMF (DAC2NMF) method, taking both the spatial structure information and the statistical distribution
of the abundances into consideration. Our contributions can be summarized as:

(1) The smoothness levels of each pixel pair are measured according to the similarities between them
by taking advantage of the spectral information of the HSIs. In this way, more similar pixels are
given a higher smoothness weight, as shown in Figure 2b,c, which is closer to the reality than a
smoothness level determined by spatial distance.

(2) Incorrect smoothness constraints are avoided by assigning a zero smoothness level to the
pixels that are dissimilar to the observation pixel. The dissimilar pixels are excluded from
the neighborhood pixels in the local window. The schematic diagrams in Figure 2b,c express
this idea.

(3) A separation constraint is used to prevent an over-smooth result by utilizing the dispersed
characteristic of the abundance variables. A more stable and desirable result can be obtained in
the interaction of these two constraints.
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The remainder of this paper is organized as follows. Section 2 briefly presents the LMM and the
basic NMF model. A detailed description of the proposed method is given in Section 3. Sections 4
and 5 evaluate the proposed algorithm using experiments on both synthetic and real hyperspectral
data. Section 6 concludes the paper.

2. Related Works

2.1. The Linear Mixing Model (LMM)

As mentioned in Section 1, the LMM assumes that a pixel in an HSI can be expressed as a linear
combination of a set of endmembers and the corresponding abundance fractions. Assuming that the
image scene is dominated by P kinds of distinct materials with L bands, mathematically, an observation
x P RLˆ1 can be written as:

x “
P
ÿ

i“1

siai ` n “ As` e (1)

where x “ rx1, x2, . . . , xLs
T is the Lˆ 1 obtained pixel vector, A “ ra1, a2, . . . , aPs is an Lˆ P matrix,

with each column being an endmember signature vector. s “ ps1, s2, . . . , sPq
T is a P-dimensional

column vector composed of abundance coefficients of each endmember at the observation pixel, and e
represents the Lˆ 1 additive observation noise and error vector. Assuming that there are altogether N
observations in the image, the LMM for all the pixels can be expressed by the matrix notation:

X “ AS` E (2)

where X “ rx1, x2, . . . , xNs, S “ rs1, s2, . . . , sNs, and E “ re1, e2, . . . , eNs. Clearly, the lth column of
matrix S is the abundance coefficients of the lth column of matrix X. To be physically meaningful, the
LMM is subject to two constraints on the entries of S, namely, the abundance nonnegative constraint
(ANC) and the abundance sum-to-one constraint (ASC), which can be explicitly given by si ě 0,
i “ 1, 2, . . . , P and 1Ts “ 1.

2.2. Nonnegative Matrix Factorization (NMF)

NMF approximates a high-dimensional nonnegative matrix with the product of two
low-dimensional nonnegative matrices. The non-negativity constraints of NMF lead to a part-based
representation because they allow only additive combinations [43]. This part-based property makes
the NMF method well suited to many applications, such as face recognition [44] and document
clustering [45]. Using the preceding notations, given a nonnegative matrix X P RLˆN , NMF aims to
find the nonnegative matrix factors A P RLˆP and S P RPˆN , such that:

X « AS (3)

Comparing the basic NMF model with the LMM model under a noise-free scenario, it can be
found that they can both be seen as seeking linear combinations of a set of basis vectors, and their
combination coefficients are both nonnegative. These similarities between the two models make NMF
a suitable algorithm for HU. Lee and Seung [26] developed two simple multiplicative algorithms to
solve the factorization problem of Equation (3), for which the square of the Euclidean distance between
X and AS is a commonly used cost function. The objective function can be written as:

minimize f pA, Sq “
ˇ

ˇ

ˇ

ˇX´AS
ˇ

ˇ

ˇ

ˇ

2
F “

L,N
ř

i,j“1

´

Xij ´ pASqij
¯

2

s.t. A ě 0, S ě 0

(4)
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where the operator ||¨||F represents the Frobenius norm. Although the minimization problem
Equation (4) is separately convex in A and S, it is not simultaneously convex in both matrices. The
widely used multiplicative algorithm presented in [26] is simple to implement and performs well, and
can be generated from the traditional gradient descent algorithm. The gradient of Equation (4) can be
written as:

B f pA, Sq
BA

“ ASST ´XST (5)

B f pA, Sq
BS

“ ATAS´ATX (6)

where p¨ qT denotes the transpose of the matrix. The update rules can be given by:

A Ð A´ uA ˚ pAS´XqST (7)

S Ð S´ uS ˚AT pAS´Xq (8)

where uA and uS are the step sizes. They are set as uA “ A.{pASSq and uS “ S.{pAASq to meet the
nonnegative constraints. Substituting them into Equations (7) and (8), the update rules can be obtained:

A Ð A. ˚XST.{ASST (9)

S Ð S. ˚ATX.{ATAS (10)

where .˚ and .{ represent the element-wise multiplication and division, respectively. The initialization
of A and S should be nonnegative to ensure their non-negativity during the iteration under rules
presented by Equations (5) and (6). The cost function Equation (4) is non-increasing after each iteration
under the update rules, and it will be convergent to a stationary point.

