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Abstract: Linear Mixed Effect (LME) models are applied to the CoastColour atmospherically-corrected
Medium Resolution Imaging Spectrometer (MERIS) reflectance, L2R full resolution product, to derive
chlorophyll-a (chl-a) concentration and Secchi disk depth (SDD) in Lake Erie, which is considered as
a Case II water (i.e., turbid and productive). A LME model considers the correlation that exists in the
field measurements which have been performed repeatedly in space and time. In this study, models
are developed based on the relation between the logarithmic scale of the water quality parameters
and band ratios: B07:665 nm to B09:708.75 nm for log10chl-a and B06:620 nm to B04:510 nm for
log10SDD. Cross validation is performed on the models. The results show good performance of the
models, with Root Mean Square Errors (RMSE) and Mean Bias Errors (MBE) of 0.31 and 0.018 for
log10chl-a, and 0.19 and 0.006 for log10SDD, respectively. The models are then applied to a time series
of MERIS images acquired over Lake Erie from 2004–2012 to investigate the spatial and temporal
variations of the water quality parameters. Produced maps reveal distinct monthly patterns for
different regions of Lake Erie that are in agreement with known biogeochemical properties of the
lake. The Detroit River and Maumee River carry sediments and nutrients to the shallow western
basin. Hence, the shallow western basin of Lake Erie experiences the most intense algal blooms
and the highest turbidity compared to the other sections of the lake. Maumee Bay, Sandusky Bay,
Rondeau Bay and Long Point Bay are estimated to have prolonged intense algal bloom.
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1. Introduction

Lake Erie, a turbid and regionally eutrophic lake, is the most southern and shallowest of the
Laurentian Great Lakes. Total suspended matters (TSM) are a major contributor to the lake’s low
water clarity [1]. The problem of excess nutrients and resulting algal blooms are also threatening the
ecosystem of the lake and the economic activities of the surrounding regions. The ecological state
of Lake Erie significantly affects its role as a natural, social, and economic resource, considering that
the lake is as an essential drinking water source that also offers many opportunities for recreational
activities, fisheries and tourism. As a result, the Lakewide Management Plan was signed in 1972
to restore and maintain the ecological health of the lake [2]. Ongoing efforts to support this plan
require high-resolution measurements of the water quality parameters on a variety of spatial and
temporal scales. Conventional field-based measurements of these parameters can be expensive and
they are often sparse in either space or time, or both. Remote sensing has the potential to infer the lake
bio-optical/water quality parameters, overcoming these concerns.

The emerging water radiance measured by remote sensing instruments depends on the water
itself and its constituents. The water constituents interact with light and modify the incoming and
outgoing radiation at various wavelengths. Therefore, remote sensing measurements of water leaving
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radiance can be related to the composition and concentration of water constituents. In Case I waters,
chl-a concentration (phytoplankton population) and its co-varying particles are dominating the optical
properties, which is the case in nearly all open ocean waters. However, optically complex inland
waters and coastal waters are referred to as Case II waters, where chl-a alone is a poor predictor of light
attenuation, and variations in TSM and colored dissolved organic matter (CDOM) are also important
in light scattering or absorption, and therefore the water leaving radiance [3].

The delivery of data on water color has been explored using satellite sensors such as Landsat
Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+) due to their relatively high spatial
resolution of 30 m [4–6]. However, the shortcomings of Landsat in other capacities, such as its
relatively low temporal resolution (i.e., 16 days), spectral and radiometric sensitivity, make the
use of MODIS (Moderate-resolution Imaging Spectroradiometer) and MERIS (Medium Resolution
Imaging Spectrometer) data more attractive for water quality monitoring [7–9]. Images from these
satellite sensors compensate for the limitations of Landsat at the expense of a lower spatial resolution
(ca. 250–500 m). MERIS was originally designed for water quality monitoring applications. Therefore,
compared to MODIS, it has a more suitable spectral resolution in the red and near-infrared (NIR)
to derive the secondary chlorophyll-a (chl-a) absorption maximum [10]. This is essential for Case II
waters, as is the case for Lake Erie, where chl-a is not the predominant color-producing agent (CPA)
and multiple non-covarying CPAs may also confound the reflectance signal, particularly at shorter
wavelengths. Hence, the traditional and empirical blue/green band ratio algorithms, used for Case I
waters, result in large uncertainties in Case II waters due to the limited ability to distinguish signals
coming from the independent water constituents.

As a consequence of the ambiguities related to the shorter wavelengths, several authors have
investigated the applicability of red and NIR wavelengths for estimating chl-a concentration in turbid
optically complex waters to aim for a minimal sensitivity to other water-coloring parameters. The effect
of CDOM can certainly be neglected at these wavelengths [1]. Red-NIR band ratio algorithms have
been found to work well in Lake Chagan (chl-a concentration: 6.4 to 58.21 mg¨m´3) [11], as well
as Curonian Lagoon (chl-a concentration: 44.1 to 85.3 mg¨m´3) [12] and Zeekoevlei Lake (chl-a
concentration: 61 to 247.4 mg¨m´3) [13] that have chl-a concentration ranges typical of mesotrophic
lakes and eutrophic Lake Erie [1]. Band ratio algorithms developed to derive Secchi disk depth (SDD)
variations make use of bands in the visible range of the spectrum. Two multiple linear regression
models have been developed separately, based on blue and red bands of Landsat TM and MODIS,
to predict the logarithm of SDD in Poyang Lake National Nature Reserve in China [14]. A linear
regression model has also been proposed based on the logarithmic transformation of MERIS band
ratio (490 nm to 620 nm) to estimate the natural logarithm of SDD in the Baltic Sea [15]. However,
the correlated errors resulting from repeated measurements in space and time are not considered in
the regression models developed in these studies. Multiple measurements per variable will result in
non-independency, which violates the assumptions of regression methods. The Linear Mixed Effect
(LME) model [16] approach developed herein is appropriate for cases where observations are collected
in time and/or space for the same parameter, and therefore represent clustered or dependent data.

