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Abstract: Automatic crowd detection in aerial images is certainly a useful source of information
to prevent crowd disasters in large complex scenarios of mass events. A number of publications
employ regression-based methods for crowd counting and crowd density estimation. However, these
methods work only when a correct manual count is available to serve as a reference. Therefore, it
is the objective of this paper to detect high-density crowds in aerial images, where counting– or
regression–based approaches would fail. We compare two texture–classification methodologies on
a dataset of aerial image patches which are grouped into ranges of different crowd density. These
methodologies are: (1) a Bag–of–words (BoW) model with two alternative local features encoded
as Improved Fisher Vectors and (2) features based on a Gabor filter bank. Our results show that a
classifier using either BoW or Gabor features can detect crowded image regions with 97% classification
accuracy. In our tests of four classes of different crowd-density ranges, BoW–based features have a
5%–12% better accuracy than Gabor.

Keywords: texture; crowd detection; bag of words; fisher vectors; local binary patterns; gabor filter;
aerial images; crowd density

1. Introduction

1.1. Background and Motivation

During mass events with tens of thousands of people, security authorities and organizers need
accurate information about crowded areas and potentially hazardous situations. Terrestrial cameras
already provide the major part of this information as images and videos. In general, a lot of research
has been done to process this huge amount of data automatically [1–4], and most often with the goal
of crowd counting [5–8], person tracking [9,10], or behavior understanding [11,12]. However, all these
methods are tested on benchmark datasets containing terrestrial images or videos, and do not consider
aerial images for crowd counting.

For obvious reasons, terrestrial cameras can be installed more easily but might not always be
sufficient while monitoring large events (e.g., street festivals, open-air concerts). In complex scenarios,
terrestrial cameras cannot always provide all necessary visual information due to their limited field of
view and limited availability, for example, terrestrial cameras cannot be mounted at every possible
location. Low flying platforms like helicopters or small drones could help, but these are either very
loud or not well accepted in public.

In contrast to that, a camera system installed on a high flying platform can leverage its
elevated position and allows the monitoring of a complete city center or festival area with just a
few images. It can be of great value if large groups gather spontaneously at new—otherwise not
monitored—locations. The main challenges of crowd detection in aerial images, however, are the small
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object size of persons, the high density, and the nadir viewing angle. To be more specific, we use the
term “aerial image” from now on for images with a spatial resolution of 10–20 cm, a covered area of
0.6–2.1 km2, and a viewing angle of 0–32◦. In such images, one person only covers 6–24 pixels, and
its appearance is hardly distinguishable from other objects with similar shape (e.g., light poles). In
addition to the small object size of a person in an aerial image, the scenario gets even more challenging
when many persons gather at certain “hot spots” in front of a concert stage or in a narrow street. The
persons stand closer to each other and eventually form a dense crowd, where the surface they are
standing on (the background) is no longer visible. Moreover, the viewing angle of the aerial images
shows the person rather from the top than from the side. This perspective additionally reduces the
number of covered pixels.

These three key characteristics, small object size of a person, mutual occlusion, and viewing angle
lead to a different appearance of a person than in images so far mostly examined in the literature
(Figure 1). We define these texture-like crowded regions as “crowd textures”. In this paper, we want
to investigate methods for the detection of dense crowds in aerial images with these characteristics.
We focus on crowded image regions with a crowd density so high that even manual counting is
hardly possible.

Figure 1. A sample image of a dense crowd standing in front of an open-air stage. Extracted patches
of this image should be graded according to their level of crowdedness; Ground Sampling Distance
(GSD) = 9.1 cm.

1.2. Related Work

In general, the publications in the field of aerial crowd counting algorithms use images from
two groups: visually distinguishable crowded images (VDC) and visually indistinguishable crowded
images (VIC). This categorization depends on whether an interpreter or expert is able to clearly
distinguish an individual person from other persons in the image or not. The category that an image
belongs to depends on viewing angle, mutual occlusion, and spatial resolution. In the following, we
review relevant works from these two categories.

In VDC images, an individual person is clearly distinguishable from other persons by a human
expert looking at these images. One is able to count persons under the prevailing occlusion and
resolution conditions of the respective image. In this way, a reference data set with an absolute number
of persons and even a reference crowd density can be calculated. Then, this available reference data
can be used for regression-based crowd detection methods.

Herrmann and Metzler [13] propose a system for crowd density estimation and people counting
and apply it to one data set of 16 aerial VDC images. After preprocessing, the object size of each
person is fixed at 256 pixels. This object size clearly allows a manual counting. A gradient boosted tree
calculates the density function using a combination of frequency filters and adapted “Scale-Invariant
Feature Transform” (SIFT) features. Then, a person model based on a Gaussian function is used for
person counting. They evaluate the methodology by comparing it with a reference density map. Their
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evaluation yields promising results; however, their methodology is tailored for images shot at oblique
viewing angles and with a much higher resolution than the images we investigate.