3. The Double Abundance Characteristics Constrained NMF Method

Although NMF is quite appealing for HU, there are some challenges to be faced. One of the
challenges is the lack of a unique solution to Equation (4) due to the aforementioned non-convexity in
both A and S [34]. If one solution of A and S is obtained, then for any nonnegative invertible matrix D
whose inverse D´1 is also nonnegative, AD and D´1S are also a pair of solutions. In order to narrow
the solution space and draw the decomposition toward the correct result, constraints or penalty terms
are generally used to provide desirable results by considering the different properties of the HSIs. In
this paper, we propose a constrained NMF method by considering two characteristics of the abundance
variables, which is described in the following parts.

3.1. Smoothness Feature of the Abundances

The low spatial resolution of HSIs means that they lack tiny details; that is to say, the ground
objects vary smoothly and abrupt changes rarely occur. It can be seen from the close-ups in Figure 1a
that in the homogeneous areas, the spatially neighboring pixels are similar to each other and change
very little, and sudden changes are found only in transition areas or where anomalies exist. This is an
important spatial structure property of HSIs, which can be introduced to guide the unmixing. Remove
the noise and error item in Equation (1), and each column of X can be written as:

x «
P
ÿ

i“1

siai « As (11)

It is easy to see from Equation (7) that each pixel in the image can be described as a combination of
endmember set A and the corresponding abundance coefficients. Taking A as a set of basis vectors in a
space, then S can be regarded as the presentation of the L-dimension vector x in the P-dimension space.
Therefore, a kind of projection link can be established between the original hyperspectral dataset
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and the abundance vectors. More specifically, similar pixels in the original image are expected to
have similar abundance fractions after unmixing under this linear projection mode. In this sense, the
smoothness feature of pixels is also appropriate for describing the relationship of the corresponding
abundances. Based on the above analysis, the smoothness characteristic of the abundances between
neighboring pixels in a local window is introduced as a constraint to the objective function of the basic
NMF model.

The following two factors are taken into consideration when we design the smoothness constraint:
(1) different ground objects may have diverse smoothness levels; and (2) the smoothness feature is
violated in some places, such as transition areas. In the proposed method, the similarities between
pixel pairs (the central pixel and each of its surroundings pixels in the local window) are utilized as
prior knowledge to measure the smoothness levels of their abundances. The diverse smoothness levels
are expressed by the assigned smoothness weights according to the different similarities between
different pixel pairs. As mentioned before, some spatially neighboring pixel pairs may show sudden
changes. In fact, these pairs should be abandoned when imposing the smoothness constraint on
the abundances, because this kind of constraint on these pairs is not consistent with reality and will
produce extra error instead of generating better results. As a result, we must identify these pixels and
exclude them from the smoothness constraint to better describe the local spatial structure information
of the image. The high spectral resolution of HSIs provides the observations with hundreds of spectral
bands, which makes it possible for each pixel to characterize a certain kind of ground object with an
almost continuous spectral curve. This valuable spectral information contained in each pixel vector
can be used to account for pixel variability, similarity, and discrimination [46]. Inspired by the spectral
angle mapper [47] the similarity between xi and xj is calculated by:

βij “
xT

i xj
ˇ

ˇ

ˇ

ˇxi
ˇ

ˇ

ˇ

ˇ ¨
ˇ

ˇ

ˇ

ˇxj
ˇ

ˇ

ˇ

ˇ

(12)

where a larger βij stands for a higher similarity degree between xi and xj. The size of the local window
is empirically chosen as 5ˆ 5. After the calculation of the similarity values of all the pixel pairs (the
central pixel and each of its surrounding pixels in the local window), an ascending order operator is
conducted on them, and only the corresponding pixel pairs of the first 45% of the values participate in
the abundance smoothness constraint, based on experimental investigation.

Based on the above process, the neighboring candidate pixels of each central pixel in the local
window are determined. Given a pixel vector xi, if pixel vector xj is in the neighboring candidate pixel
set of xi, then we define j P N piq. It is clear that different pixel pairs may have different smoothness
levels, and one may naturally hope that there should be a strategy to describe this kind of spatial
structure feature. Here, the diverse smoothness levels are reflected with local neighborhood weights,
which are defined as:

Wij “

$

&

%

e´
ˇ

ˇ

ˇ

ˇxi´xj

ˇ

ˇ

ˇ

ˇ

2

σ , if j P N piq
0, othervise

(13)

where Equation (13) is known as the heat kernel [42], and σis a scaling parameter of the heat kernel
weighting. The selection of σis usually done manually. Considering that the same value of σmay fail
to capture the data structure when the data contain multiple scales [48], the adaptive value of σcan be
defined as:

σ “
1

k´ 1

ÿ

jPN piq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xi ´ xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
(14)

where k is the number of selected neighboring pixels of pixel xi.
It is apparent that the more similar xi and xj are, the bigger Wij is. Through the previous analysis,

it is known that the abundance of a given pixel xi is similar to the abundance of the pixel in its
neighbor N piq. To achieve the abundance smoothness constraint with consideration of the selection of
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neighboring pixels and the calculation of different similarity levels, the selected local neighborhood
weight regularization term for the abundance smoothness is defined as:

minimize J1 pSq “
N
ř

i“1

ř

jPN piq
Wij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
si ´ sj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

s.t. S ě 0
(15)

3.2. Dispersed Characteristic of the Abundance Variables

We can roughly distinguish different classes of objects from an image scene such as Figure 1 by
visual judgment because, in the real world, every kind of ground object has its own dominant region,
which leads to the dispersed distribution of the abundance variables in HSIs. This distribution feature
reveals that the abundance variables corresponding to each endmember seem to be independent
of each other. However, the independent assumption is violated by the ASC in the LMM, which
indicates that there is some correlation between the abundances of different objects due to mixed
pixels. “Weak correlation” is more suitable for the relationship between different abundance variables.
Mutual information is appropriate to express the above statistical information of the abundance
variables, which is a commonly used measurement to describe the independence degree of variables.
The mutual information function is given by the K-L divergence of the probability density of the
abundance distributions [49]. By minimizing the mutual information function to a proper level,
the dispersed characteristic of the abundance variables can be properly expressed. However, the
distributions of the signals need to be estimated because they are usually not known in advance.
One way used in [30] expresses the probability density function by a Gaussian distribution, and has
achieved favorable unmixing results. In fact, by minimizing the abundance information divergence
(AID) [33] of the abundance variables, the minimization of the mutual information can also be
achieved, and, what is more, it needs no prior knowledge about the abundance distributions. AID is
derived from the K-L divergence. Given two probability distributions of two discrete random signals
P “ rP1, . . . , Pn, . . . , PNs

T and Q “ rQ1, . . . , Qn, . . . , QNs
T, the definition of K-L divergence of Q from

P is:
DKL

`

P
ˇ

ˇ

ˇ

ˇQ
˘

“
ÿ

n
Pnlog

Pn

Qn
(16)

where
ř

n
Pn “

ř

n
Qn “ 1. Based on the K-L divergence, the AID of two abundance distributions

si “ pSi1, Si2, . . . , SiNq
T and sj “

`

Sj1, Sj2, . . . , SjN
˘T is defined as:

AID
`

si, sj
˘

“ DKL
`

p
ˇ

ˇ

ˇ

ˇq
˘

`DKL
`

q
ˇ

ˇ

ˇ

ˇp
˘

(17)

where p “ si{
ř N

n“1Sin and q “ sj{
ř N

n“1Sjn are the normalizations of si and sj, respectively.
Clearly, AID is symmetric and always nonnegative. Due to the fact that the value range of its
gradient is p´8,`8q, which may cause divergence during iteration of the gradient descent algorithm,
Liu et al. [35] improved the AID to be more suitable and stable for the iterative algorithm, and they
named the improved version the “separation function”. Attracted by its suitability and effectiveness,
we chose this function to describe the dispersed characteristic of the abundance variables and to
minimize the mutual information of the abundance variables. This regularization term is defined as:

maxmize J2 pSq “
1

2P2

P
ÿ

i“1

P
ÿ

j“1

N
ÿ

n“1

«

Qin f

˜

Qin
Qjn

¸

`Qjn f
ˆ

Qjn

Qin

˙

ff

(18)

where Qjk “ Sjk{
ř N

n“1Sjn; that is to say, Q is the normalized S. f pxq is a replacement for the logarithm
function used in the K-L divergence and AID, which is defined as:

f pxq “ 1´ 21´x2
(19)
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The objective function J2 is always nonnegative, and a larger value represents a lower correlation
between abundances, so maximization of J2 is equal to minimization of the mutual information of
the abundances.

3.3. Abundance Sum-to-One Constraint

To satisfy the physical meaning of the LMM, the abundance should be subject to the ANC and
ASC constraints. The ANC constraint is naturally satisfied by NMF. To satisfy the ASC, we adopt the
widely used approach in [50]. In the iteration, the original dataset X and the endmember matrix A are
augmented as:

XC Ð

«

X
δ1T

ff

AC Ð

«

A
δ1T

ff

(20)

where 1T is a vector with all the elements being 1, and δis a parameter to adjust the impact of the
ASC. In the implementation, a larger δwill result in a better performance, but the convergence rate
is decreased. A appropriate value of δ “ 20 is selected to balance the tradeoff between accuracy and
efficiency in this paper.