The applicability of LME models is tested in this study to estimate chl-a concentration and SDD
from the CoastColour (CC) atmospherically corrected MERIS reflectance product [17] in support of
water quality monitoring in Lake Erie. Although in situ measurements remain the most accurate
solution for water quality monitoring programs, satellite remote sensing can be added for routine
and synoptic measurements [18]. Chl-a is widely measured as an indicator of eutrophication and
primary production. SDD is another environmental descriptor that is indicative of water clarity. It also
provides a highly relevant measure of the extent of the euphotic layer where primary production is
possible [19,20]. Therefore, both parameters are of interest in this study. This work aimed to derive
chl-a and SDD by applying LME models on MERIS data. Also temporal and spatial variations of these
parameters were examined.
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2. Materials and Methods

2.1. Study Site

Lake Erie (42˝111N, 81˝151W; Figure 1) is the smallest (by volume), the shallowest, and the
warmest of the Laurentian Great Lakes [21]. It is a monomictic lake (with occasional dimictic years)
covering an area of 25,700 km2, with average and maximum depths of 19 m and 64 m, respectively [22].
The lake is naturally divided into three basins of different depths: the shallow western basin, the
central basin, and the deep eastern basin (Table 1). The basins are separated approximately based
on the Lake Erie Islands (~82˝491W) and the Long Point-Erie Ridge (~80˝251W) (Figure 1) [1]. River
discharge into Lake Erie originates mostly from the St. Clair River and Lake St. Clair through the
Detroit River. Other smaller rivers and streams in the territory of Lake Erie also contribute to water
inflow into the lake. Lake Erie drains into Lake Ontario through the Niagara River and shipping
canals [2,23].
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Figure 1. Location of Lake Erie and its boundary (Canada and US). In situ sampling stations from
cruises that took place in September 2004, May, July, and September 2005, May and June 2008, July and
September 2011, and February 2012 are illustrated by empty triangles.

Table 1. Lake Erie Basins Information (source: [23]).

Lake Erie Mean Depth (m) Maximum Depth (m)

West Basin 7.4 19
Central Basin 18.3 25

East Basin 25 64
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Lake Erie is exposed to greater stress than any other of the Great Lakes due to agricultural
practices and urbanization in its surroundings. Chemically enriched runoff from agricultural lands
in the basin flows into the lake. In addition, the lake receives the most effluents from wastewater
treatment works [2,23]. Lake Erie has experienced substantial eutrophication over the past half
century due to excess phosphorus loads from point and nonpoint sources producing algal blooms [21].
In general, phosphorus concentration in Lake Erie decreases from west to east and from near-shore to
the offshore [24].

2.2. Field Measurements of Water Quality Parameters

Sample collection in Lake Erie was conducted on board of the Canadian Coast Guard ship Limnos
during September 2004, May, July, and September 2005, May and June 2008, July and September 2011,
and February 2012. A total of 89 distributed stations were visited to provide measurements of a wide
range of optical properties as well as concentrations of the main CPAs in different locations of the lake
(Figure 1).

Composite water samples were collected at all stations, during 2004 to 2012, from the surface
mixed layer of the lake using Niskin bottles. The samples were filtered through a Whatman GF/F fiber
filter (0.7 µm) in the field.

The filtered samples are then frozen and sent to the laboratory (the National Laboratory for
Environmental Testing (NLET)) for extraction of the CPAs concentrations including chl-a. The chl-a
measurement method is based on the trichromatic spectrophotometry following fixation using a 90%
acetone solution and centrifugation. Absorption of the residue at specified wavelengths of 663 nm,
645 nm, and 630 nm are determined. Chl-a values are calculated using SCOR/UNESCO equations in
the analytical range of 0.1–100 mg¨m´3. The following trichromatic Equation 1 is recommended by
SCOR/UNESCO to measure chl-a concentrations:

chl_a “ 11.64 e663 ´ 2.16 e645 ` 0.10 e630 (1)

where chl-a is in µg¨ cm´3; and e663, e645, e630 are the absorbances (cm´1) of light path at 663, 645,
630 nm after subtracting the 750 nm reading [25]. The reported chl-a concentration also contains
phaeopigments, which are degradation products of chl-a: phaeophytin and pheophorbide [26].

Secchi disk measurement is a worldwide accepted procedure to estimate water clarity in water
bodies [27]. Light propagation and Secchi disk readings decreases exponentially due to light
attenuation phenomenon [28]. SDD is regularly conducted during the Lake Erie cruises. Chl-a and
SDD measurement methods follow the Ocean Optics Protocols for Satellite Ocean Color Sensor
Validation [29,30].