Perko et al. [14] estimate crowd density and crowd motion from video data in two different
self-acquired test data sets. Their regression-based density estimation performs best when using a
combination of dense SIFT features and an object detector introduced by Lempitsky and Zisserman [6].
The reported average height of a person of 90 pixels allows manual labeling and counting of
the persons.

In contrast to that, the resolution and/or occlusion in VIC images do not allow a correct counting
of all individual persons in an image by an expert. If a single person covers only ten to twenty pixels,
there is not enough information to clearly state that this is a person. If the resolution is higher, but most
body parts of the person are occluded, no counting is possible either. In other words, regression-based
methods cannot be applied on VIC images because of missing reference data. The following rule
proved to be quite useful while assembling the test data set. As soon as the surface the persons are
standing on is no longer visible, the image can be considered as a VIC image. Figure 1 shows an
example of a VIC image region: the low spatial resolution and the high crowd density in front of the
stage do not allow a correct counting of all individual persons.

The method used by Hinz [15], applies regression on VIC images in a way that it uses the
response of a Lawss filter convolved with a mask to get a two-dimensional density layer. The mask is
created in a preceding step by applying a gray-level bounded region-growing approach. In the paper,
some visualized results are shown to demonstrate that the method works in general; however, no
quantitative results are given.

Sirmacek and Reinartz [16,17] calculate a density function which estimates the crowd density in
20-cm aerial images. This function is the result of convolving white blobs with a Gaussian kernel on
image segments that have been extracted with mean shift segmentation. As one of the first publications
in the field of aerial crowd monitoring, their method produces convincing results; however, some
parameters (number of blobs per region, minimum area size, segmentation bandwidth) need careful
tuning for every new data set.

Meynberg and Kuschk [18] focus on the detection of dense crowds in VIC images. Their method
convolves image patches with a Gabor filter bank and classifies the filter responses with a Support
Vector Machine (SVM). We include this approach in our evaluation and compare the results (Section 4).

In summary, VIC images represent a group of images which has been discussed in only a few
crowd–monitoring publications. The applied methodologies focus on person counting, which naturally
yield the best performance in image regions with a low crowd density. However, hazardous situations
are more likely to occur in image regions where the crowd density is high and a robust detection of
these densely crowded regions in a diverse range of VIC images is still missing in literature. Therefore,
in this paper, we focus on high-density crowds in a variety of aerial images, where counting- or
regression-based approaches would fail.

1.3. Contribution

The novelty of our contribution is the usage of texture-classification methods for the detection of
dense crowds in aerial images.

• We concentrate on the potentially most hazardous regions in VIC images—the high-density crowds.
We show that crowded regions in aerial images can indeed be regarded as a texture, and propose
robust patch-based Bag-of-Words methods for the detection of these regions.

• We run extensive tests on a database that contains a wide variety of aerial image patches. These
patches are categorized into four classes where the continuous crowd-density function is partitioned
into four ranges of decreasing crowd density.

• Through the evaluation and comparison, we demonstrate that Bag-of-Words features with
appropriate chosen local features perform significantly better than conventional Gabor texture
features on the task of aerial crowd detection.
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The remainder of this paper is organized as follows: In Section 2.1, we first describe our selection
of methods for the BoW model and review the Gabor approach (Section 2.2). Then, we describe the
test data and software tools to conduct the experiments in Section 3. The evaluation of the BoW and
Gabor classifiers is done in Section 4. The results are discussed in Section 5, and final conclusions are
drawn in Section 6.

2. Methodology

2.1. Crowd Features Using the Bag-of-Words Model

“Bag of Words” (BoW) is a state-of-the-art model in texture classification [19], and its development
has been inspired by the original model used in natural language processing and document retrieval.
The main idea behind this model is to disregard the word order and the grammar in the sentence
and concentrate on the number of occurrences of specific words. In computer vision, these words can
be seen as cluster centers in a feature space, leading to the BoW model. The BoW model has been
widely used for texture classification [20–23] and also in remote sensing [24,25], however, never for the
detection of a crowd in remotely sensed images.