3.4. Objective Function and Update Rules of the Proposed Method

By integrating the auxiliary constraints presented in part A and part B into the basic NMF model,
the objective function of the constrained NMF method is formed as follows:

minimize f pA, Sq “
1
2

ˇ

ˇ

ˇ

ˇX´AS
ˇ

ˇ

ˇ

ˇ

2
F ` u1 J1 pSq ´ u2 J2 pSq (21)

where u1 and u2 are regularization parameters, which balance the tradeoff among the three terms. To
minimize Equation (21), a gradient descent algorithm based on the optimization of the basic NMF is
developed. According to Equations (7) and (8), the update rules for DAC2NMF can be formulated
as follows:

A Ð A´ uA ˚
´

ASST ´XST
¯

(22)

S Ð S´ uS ˚

ˆ

ATAS´ATX` u1
B J1 pSq
BS

´ u2
B J2 pSq
BS

˙

(23)

where the step sizes uA and uS are defined as uA “ A.{pASSq and uS “ S.{pAASq, respectively.
Substituting uA and uS into Equations (22) and (23), the multiplicative update rules can be written as:

A Ð A. ˚XST.{ASST (24)

S Ð S. ˚
ˆ

ATX´ u1
B J1 pSq
BS

` u2
B J2 pSq
BS

˙

.{
´

ATAS
¯

(25)

The derivatives of J1 pSq and J2 pSqwith respect to each element in S are given as follows:

B J1 pSq
BSpn

“
ÿ

jPN pnq
SpnWnj `

ÿ

nPN piq
SpnWin ´

ÿ

jPN pnq
SpjWnj ´

ÿ

nPN piq
SpiWin (26)

B J2pSq
BSpn

“ 4ln2

P2
N
ř

n“1
Spn

$

’

&

’

%

P
ř

j“1

N
ř

k“1
Qpk

»

—

–

Q3
jk

Q3
pk

2
´

Q2
jk

Q2
pk `

ˆ

1
2ln2 ´

Q2
pk

Q2
jk

˙

2
´

Q3
pk

Q3
jk ´ 1

4ln2

fi

ffi

fl

´
P
ř

j“1

»

—

–

Q3
jn

Q3
pn

2
´

Q2
jn

Q2
pn `

ˆ

1
2ln2 ´

Q2
pn

Q2
jn

˙

2
´

Q3
pn

Q3
jn ´ 1

4ln2

fi

ffi

fl

,

/

.

/

-

(27)
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3.5. Implementation Issues

3.5.1. Initialization

The number of endmembers is an essential parameter for most of the unmixing methods when no a
priori knowledge is offered, and the accuracy of the number is crucial for the following unmixing result.
The determination of the endmember number is a challenging task due to the interference of noise and
anomalies. Among the numerous related studies, virtual dimensionality (VD) [51] and hyperspectral
signal subspace identification by minimum error (HySime) [52] are two commonly used approaches for
estimating the endmember number. Although these methods are effective, they cannot guarantee 100%
accuracy. Since our work is focused on the unmixing stage, and the endmember number estimation is
another independent topic, further discussion about the endmember number estimation is not included
in this paper. Instead of relying on the endmember number estimation methods, we determine the
endmember number by comprehensive visual interpretation, VD estimation, and by referring to the
endmember numbers used in previous research.

Apart from the endmember number, the initializations of the endmember matrix A and abundance
matrix S are also significant with regard to the NMF-based methods. It is impractical to obtain a
global minima of the non-convex objective function through iterative optimization, since different
initializations will result in various results for the same method. In this study, we used two different
initialization methods for the synthetic experiments and the real data experiments, respectively. The
simple approach adopted in [34], which utilizes the spectral information divergence (SID) [53], was
employed in the synthetic experiments to initialize A. Since the real image scene was more complex
than the synthetic data, the VCA approach was used to initialize A for the real data.

The initialization of abundance matrix S is achieved by the maximum likelihood estimation from
A, which is defined as:

S “
´

ATA
¯´1

ATX (28)

Considering that the initializations of A and S should both be nonnegative to ensure their
non-negativity during the optimization, all of the elements in the initialized S are checked and the
negative values are forced to be 0 through the following operator:

S “ max pS, 0q (29)

3.5.2. Stopping Condition

The stopping criterion, which can terminate the procedure when a stationary point is reached, is
essential for NMF-based methods. The algorithm is considered to be converged if:

1
N

N
ÿ

i“1

c

1
L
ˇ

ˇ

ˇ

ˇX´AS
ˇ

ˇ

ˇ

ˇ

2
F
ď τ (30)

where τ is a specified error tolerance. In addition, the maximum number of iterations is also predefined.
The procedure should be stopped when either of the stopping criteria is reached.