2.3. Satellite Data and Processing

Launched by the European Space Agency (ESA) on 1 March 2002, the MERIS sensor was one
of the instruments operating on the Envisat polar-orbiting satellite platform. Contact was lost with
Envisat on 8 April 2012, which marked the end of the mission. MERIS was primarily dedicated to
ocean color studies. MERIS was a push-broom imaging spectrometer that could measure the solar
radiation reflected from the Earth’s surface in a high spectral and radiometric resolution (15 spectral
bands across the range 390 nm to 1040 nm) with a dual spatial resolution (300 and 1200 m). MERIS
scanned the Earth with global coverage every 2–3 days.

In this study, CC L2R (Version 2) MERIS reflectance full resolution images with full or partial
coverage of Lake Erie between September 2004 and February 2012 were acquired through the Calvalus
on-demand processing portal. The CC MERIS Level 2R product is generated using an atmospheric
correction algorithm applied to the Level 1P product, which is a refined top of atmosphere radiance
product with improved geolocation, calibration, equalization, smile correction, in addition to precise
coastline and additional pixel characterization information (e.g., cloud, snow). The atmospheric
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correction procedure is based on two processors implemented in the Basic ERS & ENVISAT (A)ATSR
MERIS (BEAM) software (Version 5.0): the Case II Regional (C2R) lake processor and also glint
correction processor [17]. A detailed description of C2R can be found in Doerffer and Schiller
(2007) [31].

The MERIS images were selected to be within a 2-day time window of in situ water quality
measurements for the study period (2004–2012). This criterion was set to maximize the number
of possible satellite and in situ measurements match-ups; at the same time reducing the effect of
time heterogeneity of water quality parameters, assuming that these parameters would not change
significantly in this time frame. Atmospherically corrected MERIS L2R reflectance values were
extracted from pixels covering the geographic location of the stations. A valid pixel expression
was defined that excluded all pixels with properties listed in Table 2. Spatial averaging of pixels
surrounding the station could be a technical solution to increase the number of resulting match-ups,
when the considered pixel is excluded due to flags [32]. However, the horizontal spatial heterogeneity
of parameters over the lakes prevents the averaging analysis.

Table 2. Flags of excluded pixels.

Level 1 Level 1P Level 2

Glint_risk Land AOT560_OOR (Aerosol optical thickness at 550 nm out of the training range)
Suspect Cloud TOA_OOR (Top of atmosphere reflectance in band 13 out of the training range)

Land_ocean Cloud_ambigious TOSA_OOR (Top of standard atmosphere reflectance in band 13 out of the
training range)

Bright Cloud_buffer Solzen (Large solar zenith angle)
Coastline Cloud_shadow
Invalid Snow_ice

MixedPixel

2.4. Water Quality Parameters Algorithms

Semi-empirical algorithms are based on the regression between individual bands or band ratios,
and the dependent variables, which are chl-a and SDD in this study. Different combinations can be
considered based on the 15 MERIS spectral bands. Lakes with various optical and biological properties
can produce different levels of correlation with these band combinations. This makes the use of
semi-empirical algorithms a robust approach that can work on the lake of interest and within the time
period that data samples were collected. The best band combinations were determined from the highest
calculated Pearson correlation coefficients (R) against the logarithmic scale of in situ measurements of
water quality parameters. It has long been known that the chl-a concentration distribution in the ocean
is lognormal [33]. Also, the logarithmic function linearizes the relationship of in situ observations
to band ratios and makes the distribution more symmetric (normal) (see Section 3.1). Considering
the optical complexity of Lake Erie (see Section 3.1), red and NIR bands are required to derive chl-a
concentration. Therefore, the selected band ratio for estimating chl-a was chosen among MERIS bands
centered at B05:560 nm, B06:620 nm, B07:665 nm, B008:681.25 nm, B09:708.75 nm, B10:753.75 nm,
B12:778.75 nm, and B13:865 nm. The band ratio for deriving SDD was selected among the visible
bands: B01:412.5 nm, B02:442.5 nm, B03:490 nm, B04:510 nm, B05:560 nm, B06:620 nm, B07:665 nm,
and B08:681.25 nm.

Sampling-wise, the same in situ measurements are repeated in time (month) over Lake Erie
during the study period. Multiple measurements per variable in space or time will generally result in
correlated errors and clustered data, which violate the assumptions of regression methods. Accordingly,
random effect of time has to be added to the error term of the general regression models to account
for measurements being made in clusters of time. The effect of time on the variation of water quality
parameters can be considered to differ on a monthly basis. Therefore, in situ data collected repeatedly
over the same month are considered to be correlated and this is the reason LME is used in this
study, and month is selected as the random effect. Also, the measurements for different stations are
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inter-dependent. Different locations can affect each other’s measurements, depending on their distance.
Therefore, there is spatial dependency in in situ observations. To consider both random and fixed
effects in the regression, a LME model approach was selected to handle the repeated measurements
and also the spatial autocorrelation of in situ observations.

Separate LME models were developed between the logarithmic scale of in situ chl-a and SDD with
selected individual bands or band ratios of MERIS atmospherically corrected reflectance. The models
were then used to predict chl-a and SDD over Lake Erie at different times. A LME model allows the
prediction to be made at the outermost level (level = 0: predictions only based on fixed effects, as it
would be in a standard regression model), and the innermost level (Level ‰ 0: predictions based on
estimated random and fixed effects).