There are three reasons why the BoW model is often used for texture classification: First, it
does not depend on a specific type of local feature, so this can be chosen to fit the application.
Second, building a histogram of the cluster centers (aka codewords) makes the model insensitive
to local image perturbations. Third, a large margin classifier, such as an SVM, can directly use this
histogram representation for classification. The BoW model itself is best understood as a framework of
four general processing steps, which follow on the patch sampling shown in Figure 2. These steps are
local feature extraction, codeword generation, feature encoding, and feature pooling.
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Figure 2. The Bag-of-Words (BoW) workflow applied on aerial images for crowd detection with the
main processing steps: (1) patch sampling; (2) local feature extraction; (3) codewords generation;
(4) feature encoding; (5) feature pooling.
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2.1.1. Local Feature Extraction

An image patch Ip can be extracted from the original aerial images in an either dense way
(e.g., regular grid) or sparse way (e.g., keypoint detection or manual sampling). For each of these
patches, a matrix Xp =

{
x1, . . . , xn, . . . , xN|xn ∈ RM

}
of local feature descriptors is computed, where

M is the dimension of each extracted xn and N is the number of local features per patch. To detect
crowded regions in an image, a local feature vector, and eventually Xp, should be principally insensitive
to small changes in illumination, scale, intensity inversion, or rotation. Most of the commonly used
local features work on a sparse set of points; however, the contrast and resolution of the crowd textures
in this work are low, which would influence the performance of a sparse keypoint detector considerably.
Therefore, we concentrare on two alternative texture features: (1) “Local Binary Pattern” (LBP)
introduced by Ojala et al. [26] and (2) “Sorted Random Projections” (SRP) proposed by Liu et al. [27].

Local Binary Pattern (LBP)

The original LBP method creates a label from the 3 × 3-neighborhood of each pixel. This label is
considered as an 8-digit binary number resulting in 28 = 256 possible labels. The number of occurrences
of each label represented in a 256-bin histogram can be used as a texture descriptor. A more advanced
version further quantizes the number of labels in so called uniform patterns to improve the histogram
statistic. Each uniform pattern has exactly one transition from 0 to 1 and one transition from 1 to 0. We
use these quantized LBP on a number of cells with a fixed size in each patch. The quantized LBPs are
then aggregated in each cell and normalized. The result is a matrix Xp of local feature vectors xn ∈ RM,
usually with M = 58 in the case of “uniform” LBPs. N equals the number of cells. Furthermore, there
are a number of different variants of LBP, such as [28,29].

Sorted Random Projections (SRP)

The SRP method extracts small subpatches in a sliding-window manner. Within each of these
subpatches, rotation invariance is achieved through a sorting of pixel values by their intensity.
From each subpatch, exactly one local feature vector xn is calculated. The sorting within a subpatch
can be performed on different neighborhood structures around the center pixel x(0,0). According to
the performance evaluation in [27], we consider the proposed radial-diff neighborhood. This sorting
scheme calculates the difference of two pixel values. The first lies on a concentric circle around the
center pixel of the patch, and the second lies on the neighboring inner circle (see Figure 3). Formally,
this radial difference is described in Equation (1).

xn = 4Rad =


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1,0 , . . . ,4Rad
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Figure 3. The radial–diff feature extraction method by Liu et al. [27] in our proposed Bag-of-Words
crowd detection framework.
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The difference of two pixel values is calculated as4Rad
r,i = xC

r,i – xC
r–1,i·pr–1/pr

, where xC
r,i is the pixel

value which lies on a concentric circle r with 1 ≤ r ≤ a around the center. Each circle has i pixel values,
with 0 ≤ i < pr . Interpolation is used if xC

r,i is not at a pixel center.

2.1.2. Codeword Generation

A randomly sampled subset X of all local features is used to generate the cluster centers
in the local feature space. These cluster centers, also known as codewords, form a dictionary
D = [d1, ..., dK] ∈ RM×K with K codewords of the same dimension M as the local features. These
codewords are calculated using a Gaussian Mixture Model (GMM). It takes a subset of X as input
and yields a predefined number of cluster centers as output, stored in D. The GMM can be seen as a
representative model of the whole feature space and is created using expectation maximization and a
given number of modes. More specifically, let uλ(X) be a GMM with K modes and the parameter set
λ = {πk, μk,Σk|k = 1, ..., K} which is trained on a large set of local features xn ∈ RM. πk, μk, and Σk are,
respectively, the mixture coefficients, the mean vector, and the covariance matrix.