3.5.3. The Procedure of DAC2NMF

The flowchart of DAC2NMF is summarized as follows:

1. Determine the endmember number P; initialize the endmember matrix A by the SID-based
algorithm for the synthetic experiments, and VCA algorithm for the real experiments; initialize
the abundance matrix S according to Equations (28) and (29);

2. update A by Equation (24);
3. replace matrices A and X with matrices AC and XC according to Equation (20);
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4. update S by Equations (25)–(27);
5. replace matrices AC and XC with matrices A and X;
6. repeat step 2–step 5 until reaching the maximum number of iterations or Equation (30) is satisfied;

3.5.4. Computational Complexity Analysis

Here, the computational complexity of the proposed DAC2NMF method is analyzed. There are
two additional auxiliary constraints based on NMF. For the smoothness constraint, it needs p24NLq to
build the local neighborhood weights. The floating-point calculation times needed for calculating the
gradients of the smoothness and separation constraints are 4PNk and 10P2N, respectively, where k is
the number of selected neighboring pixels. In addition, the multiplicative update of the matrices needs
2
“

P2 pL` Nq ` PLN
‰

times. If the procedure is stopped after m times of iterations, then the total cost
is O

“

m
`

P2 p2L` 12Nq ` PN p2L` 4kq
˘

` 24NL
‰

.

4. Synthetic Image Experiments

We conducted a series of experiments to test the performance of the proposed DAC2NMF method
with synthetic images. To verify the performance, the proposed method was compared with four
related methods: ASSNMF, L1{2 ´ NMF, GLNMF, and MVCNMF.

4.1. Performance Metrics

Two metrics were used to assess the quantitative accuracy of the estimated endmembers and their
abundances: the spectral angle distance (SAD) [34] and the root-mean-square error (RMSE) [42]. The
SAD was used to evaluate the shape similarity between the estimated endmember signature a and the
true endmember signature â, and is defined as:

SAD pa, âq “ arccos
ˆ

aTâ
||a||||â||

˙

(31)

Since the SAD value describes the spectral angle distance between two endmember signatures, a
smaller value indicates a better estimation result. The similarity between the estimated abundance d
and the corresponding reference abundance d̂ was measured by the RMSE, which is defined as:

RMSE
´

d, d̂
¯

“

g

f

f

e

1
N

N
ÿ

i“1

´

di ´ d̂i

¯

2

(32)

where d stands for a row vector of the estimated abundance matrix S. Similar to SAD, a smaller value
of RMSE represents a better estimation result for the abundance map.

4.2. Generation of Synthetic Images

The simulated synthetic images were of a size of 64ˆ 64, with 182 bands, except for the image
used to investigate the algorithm sensitivity to the image size. Ten spectral signatures were chosen
from the U.S. Geological Survey (USGS) digital spectral library to create the synthetic data. Apart
from the image used for testing the algorithm sensitivity to the number of endmembers in the image,
seven spectra were used to generate the synthetic images. The seven spectral signatures are shown in
Figure 3a. The generation of the abundance fractions was similar to the method used in [33], and can
be described as follows: (1) an image of size 64ˆ 64 was divided into units of 8ˆ 8 blocks; (2) each
block was randomly covered by one of the endmember classes; (3) a spatial low-pass filter of size 9ˆ 9
was utilized to generate mixed pixels; (4) according to the required mixing degree, some unsatisfactory
abundance fractions were replaced by 1{P. To be more explicit, if the desired mixing degree was 0.8,
then we replaced all the pixels whose abundance was larger than 0.8 with a mixture composed of all
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the endmembers, with abundances of 1{P. One example of abundance maps with a mixing degree of
0.8 is shown in Figure 3b, as well as the first band of the synthetic image.
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Figure 3. Example of the synthetic data. (a) Endmember spectra; (b) Abundance maps and the first
band of the synthetic data.

By the above procedure, synthetic images without pure pixels were generated. In reality, images
are generally corrupted by noise or possible errors. To evaluate the algorithm performance under the
existence of noise, zero-mean white Gaussian noise was added into the synthetic data, and different
signal-to-noise ratio (SNR) values were used to obtain the noisy synthetic data. The SNR is defined
as [33]:

SNR “ 10log10
E
“

xxT‰

E
“

eeT
‰ (33)

where x and e represent a pixel vector and the noise on it, respectively. E r¨ s denotes the
expectation operator.

4.3. Performance Evaluation

To evaluate the performance of the proposed method, five synthetic image experiments were
designed. In the first experiment, the selections of the two regularization parameters and the
convergence of the proposed method are analyzed. In the second experiment, the algorithms’
robustness to noise corruption was studied by adding different levels of noise to the image. The
third experiment was aimed at performing a sensitivity analysis of the proposed method to different
mixing degrees. The fourth experiment was designed to investigate the algorithm’s performance
under different numbers of endmembers. In the final experiment, the algorithms were evaluated by
different numbers of pixels in the HSI dataset in order to illustrate the impact of data quantity on the
algorithm performance. To fairly evaluate the performance of the algorithms, for all the experiments,
the algorithms used the same initial values and the same maximum number of iterations, which was
set to 1000 in all the simulated experiments. The SAD values and RMSE values were obtained by an
average of 10 individual implementations for each method. Furthermore, the number of endmembers
was regarded as being known a priori for all the synthetic experiments.