2.5. Accuracy Assessment

Cross validation was performed to assess the accuracy of derived chl-a and SDD estimates.
Ten rounds were repeated by splitting the in situ measurements into training (70%) and testing (30%)
datasets. The model performance indicators were reported as the average over the iterations. The mean
bias error (MBE) and the root mean square error (RMSE) were used as the model performance indicators
to describe chl-a and SDD retrieval accuracies. The MBE, and RMSE statistics are defined as follows:

RMSE “
b

meanr
`

xpri ´ xobsi

˘2
s (2)

MBE “ mean
`

xpri ´ xobsi

˘

(3)

where xpri is the predicted value, and xobsi
is the observed value of the quantity which is measured

in the field. Predicted and observed values should have the same scales. Therefore, the calculation
of RMSE and MBE in logarithmic scale were performed on log-transformed in situ observations
(algorithms’ output were already in the logarithmic scale). The RMSE is a comprehensive metric as it
combines the mean and variance of the error distribution into a single term [34]. MBE also reveals the
systematic errors [18].

Statistical analyses including: (1) finding the best band ratios using the MERIS atmospherically
corrected reflectance, based on correlation with in situ observations; (2) development of LME models
(regression method) based on selected band ratios and in situ observations; and (3) cross validation
were performed in the R programming language (Version 3.2.1) [35].

3. Results

3.1. Lake Erie Optical Properties

Descriptive statistics of various bio-optical parameters measured in Lake Erie over the 2004–2012
period are summarized in Table 3.

Table 3. Descriptive statistics of in situ measurements for Lake Erie (2004–2012). N is the number of
times samples were collected at stations. St. dev. is standard deviation. Chl-a is in mg¨ m´3 and total
suspended matters (TSM) is in g¨ m´3, aCDOM in m´1, and Secchi disk depth (SDD) in m.

N Min Max Mean St. dev.

Chl-a 190 0.20 70.10 4.27 7.82
TSM 190 0.18 50.50 5.75 8.00

aCDOM 160 0.04 2.36 0.31 0.33
SDD 117 0.20 11.00 3.69 2.68

Figure 2 shows the contribution of different water constituents to water clarity in Lake Erie by
investigating correlations between the concentrations of chl-a and TSM, and also absorption of CDOM
in 440 nm (aCDOM(440)) with the measured SDD. The graphs reveal that the concentrations of chl-a,
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TSM, and aCDOM(440) are correlated with SDD over the period of measurements. TSM and to a lesser
extent CDOM are important contributors to water clarity observed in Lake Erie with coefficient of
determination (R2) values of 0.67 and 0.54, respectively. There is a low correlation between in situ
measured chl-a and TSM demonstrating that these CPAs are non-covarying and independent.
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The relative contribution of TSM compared to CDOM can be reduced in microtidal estuaries, or
depending on the bathymetry of the lake [36]. In shallow Lake Erie, re-suspension of bottom sediments
leads to higher water turbidity. Also, the Detroit and Maumee rivers contribute large sediment loads
into the western basin of the lake. Kemp et al. (1997) identified the regions off Long Point and the
mouths of these two rivers as the points of highest sedimentation rates in the lake [37]. The study of
Binding et al. (2012) identified these zones as the highest turbid areas in the lake, confirming that TSM
plays a major role in optically complex Lake Erie [1].

Based on the results presented in Table 3 and in Figure 2, Lake Erie can be classified as a typical
Case II water system where other water constituents play a major and independent role in its low
water clarity, besides chl-a concentration. Therefore, red and NIR reflectances are consistently the
most reliable and expedient remote sensing variables in predictive algorithms for chl-a concentrations
assessments in Lake Erie [11]. Figure 3 shows the probability density function (PDF) of in situ chl-a
and SDD in Lake Erie. The PDFs for both variables demonstrate a lognormal distribution. Therefore,
logarithmic transformations of chl-a concentration and SDD are used to develop the regressions.
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3.2. Linear Mixed Effect Models Calibration

The natural variation of the water quality parameter being measured determines the required
period of concurrency between satellite overpasses and in situ observations [38]. In this study, satellite
images were selected in a 2-day time window of in situ data collection. Using this criterion resulted in
16 MERIS CC L2R images being available for analysis. Applying defined flags produced 117 (60) pairs
of atmospherically corrected reflectance and in situ chl-a (SDD) observations.

Pearson correlation (R) coefficients were calculated from MERIS bands or band ratios against the
logarithmic scale of chl-a concentration and SDD measurements to select the best band or band ratios for
the regression analysis of chl-a and SDD, separately. Figure 4 shows the range of correlation coefficients
between the parameters of interest (chl-a and SDD) in logarithmic scale and both individual bands and
band ratios of atmospherically corrected reflectance. The ratio of B07:665 nm to B09:708.75 nm has the
highest correlation with chl-a concentration (R = ´0.68) and the ratio of B13:865 nm to B10:753.75 nm
the weakest correlation (R = ´0.14). The highest and lowest correlation coefficients between SDD
measurements and individual spectral bands or the ratio of them are observed for the band ratio of
B06:620 nm to B04:510 nm (R = ´0.90) and ratio of B04:510 nm to B02:442 nm (R = ´0.16), respectively.
From this analysis, band ratio B07:665 nm to B09:708.75 nm and band ratio of B06:620 nm to B04:510
nm were selected to investigate their predictive capability in estimating chl-a concentration and SDD,
respectively, using LME regression models.
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Resulting scatterplots of selected band ratios against in situ data are shown in Figure 5 for chl-a
concentration and SDD measurements.
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The LME models were developed from the relationships between selected band ratios and the
logarithmic scale of chl-a and SDD. The month of in situ data collection represented the random effect
due to repeated measurements in time. Random slopes and intercepts were considered for each group
of measurements in a single month. Goodness of fit (r-squared; R2) for the outermost and innermost
levels of prediction was 0.49 and 0.56 for chl-a and 0.78 and 0.83 for SDD, respectively. Therefore, the
innermost level of predictions was used to predict chl-a concentration and SDD, with different values
of slope and intercept for each month. The model developed for chl-a has average values of ´1.16
(standard deviation: 3 ˆ 10–5, standard error: 0.1) and 2.44 (standard deviation: 0.12, standard error:
0.2) for slope and intercept, and the model developed to predict SDD has average values of ´1.04
(standard deviation: 0.09, standard error: 0.08) and 0.99 (standard deviation: 0.05, standard error:
0.08) for slope and intercept. The estimated slope and intercept values for both models are significant
(p < 0.005). The derived models are summarized using only the fixed effects as follows:

log10 pchl_aq “
B07 p665 nmq

B09 p708.75 nmq
ˆ p´1.16q ` 2.44 (4)

log10 pSDDq “
B06 p620 nmq
B04 p510 nmq

ˆ p´1.04q ` 0.99 (5)

3.3. Evaluation of Linear Mixed Effect Models

The model performance indicators were derived for both models. Chl-a concentration is estimated
with RMSE and MBE values of 0.31, and 0.018, respectively, in a logarithmic scale (N = 117; in the
actual scale of chl-a: RMSE = 2.48 mg¨m´3, MBE = ´0.58 mg¨m´3). SDD is predicted with RMSE
value of 0.19 and MBE value equal to 0.006 in a logarithmic scale (N = 60; in the actual scale of SDD:
RMSE = 1.40 m, MBE = ´0.25 m). Comparisons between the measured and predicted log10chl-a and
log10SDD using the LME models show that the values are in close agreement with paired observations,
mostly evenly distributed along the 1:1 line (Figure 6). The chl-a model is, however, not sensitive
enough to detect changes in low concentrations (below 0.1 in logarithmic scale, ca. 1 mg¨m´3) and, as
a result, the predicted values are not showing the variations corresponding to the small amount of
in situ chl-a concentration measurements.
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3.4. Spatial and Temporal Variations of Chl-a and SDD

The average chl-a concentration and SDD for each month between 2005 and 2011 are shown in
Figures 7a and 8a. In situ data in 2004 were only collected in September, and the values were not
estimated for the months before September. Also, the Envisat satellite stopped operating in April 2012,
hence there were no full year time series estimated for 2004 and 2012. These years were therefore
disregarded in the time series analysis below. The statistics related to the number of available pixels
for each month is included in Figure 7a, which are the same for SDD measurements.

The three basins of Lake Erie are characterized by distinct physical, chemical, biological, and
optical properties. The highest chl-a concentrations and turbidity are experienced in different
times of the year for each basin. The western basin always experiences a more intense algal
bloom compared to the two other basins, with the most and least concentrations in September
(6.62 ˘ 4.67 mg¨m´3)–October (4.83 ˘ 3.67 mg¨m´3) and June (2.39 ˘ 3.68 mg¨m´3), respectively.
Lake Erie’s central basin experiences spring bloom in April (2.08 ˘ 0.67 mg¨m´3) and a more intense
bloom in fall (October: 2.80 ˘ 0.79 mg¨m´3). The eastern basin shows the least chl-a concentrations
of the three basins, and its highest algal intensity occurs in summer (August, 1.78 ˘ 1.27 mg¨m´3).
Some more specific areas of the lake are affected by prolonged intense algal bloom, including Maumee
Bay, Sandusky Bay, Rondeau Bay and Long Point Bay. The highest SDD values for the full lake
are estimated in July (5.38 ˘ 1.16 m), whereas the lowest SDD estimates are observed in March
(2.44 ˘ 1.20 m) and October (2.52 ˘ 1.13 m). There is also a north-south gradient noticeable in both
chl-a concentration and SDD in western Lake Erie.

Standard deviations of chl-a (Figure 7b) and SDD (Figure 8b) were also calculated for each
month (March to October) to show variations of log10chl-a and log10SDD from the average values.
Figures 7 and 8 show that the greatest variability occurs in the western basin for both log10Chl-a and
log10SDD, with its largest variability in March. The least variations in chl-a concentration and SDD
patterns occur in the offshore areas and eastern basin.
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Figure 7. Chl-a average (Avg, (a)) and standard deviation (St.Dev., (b)) in log10 scale from March to
October for the study period (2005–2011). The statistics shown on the left figures are related to the
number of available pixels for each month.
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Figure 8. SDD average (Avg, (a)) and standard deviation (St. Dev., (b)) in log10 scale from March to
October for the study period (2005–2011). The number of available pixels for each month is shown in
Figure 7a.
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4. Discussion