2.1.3. Feature Encoding

With a given GMM, each newly extracted matrix Xp = [x1, . . . , xN] of an image patch is encoded
using Improved Fisher Vectors (IFV) [30]. Now, the GMM can model a given descriptor xn by weighting
it with each mode k in the mixture with a posterior probability qnk:

qnk =
exp[– 1

2 (xn – dk)T
Σ

–1
k (xn – dk)]

∑J
j=1 exp[– 1

2 (xn – dj)TΣ–1
j (xn – dj)]

. (2)

qnk activates cluster centers with a weight and can be regarded as the influence of a mode k on
the final feature encoding of a given local feature xn. It is an element of the assignment matrix that
assigns a weight of every mode k to each feature descriptor xn. Modes with a small distance to a given
descriptor xn have a large weight qnk, whereas modes which are far away in the feature space are very
small or even negligible (Equation (2)). In this way, the encoding gets the more descriptive the better a
new X fits to the GMM.

2.1.4. Feature Pooling

Feature pooling is done by computing the mean and covariance deviation of the distances of
every local feature xn to the nearest modes dk. The strength of umk and vmk is substantially influenced
by the weight qnk, as can be seen in the Equations (3) and (4):

umk =
1

N
√
πk

N

∑
n=1

qnk
xmn – dmk
σmk

, (3)

vmk =
1

N
√

2πk

N

∑
n=1

qnk

[(
xmn – dmk
σmk

)2
– 1

]
. (4)

dmk and σmk are the mth elements of the kth mean vector and the kth covariance
matrix, respectively.

φ(Xp) is the concatenation of the mean vectors uk and the variance vectors vk for every mode k.
Then, one has φ(Xp) ∈ R2MK with its dimension independent of N, leaving φ(Xp) constant if N should
change, e.g., when changing the size of the patch Ip:

φ(Xp) = [. . . uk . . . vk . . . ]T . (5)
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2.2. Crowd Features Using a Gabor Filter Bank

Because Gabor filter banks [31] are one of the standard methods in the field of texture classification,
we create a feature representation that can be compared to a BoW feature representation. The general
fitness of Gabor features for the classification of crowded and non–crowded patches has already been
shown in [18]. Now, we want to investigate if their performance is comparable to the BoW approach in
the case of a more challenging multi–class classification. Therefore, we briefly summarize the design
of a Gabor feature for crowd detection. Unlike the BoW model, the filtering process does not require
feature clustering and encoding steps. The image patches are directly convolved with a filter bank and
each patch is eventually represented by one feature vector φ. In more detail, a Gabor filter encodes
the orientation and scale of edges of the input image, resulting in a high filter response in a specific
orientation and of a specific scale if the input image contains edges of buildings or other regular
structures (Figure 4).

input patch

filter response
dense crowd medium–dense crowd sparse crowd no crowd

Figure 4. Gabor filter responses of selected image patches. The first row shows original images
with decreasing crowd density. The second row shows the corresponding response. Only one—the
maximum—response of the whole filter bank is displayed for better visualization. In the evaluation,
the feature vector is computed using all filter responses, as stated in Equation (7).

In contrast, an image patch containing a crowd exhibits no regular structures or patterns. The very
detailed heterogenous texture of a crowd patch instead generates a high filter response in every
direction. These characteristics of the Gabor filter create a feature space, which can be separated by
a classifier.

We briefly show the key steps to build a Gabor feature: Let Ip ∈ NR×C be an image patch with
a center pixel at position (m, n). With a filter bank of Gabor functions gs,k(m, n), the Gabor wavelet
transform at that position can be written as:

Ws,k(m, n) = Ip(m, n) ∗ gs,k(m, n) =
R–1

∑
r=0

C–1

∑
c=0

Ip

(
r –

R
2

, c –
C
2

)
· gs,k(r, c), (6)

where s indexes the scale (s = 0, . . . , S – 1) and k is the orientation angle of one filter (k = 0, . . . , K – 1).
In this work, the Gabor filter bank works with four scales and six orientations (S = 4, K = 6).

After the convolution of the whole filter bank, the final feature vector φ consists of the mean μ(s,k) and
standard deviation σ(s,k) values of the filters, concatenated into its final form:

φ(Ip) = [μ(0,0),σ(0,0), μ(0,1),σ(0,1), . . . , μ(3,5),σ(3,5)]
T. (7)

The methods that were presented in the previous section are evaluated by using an aerial
image database that contains challenging scenes with different resolutions, viewing angles, and
lighting conditions.
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3. Test Data and Tools

In this study, we use a database containing 70,000 square patches extracted from aerial images.
The images have been taken at two flight campaigns during open-air rock festivals in Germany. The
two samples in Figure 5 exemplarily show the complexity of the scene that the proposed methods
have to deal with.