4.3.1. Parameters Selection and Convergence Analysis

In this experiment, the selections of the two regularization parameters u1 and u2 are considered
when SNR = 30 dB, and purity = 0.8. We change parameter u2 P

“

1, 1ˆ 103‰ with u1 P r0, 0.4s and
plot the performance of DAC2NMF in terms of SAD and RMSE values, setting u1 as the x coordinate
as shown in Figure 4. We can see that, when we fix parameter u2, the algorithm achieves the best
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performance with u1 “ 0.1 in terms of the SAD values, and with u1 falling in the range r0.1, 0.2s in
terms of the RMSE values. When we fix parameter u1, a larger u2 will lead to better results in terms
of the SAD values; while a larger u2 will lead to worse results in terms of RMSE when u1 is set in
the range r0, 0.12s. From the parameter analysis, the parameters of DAC2NMF were set as: u1 “ 0.1,
u2 “ 600 for both synthetic and real experiments. Furthermore, the error tolerance τis set to 0.01.
The parameters for the other methods were chosen according to the experiments and analyses in the
corresponding references for both synthetic and real experiments.
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Under the condition of the former parameter analysis, the approximation error of DAC2NMF
with iterations is plotted in Figure 5. The approximation error is calculated according to Equation (4),
and the red solid line represents the real approximation error. We can see that the approximation error
curve of DAC2NMF can converge to the reality for about 800 iterations.
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4.3.2. Noise Robustness Analysis

In this experiment, the SNR was changed from 15 dB to 35 dB with a step size of 5 dB. The purity
of the image was fixed at 0.8 and the image size was 64ˆ 64. There were seven endmembers in the
image. Figure 6 shows the results, where the bar and error bar represent the mean and standard
deviation, respectively. It is clear that DAC2NMF leads to the best performance in terms of both
SAD values and RMSE values. The superiority of DAC2NMF to the other algorithms is particularly
evident when the SNR is equal to 15 dB. In terms of SAD, ASSNMF gives the second-best performance,
followed by GLNMF. GLNMF outperforms L1{2 ´ NMF with regard to SAD. Although MVCNMF
gives the worst performance in terms of SAD, it performs better in the estimation of abundances.
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Overall, it can be concluded that the proposed algorithm is robust with respect to different levels
of noise.
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4.3.3. Robustness Analysis to Degree of Mixing

The mixing degree of different real hyperspectral data may change with different spatial
resolutions and the diverse complexity of ground objects. This experiment was aimed at evaluating the
unmixing performance of the algorithm under various degree of mixing. The purity of the synthetic
image was changed from 0.6 to 1 with a step size of 0.1. The image size, number of endmembers, and
noise level were assigned as 64ˆ 64, 7, and 20 dB, respectively. It is clear in Figure 7a that ASSNMF
slightly outperforms L1{2 ´ NMF, GLNMF, and MVCNMF for the SAD values, and DAC2NMF still
results in the smallest SAD values under different degrees of mixing. Particularly when the purity
equals 0.9 and 1, the SAD values of DAC2NMF are clearly superior to the other methods. GLNMF
obtains a smaller SAD value but a larger RMSE value than L1{2 ´ NMF when the purity varies from
0.8 to 1. In terms of RMSE, DAC2NMF and ASSNMF are comparative when the purity equals 0.6
and 0.8, as shown in Figure 7b, and DAC2NMF outperforms ASSNMF under the other conditions.
MVCNMF gives the smallest RMSE when the purity equals 0.6, followed by L1{2 ´NMF and GLNMF;
DAC2NMF and ASSNMF can be seen to have larger RMSE values than the other methods under
this condition, while they give the best performance with regard to SAD. Overall, the results reveal
that DAC2NMF can contribute to a better estimation of endmember signatures, and the abundance
estimation is better when the purity ě 0.7.
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4.3.4. Robustness Analysis to the Number of Endmembers

This experiment evaluated the performance of the algorithm when the synthetic image contained
different number of endmembers, and the number of endmembers was changed from 3 to 10 with
a step size of 1. The other conditions for the image were assigned as: SNR equal to 20 dB, purity
equal to 0.8, and the image size was 64ˆ 64. The average values and standard deviations of SAD and
RMSE are shown in Figure 8a,b, respectively. It can be seen from the figure that ASSNMF results in the
smallest SAD value but the largest RMSE value when there are three endmembers in the image, and
DAC2NMF performs the best in terms of both SAD and RMSE, except for the next-best SAD value
when P = 3. The performance of ASSNMF is slightly better than L1{2 ´ NMF, GLNMF, and MVCNMF
when P varies from 5 to 10. MVCNMF obtains the largest SAD values but smaller RMSE values than
L1{2 ´ NMF. Overall, the performances are weakened when the endmember number increases.
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4.3.5. Robustness Analysis to the Image Size

In this experiment, the issue of algorithm sensitivity to different image sizes was studied. The
synthetic images were designed with three different sizes: 64 ˆ 64, 96 ˆ 96, and 128 ˆ 128. The
other conditions were the same: the images were corrupted by an SNR of 20 dB; there were seven
endmembers in the images; and the purity was equal to 0.8. The results are shown in Figure 9. We can
again see that the proposed DAC2NMF outperforms the other algorithms for the three image scenes,
and ASSNMF is the next best. L1{2 ´ NMF and GLNMF are comparative, and MVCNMF results in
the largest SAD values, while it produces a better estimation of the abundances than L1{2 ´ NMF and
GLNMF. As the number of pixels increases, the performances of all the algorithms slightly decrease in
terms of SAD. As for RMSE, the performances are comparative under the size of 96ˆ 96 and 128ˆ 128.
Overall, it is concluded that the proposed algorithm is suitable for different sizes of images.