4.1. Linear Mixed Effect Model Results

Our study agrees with previous studies to the effect that Lake Erie is to be considered as a Case
II water. O’Donnell et al. (2010) employed modern instrumentation to measure IOPs and AOPs in
the western basin of Lake Erie. The study also concluded that the characterization of IOPs and AOPs
supports the fact that the western basin of Lake Erie is an optically complex Case II system. Therefore,
in such case, red and NIR band ratios are the most reliable predictors in regression algorithms to
estimate chl-a concentration in Lake Erie. Results from the LME models calibration show that the
band ratio of B07:665 nm to B09:708.75 nm is highly negatively correlated with the variations of chl-a
concentration in Lake Erie. Gitelson et al. (2007) applied a two-band model, as the special case of
a conceptual three-band model [39], to the turbid (Case II) waters of Chesapeake Bay to estimate
chl-a concentration [40]. The tuning process found the ratio of 720 nm to 670 nm as the optimal
spectral band ratio, with the maximal R2 of 0.79 in a positive correlation. Water samples collected
from Chesapeake Bay contained widely variable chl-a concentrations (9 to 77.4 mg¨m´3), when SDD
ranged from 0.28 to 1.5 m. Duan et al. (2010) also found the band ratio of 710/670 nm to be positively
correlated with chl-a concentration in eutrophic Lake Chagan with R2 = 0.70. Chl-a concentration
in this lake was between 6.40 and 58.21 mg¨m´3 and SDD rarely exceeded 0.50 m [11]. Simis et al.
(2005, 2007) correlated the absorption of chl-a to MERIS band ratio of 708.75 to 665 nm for turbid,
cyanobacteria-dominated lakes in the Netherlands and Spain. Hicks et al. (2013) reported that the
logarithmic scale of SDD measurements and logarithmic scale of Landsat 7 ETM+ band ratio of
B01(0.450–0.515 nm)/B03(0.630–0.690 nm) were positively correlated with a high correlation (R = 0.82).
This study was conducted for shallow lakes (ranging from 1.8 to 8.7 m depth) in the Waikato region in
New Zealand, with SDD in situ observations varying between 0.005 and 3.78 m [41]. In our study, the
highest correlation between MERIS band ratios and SDD variations in Lake Erie was estimated for the
band ratio of B06:620 nm to B04:510 nm.

The selected band ratios were used to develop two separate LME models to estimate chl-a
concentration and SDD in Lake Erie. The models were evaluated using the testing data in a cross
validation approach. Results showed that LME model was in a high agreement with the chl-a in situ
observations with RMSE and MBE values of 0.31, and 0.018, respectively, in a logarithmic scale.
The overestimation of chl-a concentration derived from the LME model can be attributed to the
contribution of TSM in the red/NIR region of the spectrum that is not necessarily correlated with
chl-a concentration. In turbid waters such as Lake Erie, the signals measured in the red and NIR
regions can no longer be attributed to the chl-a concentration absorption and fluorescence and water
alone, while TSM can also confound the signal [1]. Although, formation of blooms in a thick surface
layer can dominate the reflectance and eliminate much of the contribution of TSM to reflectance [42].
The LME model is particularly overestimating while not showing sensitivity to chl-a values lower
than 0.1 in logarithmic scale (see Figure 6a). Binding et al. (2013) assessed the sensitivity of maximum
chlorophyll index (MCI; measures a peak in red/NIR region near 708 nm relative to a baseline which
is drawn between two suitable wavelengths) to mineral sediments. The modeling results in this study
suggested that the sensitivity of MCI to mineral turbidity particularly increases at low chlorophyll
concentrations when mineral sediments can contribute to reflectance and lead to substantial increase
in the resulted MCI [42]. This study derived a strong linear relationship between in situ MCI and chl-a
concentration in Lake Erie with R2 value of 0.70, suggesting a minimal contamination of the MCI signal
from sediments under intense surface algal blooms [42]. A blue/green band ratio algorithm was tested
for western basin Lake Erie in Ali et al. (2014) and resulted in R2 value of 0.46. For chl-a concentrations
below 6 mg¨m´3, a closer 1:1 relationship with the in situ measurements was derived [43]. However,
Witter et al. (2009) found systematic overestimation of low chl-a concentration in the western basin of
Lake Erie applying regionally calibrated quadratic algorithms (employing blue/green bands as the
predictor) on SeaWiFS imagery. Therefore, the difficulties associated with estimation of chl-a using
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blue/green band ratio algorithms in turbid, optically complex waters is demonstrated. In this region
of spectrum, CDOM confounds the signals as well as TSM and chl-a concentrations [44].

Moore et al. (2014) applied a blending approach, to manage the selection between two band ratio
algorithms in the blue/green and red/NIR regions, based on the optical water type classification of
Lake Erie. RMSE and MBE values were 0.32, and 0.023 in logarithmic chl-a units [18]. Sá et al. (2015)
evaluated CC chl-a products including: OC4, NN, and merged products, for the Western Iberian coast.
The uncertainty estimation analysis was presented on the logarithmic scale of chl-a (0.249 < RMSE <
0.278, 0.139 < MBE < 0.200; for 3-hour time intervals) [45]. The derived LME model for SDD estimation
resulted in RMSE and MBE values of 0.19, and 0.006, in logarithmic units. Wu et al. (2008) estimated
SDD in Poyang Lake in China from two multiple regression models. The models were developed
using spectral bands of Landsat TM and MODIS, separately. In both models the blue and red bands
were used in the regression. The logarithmic scale of SDD was predicted with RMSE values of 0.20
and 0.37 for the models, respectively [14]. Results from our study indicate that the LME models can be
used to derive the bio-optical quantities; the models provide accuracies comparable to that of other
studies. A good agreement between the selected band ratios (B07/B09 for chl-a and B06/B04 for
SDD) of atmospherically corrected CC L2R MERIS data and in situ measurements of chl-a and SDD in
logarithmic scale were derived for Lake Erie for the 2004–2012 study period.