(a) (b)

Figure 5. These two images exemplarily show the complex scenarios during open-air festivals.
The created feature representations must be designed to discriminate between crowded regions
on the one hand and image regions with buildings, vehicles, campgrounds, tree canopies, and other
objects on the other hand. (a) taken at “Wacken Open Air” festival with an oblique viewing angle of
32◦ and a GSD of 10 cm. This image’s field of view is about 50% of the original image. Major challenges
are long shadows of buildings and low person-to-ground contrast. (see the border region to the right
of this image.); (b) taken at “Rock am Ring” festival with a nadir viewing angle and a GSD of 13 cm.
The image’s field of view is about 12% of the original image, hence the objects appear larger than in
Figure 5a. The large shadow of the stage significantly reduces contrast.

The illumination conditions within an aerial image can vary from bright sunlight to dark
shadowed regions caused by high buildings. In addition, different surface types can cause low
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contrast and a varying appearance of the crowded regions as festivals can take place at locations with
muddy meadows or paved parking areas.

The images have been taken at viewing angles 0◦ and 32◦, due to the camera system’s design
and mount configuration [32]. Each image has one of three spatial resolutions, namely 9 cm, 13 cm,
or 17 cm. For the experiments in this work, we want to leave the covered area of one image patch
constant, hence the size in pixels of one patch is deduced from its spatial resolution, so that each patch
covers an area of 30 square meters. This size trades off the methods’ requirement to work reasonable
on a certain patch size and the endeavor to create a boundary around the crowded regions as accurate
as possible. To create a labeled reference for the classifier, each patch has been assigned manually to
one of four classes, which are described in the following:

class 1—dense crowd This class represents image patches which have at least covered 80% with a
crowd density of two persons per square meter (1.5 P/m2) or more. Individuals in these areas
can only walk slowly to other locations or cannot move at all. Because of the large number of
patches and the small object size of one person in these images, the manual estimation of the
actual crowd density is difficult. We assume that a density of 1.5 P/m2 is reached as soon as the
surface the persons are standing on is no longer visible.

class 2—medium dense crowd In this class, the crowd density is between 0.5 P/m2 and 1.5 P/m2.
If the whole patch is covered homogeneously with such a density, it can be assumed that the
surface is visible at several spots in one patch, which gives enough space for the persons to walk
around. If the patch happens to be covered with a class 1 crowd up to 80% and devoid regions
otherwise, it is also considered as a patch of this class 2. This special case happens at festival
barriers which often appear in this data set, naturally (e.g., Figure 6, row 1, column 4).

class 3—sparse crowd A crowd with a density between 0.2 P/m2 and 0.5 P/m2 is defined as a “sparse
crowd”. Here, single persons are able to roam freely, although groups of persons might still
appear frequently.

class 4—no crowd In image patches of this class, there are hardly any persons visible. Buildings, tree
canopies, streets, and vehicles are the dominant objects in this class. A randomly sampled subset
of these patches is used in the test runs as negative samples.

With these specifications, the database is structured as shown in Figure 6.
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class 1—dense crowd class 2—medium dense crowd

class 3—sparse crowd class 4— no crowd

Figure 6. The figure shows some representative examples of the reference data set of this study. The
patches are extracted from aerial images at three different resolutions (GSD = 9 cm, 13 cm, 17 cm) and
cover an area of 30 square meters. They are labeled with one of four classes with a decreasing crowd
density. Each class represents a density range. Moreover, the dataset contains images with differences
in illumination and viewing angles.

The SRP local features are implemented in C++. For the LBP local features, the GMM, and the
feature encoding we use the VLFeat library, version 0.9.20 by Vedaldi et al. [33]. The quantized LBP
features use local histograms with a cell size of 8 × 8 pixels. The fisher vectors are generated using the
“Normalized” and “SquareRoot” options of the vl_fisher() function of their MATLAB interface. The
SVM is based on a slightly modified version of libSVM version 3.20 by Chang and Lin, National Taiwan
University [34] using a histogram intersection kernel [35]. The Gabor filter bank is implemented in
MATLAB version R2015a without additional toolboxes.

4. Results

In the following, the BoW approach is evaluated and compared with a Gabor–filter–based crowd
detection [18] through three experimental setups:

One-vs.-All This classification experiment tests the general ability of both Gabor and BoW classifiers
to separate a class with a given crowd-density range from the other classes.
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One-vs.-One This experiment clearly shows the ability of the two approaches to distinguish between
adjacent crowd classes with only small differences in crowd density.

Multi-class Both BoW and Gabor classifiers are evaluated on all four available classes in a multi-class
setup. This experiment is the desired use case for an operational “crowd detector”.