Finally, we analyze the computational complexity of the algorithms. Table 1 shows the
computational complexity of the algorithms calculated with the updated rules in one iteration, where
N denotes the number of pixels in the image, L denotes the number of bands, P denotes the number
of endmembers, k denotes the number of selected neighboring pixels of each pixel, and r and c
denote the number of rows and columns of the image, respectively. From Table 1, we can see that
the computational complexity of all the NMF-based algorithms increases rapidly with the increasing
number of pixels, especially for L1{2´NMF and GLNMF. The computational complexity of MVCNMF
increases faster than other algorithms with the increasing of endmember number.
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Table 1. The computational complexity of the algorithms.

Algorithms Computational Complexity

DAC2NMF O
`

P2 p2L` 12Nq ` PN p2L` 4kq ` 24NL
˘

ASSNMF O
`

P2 p2L` 12Nq ` PN p2L` 3r` 3cq
˘

L1{2 ´NMF O
´

LPN` pPNq2
¯

GLNMF O
`

NP pL` NPq ` N2L
˘

MVCNMF O
“

2
`

P2 pL` Nq ` PLN
˘

` P2 pL` Pq ` P!
‰

5. Real Data Experiments

5.1. HYDICE Dataset

We also applied the DAC2NMF method to two real hyperspectral datasets. The first image was
collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor, covering
an area in Washington DC. The image has 210 spectral channels, with a spectral resolution of 10 nm,
covering the wavelength range of 0.4–2.4 um. A subset of 150 ˆ 150 was extracted from the original
image for use in the experiment. The false-color image is shown in Figure 10.
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Figure 10. Sub-scene extracted from the Washington DC dataset.

The image in Figure 10 is composed of six main kinds of ground objects: roof, grass, water, tree,
path, and street, so the number of endmembers was defined as 6. The parameters were the same as
those in the synthetic experiments, and VCA was utilized for initialization of the endmember matrix.
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The SAD values for DAC2NMF, ASSNMF, L1{2 ´ NMF, GLNMF, and MVCNMF are provided in
Table 2, and the best performance of each endmember is denoted in bold. It can be seen from Table 2
that DAC2NMF has the maximum number of best-performance cases, and ASSNMF, GLNMF, and
MVCNMF each have one best-performance case, respectively. Figure 11 plots the mean SAD values for
all the algorithms, and it shows that DAC2NMF performs the best, successively followed by GLNMF,
L1{2 ´ NMF, and ASSNMF. MVCNMF has the highest average SAD value. Figure 12 displays the
abundance maps of the six types of materials. The abundance maps are grayscale maps, where a
brighter pixel indicates a larger value of abundance fraction. We can clearly see the distribution of the
six materials in the abundance maps. The abundance maps show that most of the materials cluster
together or present a pattern of distribution in their own dominant area, which is consistent with
the strategies designed in DAC2NMF. The smoothness constraint in DAC2NMF can facilitate the
abundances of the same kind of material to be similar, and the separation constraint is used to prevent
the abundance variables from over-smoothing and to ensure that each kind of material is distributed
in its own dominant area. ASSNMF has no consideration for the pixels that are inappropriate for the
smoothness constraint, which may bring error into the results. The performance of GLNMF is better
than L1{2 ´ NMF due to the strategy of integrating the latent manifold structure regularization term
into L1{2 ´ NMF.

Table 2. SAD Values of the Estimated Endmembers and Reference Endmembers for the Washington
DC Dataset, USA.

DAC2NMF ASSNMF L1{2´NMF GLNMF MVCNMF

Roof 0.0458 0.0904 0.0846 0.0946 0.0613
Grass 0.2153 0.214 0.2246 0.2209 0.2803
Water 0.1082 0.145 0.1372 0.1378 0.1464
Tree 0.0223 0.0327 0.0325 0.0239 0.076
Path 0.1398 0.1437 0.1323 0.1302 0.1079
Street 0.0882 0.079 0.0518 0.0477 0.0576
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Figure 12. Abundance maps of the different endmembers using DAC2NMF with the Washington DC
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5.2. AVIRIS Dataset