4.2. Interpretation of Spatial and Temporal Variations in Chl-a and SDD

Monthly maps of chl-a concentration and SDD for Lake Erie (Figures 7 and 8) show that Maumee
Bay, Sandusky Bay, Rondeau Bay and Long Point Bay have persistent intense algal blooms. These
specific areas are known to experience cyanobacteria blooms due to constant nutrient enrichment [1].
Maumee River drains a large watershed which is dominated by agricultural fields, and also is a
tributary of the largest storm runoff within the Lake Erie basin [46,47]. There was also a north-south
gradient in western basin for chl-a concentration and SDD estimations. This gradient can be explained
by inflows from the Detroit River. The Detroit River is a major source of flows from the upper Great
Lakes into Lake Erie, which carries contaminated sediments and nutrients from a highly urbanized
and industrialized watershed into western Lake Erie [1,48]. However, the comparatively clearer water
that is carried through this river from the upper Great Lakes can create the north-south gradient in
Lake Erie [1]. Also, Dolan (1993) reported that municipal phosphorus loads from US sources have
a higher magnitude compared to the Canadian ones during the period 1986–1990 [49]. Therefore,
if the same trend of phosphorus loads in those years occurs during the time period of this study, the
observed differences between north and south near-shore algal productivity can be enlightened [1].

Re-suspension, shoreline erosion and loading from different sources such as rivers are among
the most important factors influencing SDD estimates. Wind, as the primary source of kinetic energy,
affects the sediment redistribution in the water column in Lake Erie [50]. The high-energy and
short-lived winter storms are a characteristic of Lake Erie wave climate that interrupts a long period
of relative calm weather [47]. These strong storms usually occur before the lake freezes (in October,
November, and December) and also in spring after ice break-up (March and April) [1]. However, it
should be noted that the depth of the lake directly affects the amount of kinetic energy generated by
wind. In other words, the re-suspension of sediment loads generated by wind in the shallower areas
can be more pronounced than in the deeper areas of Erie. Comparing SDD estimates (Figure 8) with
lake depths in Figure 9, it can clearly be seen that the deeper areas are relatively clearer, while the
shallow areas are more turbid. The maximum depth of the western basin is only 11 m [51]. Hence,
being the shallowest area, the western basin is the most vulnerable to physical processes such as
re-suspension. Therefore, re-suspension of TSM can result in a prolonged constant turbidity in West
Erie basin. Rivers and streams can supply suspended matters to the lake; and result in SDD reduction.
The Detroit River (1.6 million tons/year) and the Maumee River (1.2–1.3 tons/year) have the major role
in loading fine-grained sediments into Lake Erie [52]. Rainstorms can even strengthen the contribution
of river discharges to load sediments in the lakes [53].
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The largest variations in chl-a concentration (Figure 7) and SDD (Figure 8) occur in the western
basin in March. This area of the lake is the estuary of the Detroit River and close to Maumee Bay
and Sandusky Bay. Precipitation and runoff during this time of year, after the ice break-up period
on the lake, cause more variations in nutrient availability and water column re-suspension effect on
algal biomass and lake turbidity. The offshore areas and eastern basin have the least variations in
chl-a concentration and SDD patterns. These lake sections appear to experience low fluctuations in
the availability of required resources for algal bloom such as nutrients. Also, eastern basin of Lake
Erie is the deepest with an average depth of 24 m (max depth = 64 m). Physical processes such as
re-suspension have the least effect on the turbidity and its variations in the deep parts of the lake, as
opposed to the shallow western basin.

Meteorological forcings can also have an impact on the magnitude and timing of blooms.
In general, a temperature increase leads to higher rates of photosynthesis and therefore to a greater
phytoplankton growth rate under adequate resource supplies such as nutrients and light. Light-limited
photosynthesis rate is insensitive to temperature, whereas a light-saturated one increases with
temperature [54]. The resource availability of light and nutrients can be accompanied by vertical
mixing. Therefore, the seasonal cycles of stratification and wind-induced vertical mixing are the key
variables that condition the growth rate of phytoplankton in the water column [54]. Stratification
results in a nutrient-depleted condition at the water surface, when the upward flux of nutrients
from the deep water layers is suppressed. Also, the overall impact of windiness decreases light
availability in the lower depth due to re-suspension of sediments [54]. As a result, the balance found
between meteorological forcings, which sometimes can have opposite effects, is one of the driving
factors determining the bloom condition. Phytoplankton production is a complex function and can
be controlled by resources dynamics, species composition, and predator–prey interactions in the
ecosystem [54].

4.3. Limitations and Uncertainties of the Applied Linear Mixed Effect Model on MERIS

The influence of other existing particulates in a Case II water, such as CDOM and TSM, will
be significantly decreased employing the chosen wavelengths to develop the chl-a LME model, as
opposed to empirical blue-to-green band ratio algorithms. The absorption of CDOM is greatest in the
blue region and certainly decreases exponentially with increasing wavelength, being near negligible
in the NIR for the majority of the Great Lakes waters [1]. The wavelengths (665 and 708.75 nm) have
a minimal sensitivity to other CPAs, but the absorption and scattering of suspended matters can
still interfere within the chl-a algorithm selected wavebands. Increasing sediment loads result in the
reflectance peak to move from blue to green to red in turbid waters [55]. Therefore, the semi-empirical
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models need to be tuned for each water body of interest characterized by different optical properties,
in order to obtain the optimized wavelengths that can discriminate algal from suspended matters, and
result in improved retrieval accuracy. Binding et al. (2012) presented a method to discriminate algal
from particulate matters. The method simultaneously extract algal and suspended matters for Lake
Erie from red and NIR bands of MODIS-Aqua sensor. The study resulted in estimated concentrations
in close agreement with in situ observations with RMSE and R2 values of 2.21 mg¨m´3 and 0.95 for
chl-a and 1.04 g¨m´3 and 0.91 for TSM, respectively [1].