4.1. One-vs.-All Classification

In this section, we test the general ability of the proposed methods to detect crowded regions in
aerial images and to discriminate patches with only small texture differences. For example, patches
of class 1 have a high similarity to patches of the adjacent class 2. With a one-vs.-all classification,
all possible combinations of the four classes are tested. Figure 7 shows the methods’ performance
with an increasing number of training samples. In all tests, we compare the classification accuracy
of an SVM trained with Gabor features with an SVM trained with BoW-LBP and BoW-SRP features.
The BoW features are generated using a dictionary with 256 codewords. The dictionary has been
created according to Section 2.1.1 using a feature space with several million points. Each test is
conducted with 1000 sample patches of mixed resolution, viewing angle, and illumination conditions,
and they are randomly selected for training or testing. The average classification accuracy and its
standard deviation are calculated by using Monte Carlo cross-validation with 20 splits.
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Figure 7. One-vs.-All classification. The classification accuracy of a Support Vector Machine (SVM)
trained with Gabor features is compared with an SVM trained with BoW features, depending on the
number of training samples. (a) class 4 vs. class 1 + 2 + 3; (b) class 3 vs. class 1 + 2 + 4; (c) class 2 vs.
class 1 + 3 + 4; (d) class 1 vs. class 2 + 3 + 4.

The simplest test case is the classification of patches without any persons on the one hand (class 4
“no crowd”) and crowded patches of classes 1 to 3 on the other hand. In Figure 7a, which shows
this test case, the classification accuracy climbs above 90% using only 20 samples for training and
980 samples for testing. This test shows that the feature spaces of both Gabor and BoW-based methods
are well separated and a decision boundary can be quickly found by the SVM classifier.

If the classifier takes class 3 “sparse crowd” as the positive class and all other samples as the
negative class, then the achieved accuracy with 100 training samples or more is around 75% when
using BoW features and around 65% when using Gabor features (Figure 7b).

With class 2 “medium dense” as the positive samples, the accuracies are 55% (Gabor), 60%
(BoW-SRP), and 70% (BoW-LBP) if the classifier is trained with 100 samples or more. The reason for this
drop in accuracy compared to the two previous tests is the strong visual similarity of class 1/class 2 and
class2/class 3, which causes a large number of misclassifications (Figure 7c). Interestingly, BoW-LBP
features are 10% more accurate than BoW-SRP features in this test.

The classification accuracy for class 1 “dense crowd” (Figure 7d) is generally higher than for the
class 2 and the class 3 test. The highest accuracy can be achieved when using BoW-based features.
While BoW-LBP features still perform better than BoW-SRP, the margin of 5% is only half as much as
in the previous class 2 test.
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4.2. One-vs.-One Classification

We compare the six possible combinations of a one-vs.-one classification test (Figures 8 and 9).
We show again the average accuracy depending on the number of training samples, calculated from
20 test runs on 1000 samples (500 samples per class).
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Figure 8. One-vs.-One classification, always vs. class “no crowd”. (a) class 1 vs. class 4; (b) class 2 vs.
class 4; (c) class 3 vs. class 4.
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Figure 9. One-vs.-One classification with intra-crowd classes. (a) class 1 vs. class 2; (b) class 1 vs. class 3;
(c) class 2 vs. class 3.

When we compare the test series shown in Figures 8 and 9, it becomes obvious that a test of
class 4 against another class results in a much higher accuracy than the tests without a participation of
class 4. Class 4 can be separated more easily from the other crowd classes 1, 2, and 3. This observation
complies with the visual appearance and indicates that both Gabor and BoW-based features are a good
choice for representing crowd features.

Interestingly, the Gabor features need less training samples than the BoW features when they are
tested on class 4 samples (Figure 8a–c). The Gabor’s accuracy converges more quickly, but on the same
level as the BoW features.

In the case of the intra-crowd-classes classification tests (Figure 9), the classifier has a lower
accuracy in general. A possible explanation is again the strong visual similarity between these classes,
causing the SVM to have difficulties finding the optimal decision boundary. However, in these cases,
where the texture differences are small, the BoW features seem to be slightly more descriptive than the
Gabor features (see Figure 9a,b).
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Moreover, we can observe a superior classification accuracy of the BoW-LBP features in all three
experiments shown in Figure 9. The margin between BoW-LBP and BoW-SRP is highest when the test
includes class 2 ( Figure 9a,c).

4.3. Multi-Class Classification

In this experiment, we train multi–class SVMs with all four classes containing a subset
(2440 patches) of the whole dataset. We used stratified sampling to prevent skewed classes. Since the
crowded regions in an aerial image normally do not cover a large fraction of the whole image, the
number of class four samples is highly over-represented. Therefore, we limit its number of samples
and balance the test set of this experiment resulting in 610 randomly chosen samples per class. We use
440 samples for training (110 samples per class) and 2000 samples for testing (500 samples per class).