The second image was collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over Cuprite, Nevada. There are 224 bands in the image, covering the wavelength range of
0.37–2.48 um, with a spectral resolution of 10 nm. For our experiment, a block with the size of
250 ˆ 190 was cut from the original data. The noisy bands (1–3 and 221–224) and water absorption
bands (104–115 and 148–170) were removed, leaving 182 bands. The false-color image is shown in
Figure 13.Remote Sens. 2016, 8, 464 19 of 23 
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The number of endmembers of this image is difficult to determine due to the fact that: (1) the
existence of abundant rare minerals in this area means that the minerals are highly mixed, which leads
to difficulty in interpreting the dataset; (2) the same kind of mineral may have different spectra with
different chemical compositions. Rogge et al. [54] revealed that there are about 12 endmembers in
this image, and this number was adopted in our experiment. The SAD values between the reference
endmembers and the estimated endmembers by the algorithms are shown in Table 3, in which the
bold font represents the best result. The corresponding abundance maps are displayed in Figure 14. In
the results, nontronite, montmorillonite, and kaolinite are divided into two endmembers, respectively,
which is a result of the signature variability. Figure 15 plots the average SAD values. The proposed
DAC2NMF method outperforms the other methods in terms of both numbers of best-performance cases
and average SAD values. The other methods all obtain two best-performance cases, while MVCNMF
shows the worst performance in terms of average SAD value. It is clear that the distributions of
the ground objects in this dataset are more complicated than for the Washington DC dataset. There
are more materials in the dataset, and the distributions are more scattered, leading to an increase in
the number of pixels located in transition areas. DAC2NMF again achieves the best results for this
dataset due to the strategy of removing the dissimilar pixels from the smoothness constraint, and
the separation constraint ensures the results are not over-smooth. ASSNMF imposes a smoothness
constraint on all of the neighboring pixels, which is not appropriate for the pixels in transition areas.
The performance of GLNMF is better than L1{2 ´ NMF for this dataset due to the use of the manifold
structure information.Remote Sens. 2016, 8, 464 20 of 23 
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Table 3. SAD Values of the Estimated Endmembers and Reference Endmembers for the Cuprite dataset.

DAC2NMF ASSNMF L1{2 ´NMF GLNMF MVCNMF

Muscovite 0.0663 0.0674 0.069 0.0684 0.0685
Sphene 0.0523 0.0508 0.0538 0.0527 0.0581
Alunite 0.0905 0.0909 0.0996 0.09 0.1067

Buddingtonite 0.1087 0.1032 0.1032 0.1016 0.1012
Nontronite#1 0.1018 0.1052 0.1072 0.104 0.1023

Montmorillonite#1 0.0794 0.082 0.0829 0.0831 0.0833
Dumortierite 0.0761 0.0781 0.0785 0.0755 0.0768
Nontronite#2 0.0715 0.0684 0.0692 0.0694 0.0713
Chalcedony 0.1231 0.1257 0.1257 0.1233 0.1212
Kaolinite#1 0.1828 0.1857 0.1823 0.1866 0.187
Kaolinite#2 0.2218 0.2257 0.2209 0.2273 0.2278

Montmorillonite#2 0.0454 0.0476 0.048 0.05 0.0508

6. Discussion

In this study, we investigated the validity of the abundance smoothness and dispersed
characteristics for the NMF-based hyperspectral unmixing method. The endmember spectra and
abundances estimated by the proposed DAC2NMF method fit well with the references. However,
some issues still need to be resolved or improved for further research.

First, all of the NMF-based unmixing methods have regularization parameters to be set before
the unmixing task. This is inevitable because different images may have different feature distribution
characteristics, and the optimal parameter may differ. Although the NMF methods with constraints
are more suitable and effective for unmixing than the original NMF method, the complexity is also
increased. Therefore, how to make a trade-off between efficiency and performance is a problem that
can be further considered.

Second, the number of endmembers is a necessary parameter for the ummixing method, but the
NMF-based method is not able to adaptively determine the number, which cannot meet the real-time
unmixing task. In the future, it is preferred to establish an unmixing system that also contains the
estimation of the number of endmembers.

Third, the NMF-based methods did not take the intraclass spectral variability into consideration,
which determines that they are not applicable to high-demand tasks that need to distinguish
endmembers within class. The advantage of the multiple endmember analysis lies on that it uses
various spectra of each endmember class to unmix each pixel. It is more accurate when there are plenty
of spectral differences within each class. While the advantage of the NMF-based methods is that they
can estimate the endmember spectral even if the hyperspectral is highly mixed and the endmember
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spectral is not present in the image. Therefore, finding a way to integrate the two advantages may be a
direction for further research.

7. Conclusions

In this paper, a new algorithm, double abundance characteristics constrained NMF (DAC2NMF),
which utilizes both the abundance smoothness and the dispersed characteristic of the abundance
variables, has been proposed. The local spatial smoothness structure of the abundances can be more
accurately expressed by virtue of the adaptively selected local neighborhood weight regularization
strategy. By removing the dissimilar pixel pairs from the abundance smoothness constraint, extra
errors can be avoided, thus enhancing the unmixing result. Synthetic and real HSI experiments were
analyzed to study the performance of the DAC2NMF method and other state-of-the-art algorithms.
Experimental results show that in most cases, DAC2NMF method is superior to the other competing
algorithms, which indicates that the adopted abundance characteristics in DAC2NMF are effective.
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