In addition, one has to consider that there is a relatively higher level of errors in computing remote
sensing reflectance at longer wavelengths. Water absorption in red-NIR is strong and produces less
remote sensing reflectance and, accordingly, a lower signal-to-noise ratio. This error is even higher
in the case of clear waters where there is a low concentration of CDOM and TSM to produce remote
sensing reflectance [1]. In Lake Erie, however, the contribution of suspended and dissolved matters
in remote sensing reflectance is high enough to allow the use of the proposed wavelengths from this
study and produce a strong agreement between the modeled and observed values.

Atmospheric corrections are a critical step over water bodies, since the radiance signal emerging
from the water column is much less than that of land. Atmospheric corrections become even more
challenging in highly turbid inland and coastal waters where the ‘black pixel’ assumption of negligible
water-leaving radiance in the near-infrared (NIR) is no longer valid due to scattering from suspended
matters [50]. Thus, typical atmospheric corrections fail and other schemes based on radiative transfer
models or other approaches are required [13]. The accuracy of atmospheric correction algorithms used
in different models is very important to evaluate the satellite-derived water quality products. However,
in a band ratio algorithm with bands near each other, atmospheric effects are normalized [13].

In the northern part of the western basin of Lake Erie, benthic algae can be seen at the surface
when the water is clear enough. Consequently, in some remote sensing methods, benthic algae can
contribute to the remote sensing reflectance [1]. In the present study, however, there is no need to
distinguish benthic algae from surface algae. The rapid in-water attenuation of the wavelengths
selected in this study for chl-a model means that the remote sensing reflectance in these wavelengths
originates mostly from the upper 30 cm of water column in the lake (depends on the diffuse attenuation
coefficient) [50]. Therefore, there is no contribution of reflectance from algae at the bottom of the lake
or subsurface. The estimated chl-a concentration is attributed to the surface or near surface algae
even in the shallow areas or sections of the lake with clear water. The in situ samples to measure
chl-a concentration in Lake Erie were collected from the surface mixed layer. There is a constant
relationship between chl-a concentration at the surface and the one averaged over the mixed layer,
as Lake Erie is shallow and exposed to strong wind-driven mixing to create a mainly mixed water
column condition [50].

In situ data are required for algorithm evaluation purposes and also for parameterizing the LME
models. The water quality parameters measured in the field can change at a scale smaller than that
of the satellite image pixel resolution (300 m for MERIS), especially in Lake Erie due to different
river inputs and wind effect. Thus, multiple measurements around stations are necessary to consider
spatial heterogeneity. Also, the time lapse between satellite overpasses and in situ data collection may
characterize a large change in the water quality parameter magnitude. The extent of these variations
depends on the particular condition in the water body and defines the time window to be considered
between satellite and in situ measurements. A time window of 3 h between satellite overpass and
in situ data collection is recommended for open ocean waters [56]. However 2-day time window
was selected for inland waters of Lake Erie to increase the number of matchups for validation and
training purposes. There are also some uncertainties associated with in situ data collections. Over- or
underestimation of chl-a concentration measurements in the field is inevitable when the collected
samples contain all of the pigments, due to spectral absorption overlaps [57–60]. SDD measurements
are subjective and may vary depending on the operator’s ability. In shallow water bodies, disk contrast
disappears at a shorter depth due to bottom reflections. Also, the disk can reach the bottom of the
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shallow parts of the lake without disappearing [28], which is not the case in Lake Erie as the depth
measured in the survey was always larger than SDD [1].

Although MERIS is no longer active, the upcoming Sentinel-3a and b satellite missions of ESA,
which will each carry the OLCI (Ocean and Land Colour Instrument) sensor (heritage of MERIS),
will mark a new era in the measurement of lake water quality parameters from space. OLCI has an
optimized design to minimize sun-glint and will provide 21 spectral bands compared to the 15 bands
available from MERIS. Therefore the band ratio selection is between a larger numbers of bands that are
improved with regards to radiometric correction.

5. Conclusions

This paper presented and assessed a remote sensing approach that utilizes spectral bands in the
red and NIR portions of the spectrum to estimate chl-a concentration, and visible bands to determine
SDD from MERIS images obtained over Lake Erie for the 2004–2012 period. LME models were
developed based on the selected bands and in situ measurements. This method presents advantages
over the traditional regression models that are only based on fixed effects, and that do not consider the
correlation that stems from repeated measurements in space and time. Also, the LME models for chl-a
and SDD are semi-empirical models that, unlike the semi-analytical models, do not require detailed
knowledge of the IOPs of the CPAs in water.

Despite the limitations of remote sensing methods, they can still be considered as providing
a complementary approach for the estimation of parameters related to water optical properties for
many lakes over large areas and with frequent temporal coverage. Measurements at an acceptable
frequency are required in order to discern potential water quality problems associated with the lake.
In situ measurements of water quality parameters at sufficient temporal and spatial resolutions are,
on the other hand, problematic due to field logistics and extended periods without sampling as a
result of changes in funding priorities by agencies. Remote sensing has the potential to infer the lake
bio-optical/water quality parameters overcoming these concerns.
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