The prediction result of the SVM with Gabor features reaches an accuracy of 62.3%; with BoW-SRP
features, it is 67.9%, and with BoW-LBP features, it is 74.2% . Figure 10 shows a confusion matrix
for each feature type. The higher the diagonal values are, the better the performance of the classifier.
The matrices’ cells are colored accordingly. Looking at the color distribution of the matrices, three
aspects stand out. First, and most interestingly, the majority of the samples are classified correctly, hence
the values on the diagonal of the matrices are high. This result shows the fundamental applicability
of the chosen methodology on the dataset. Second, a considerably higher number of samples of the
crowd classes 1, 2, and 3 are misclassified than in cases where class 4 takes part. These predictions of
crowd samples often miss the actual class and are predicted as one of the other (neighboring) crowd
classes. A possible explanation is the similarity of the crowd textures of classes 1, 2, and 3, and the
dissimilarity of class 4 to the other classes. Third, in a comparison of the confusion matrices, the
classification accuracy with BoW-based features is higher than the accuracy with Gabor features.
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Figure 10. Confusion matrices for the four-class classifications with Gabor, BoW–SRP, and BoW–LBP
features (# train samples = 440, # test samples = 2000). The samples have been selected randomly
from the whole database. The labels correspond to the classes shown in Figure 6. (a) Gabor features;
(b) BoW–SRP features; (c) BoW–LBP features.

Now, we focus on the performance of the three crowd classes (classes one, two, three), as they
seem to be hard to distinguish from each other. Therefore, we calculate the precision and recall scores,
along with the F1 scores, which are plotted in Table 1. Both the precision and recall scores should be
as high as possible for each class, which is reflected in their harmonic mean, also known as the F1
score. The F1 score of each class has roughly the same value as the precision and the recall of that
class, indicating a balanced training of the classifier. For class 1 (dense crowd), the F1 score of the
BoW-SRP and BoW-LBP features is 0.69 and 0.75, respectively, and the F1 score of the Gabor features is
0.55. Hence, the Gabor features perform not as well as the BoW features for class 1 predictions. The
F1 scores for class 2 (medium dense) are low for both BoW and Gabor features. Figure 10 shows that
almost all false positives (FP) and false negatives (FN) are in the neighboring classes “dense crowd”
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and “sparse crowd”. The number of FP and FN in class “no crowd” are almost negligible. Accordingly,
the classifiers have the highest F1 Scores for class 4.

Table 1. Precision, recall, and F1 scores for the four–class classification experiments Gabor (left),
BoW–SRP (center), and BoW–LBP (right).

Cl-1 Cl-2 Cl-3 Cl-4

Precision 0.578 0.478 0.565 0.852
Recall 0.520 0.474 0.588 0.91

F1 Score 0.547 0.476 0.576 0.88

Cl-1 Cl-2 Cl-3 Cl-4

0.760 0.496 0.591 0.886
0.634 0.496 0.670 0.914
0.691 0.496 0.628 0.900

Cl-1 Cl-2 Cl-3 Cl-4

0.758 0.558 0.722 0.949
0.740 0.618 0.670 0.938
0.749 0.586 0.695 0.944

Finally, for getting a better visual impression, we show a prediction example in Figure 11 where the
predicted four classes are displayed as an overlay of an aerial image. The original image (Figure 11a)
contains crowd densities of all four classes, which is also shown as a visual comparison in Figure 11b .

(a) (b) (c) (d)

Figure 11. Multi-class classification with BoW or Gabor features. The four classes are visualized as an
overlay over a typical aerial image. Color code: dense crowd (red), medium dense crowd (yellow),
sparse crowd (green), no crowd (not colored). (a) original image; (b) manually labeled image; (c) BoW
features; (d) Gabor features.

5. Discussion

The experiments in Section 4 demonstrate the general ability of both Gabor and BoW features to
detect crowded regions in VIC images. It further implies that the appearance of a crowd in VIC images
is texture–like because the core methodologies of the two approaches have been originally designed
for the task of texture classification.

When we consider the crowd detection as a binary classification task, the results in
Figures 7a and 8a show that both classifiers reach almost perfect performance with only a few training
samples. Both Gabor and BoW-based features can be well separated in the feature space as the patches
with crowd textures are different from the patches containing no crowd.

The experiments reveal that of all existing types of class 4 patches in the database, patches of tree
canopies, meadows, and dumping grounds are often misclassified as false positives (see Figure 6,
class 4 for examples). Interestingly, a number of colleagues have not been able to correctly label
these patches either, when they were confronted with just that patch, and without information about
the surroundings. Furthermore, both the Gabor and the BoW–based classifier predicted some false
negatives in regions which lie in the shadow of a building (e.g., a stage) due to the extremely low
contrast in these regions. Here, the difference in intensity which directly influences the values of the
local features, is too low, which results in misclassifications. However, contrast enhancement methods
should improve results.
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In the experiments shown in Figures 7d and 9a,b, the accuracy margin between BoW-based and
Gabor-based features is the highest. As these experiments focus on the classification of high-density
crowds, we can infer that samples of class 1 indeed can be regarded as textures, and their classification
is done best with an approach specially designed for texture classification, which is the BoW model.
As an interesting side effect, we observe the particular fitness of the BoW-LBP feature when predicting
class 2 samples (Figures 7d and 9c). Its accuracy is 5 to 10% higher than the BoW-SRP accuracy in
these tests. We speculate that the local spatial pattern and the gray scale contrast of the medium-dense
patches in class 2 can be well represented by LBP features.

The limits of the two texture-based classification approaches can be observed best when classifying
the class 2 and class 3 samples (Figure 9c and in Figure 10). Class 2 and class 3 are visually very similar
(Figure 6). As each class represents a crowd-density range, border cases between adjacent classes can
really challenge a texture-based classifier because they do not count the individuals but classify a patch
by its mere appearance. A counting-based approach in these most difficult cases might improve the
results slightly. However, one should keep in mind, that even the manual labelling process for these
classes requires careful counting of the individuals in each patch by an expert. An accurate dataset
with a larger number of classes, i.e., a smaller range of crowd density per class, cannot be created
without precise and synchronized reference data from another independent sensor source.

The engineering of the BoW features requires some careful design choices, like picking the best
local-feature extraction and the best feature-encoding method. The used local features considerably
influence the classification’s performance. Although we had to make these initial design choices, the
parameters for every step in the BoW workflow needed to be tuned only once. The invariance of the
BoW model to changes in illumination, scale, and viewing angle allow a once-only initialization. The
clustering, as the most time-consuming step, is simply performed only once on all available data. Then,
the learned Gaussian mixture model can be used on varying image data. The experiments also show
that a trained SVM can be used for correctly detecting crowd patches taken at different conditions.
This characteristic can be useful in a real-time environment when time is crucial and there is no time to
re-initialize the whole system.

As the experiments have shown, the methodology is generally suited for deployment in an
operational framework. An operational software module which estimates the crowd density will be
trained on the image regions with highest crowd density. Therefore, a binary classification which
regards class 1 or class 1 to 3 as the positive class is a practical design choice, which is essentially
reflected by the tests shown in Figure 7a,d. The probability estimate for each patch, which is computed
by the SVM, can be further used to highlight the most crowded (and potentially most hazardous)
regions in an aerial image.

After all, one has to keep in mind that the proposed methodology classifies each patch
independently. It does not take any holistic information into account as every expert would do.
For example, an expert would recognize forest, buildings, and a stage at a festival and eventually use
this information to identify the mass in front of the stage as a crowd. Without any knowledge of the
environment and with only a single patch, an expert would have difficulties identifying crowd and
no-crowd patches. To incorporate this kind of information into the crowd-detection workflow could
be a key issue in this research field.

The images, which have been investigated in this work, have a spatial resolution of 9 cm or worse
which leads to an object size of one person of roughly 30 pixels or less. Hence, an identification of a
person is impossible with this kind of data, and the privacy of each individual is guaranteed by design.

6. Conclusions

In this work, we apply and compare texture classification methods for the detection of crowded
regions in aerial images. The nature of the images used in this study does not allow a correct counting of
individual persons, even by human experts. Therefore, we propose a multi-class texture classification
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to categorize crowd patches into four different classes. Each class represents a predefined range of
crowd density.

We compare the performance of two different approaches: an SVM classification with patch-based
Bag-of-Words features and an SVM with filter-based Gabor features. We test these two different
methodologies on a dataset with 70,000 small image patches, and achieve 97% accuracy in both cases,
when classifying dense crowd patches vs. no-crowd patches.

Moreover, we extend our evaluation and use the same features to categorize a patch just by its
texture into one of four density-range classes. In this experiment, Bag-of-Words features achieve an
accuracy of 74%, which is 12% higher than the accuracy achieved with Gabor features.

In conclusion, the results of our evaluation support the theory that a crowd in aerial images has
a texture-like appearance and can be detected robustly by well-designed Bag-of-Words features. An
operational system, based on the proposed methodology, could help security authorities to quickly
identify high crowd densities and to prevent crowd disasters.
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