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Abstract: Because of the contradiction between the spatial and temporal resolution of remote
sensing images (RSI) and quality loss in the process of acquisition, it is of great significance to
reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference
image-based reconstruction methods have great potential for higher reconstruction performance,
while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing
objective function incorporating a reference image as prior information is developed. We resort to
the reference prior information inherent in interior and exterior data simultaneously to build a new
generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the
innovation of this paper consists of the following three respects: (1) we propose a nonconvex low-rank
approximation for reconstructing RSI; (2) we inject reference prior information to overcome over
smoothed edges and texture detail losses; (3) on this basis, we combine conjugate gradient algorithms
and a single-value threshold (SVT) simultaneously to solve the proposed algorithm. The performance
of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate
that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR) and
preserves image details significantly compared to most of the current approaches without reference
images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is
naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy
inputs in a more unified framework.

Keywords: remote sensing image reconstruction; low-rank regularization; nonconvex optimization;
reference information

1. Introduction

The multispectral sensors of a satellite system sometimes fail or degrade after the system is
deployed, and degraded sensors provide blurred and noisy images. For example, one band of the
multispectral sensor on board the MODIS satellite degraded after the launch, while the rest of the bands
remained unaffected. Damage to images can also be caused by defocusing, atmospheric turbulence
and some other factors besides the damage of sensors. Owing to sensor failure and poor observation
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conditions, remote sensing images are easily subjected to information loss, which hinders our effective
analysis of the Earth. Digital imaging processing techniques are commonly used to improve image
quality and increase application potential.

In a typical multispectral satellite imaging system, multiple images from different sensors in
the same area are available. When one of those images in a multiple image set is degraded, another
image in the set can be used as a prior image for reconstruction. However, some image reconstruction
approaches have used multiple reference input images. Reconstruction approaches utilize multiple
reference input images, which are used as the prior to improve the reconstruction performance in
terms of spatial resolution and noise reduction. Li et al. [1] proposed a model utilizing spectral and
temporal information as the complementary information for reconstructing the missing information in
remote sensing images. Lizhe et al. and Hao et al. [2,3] developed a compressed sensing object function
that uses a reference image as a prior. The sparsity constraints in the transform domain come from the
target image, and the gradient priors in the spatial domain come from the auxiliary reference image.
Peng et al. [4] proposed an algorithm based on the total variation approach using an auxiliary image.
These methods have seen the potential for higher reconstruction performance when aided references
are present, but the accuracy and quality of reconstruction are lacking.

Since the image prior knowledge plays a critical role in the performance of image reconstruction
algorithms, designing effective regularization terms to reflect the image priors is the core of remote
sensing images (RSI) reconstruction. To sum up, most of these reconstruction methods are based
on some specific prior knowledge of the images, and they use the spectral or spatial information
of the remote sensing images to recover the current pixel or to obtain high resolution images.
Low-rank-inducing regularization terms have recently received considerable attention in sparse
representation. The principle of low-rank approximation is that similar patches are grouped to share
a similar underlying structure and form a low-rank matrix appropriately [5,6], and it can be solved
by using the efficient singular value decomposition as the optimization tool. Using the low-rank
framework, Dong et al. [7] proposed a nonlocal low-rank algorithm, called the spatially-adaptive
iterative singular-value thresholding method. Making use of similar information from another relative
band, it is easy to extend these nonconvex penalty functions on singular values of a matrix to improve
low-rank matrix recovery performance.

In the proposed algorithm, instead of using the `0 norm as the minimization constraint of
compressive sensing, the generalized nonconvex low-rank approximation is exploited as the basic unit
of sparse representation. The model integrates the wavelet texture feature as structural and textural
reference information to establish a novel compressive sensing algorithm for remote sensing image
reconstruction (GNLR-RI). Compared to traditional `0 norm-based compressive sensing, the proposed
GNLR-RI algorithm makes three contributions: (1) to overcome over-smoothing and texture detail loss
of sparse representation, the wavelet coefficient of the reference image is injected as texture reference
constraint information; (2) nonlocal similar patches from a reference image are extracted in the low-rank
approximation step; (3) the spectral reference information and similarity within bands are jointly used.
Therefore, the proposed algorithm can get accurate reconstruction results and improve calculation
speed. The solution of the proposed algorithm is derived by the conjugate gradient algorithm, single
value threshold (SVT), simultaneously calculating the low-rank matrix of similar image patches and
then estimating the reconstructed image.

The remainder of this paper is organized as follows. A brief review is given on the related work
of remote sensing image reconstruction with reference images and other generalized reconstruction
methods, and auxiliary information is added in Section 2. Section 3 introduces the generalized
nonconvex low-rank approximation model, which contains eight surrogate functions. The proposed
model of introducing the generalized nonconvex low-rank approximation algorithm and the solution
of the proposed model are presented in Section 4. Experiments are illustrated in Section 5. Finally,
Section 6 summarizes our conclusions.
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2. Related Work

2.1. RSI Reconstruction with a Reference

Reference images are used to restore missing information of pixel blocks, possibly caused by thick
clouds or contrails, invalid detectors, optical dust, etc. For example, toward solving problems with the
Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Band 6 and the Scan Line Corrector
(SLC) failure on Landsat ETM+, Li et al. [1] introduced spectral and temporal pixels for reconstructing
the missing information in remote sensing images by introducing information from auxiliary images,
modulating the injected gray level and regularizing with a synthesis model and an analysis model on
the basis of sparse representation. Their experiments showed that the synthesis model is suitable for
using both spectral and temporal complementation, while spectral complementation is the best way
for the analysis model.

For remote sensing reconstruction or restoration, some work has emerged that uses reference
images to improve reconstruction performance. Lizhe et al. [2] proposed a compressed sensing-based
model that used an auxiliary image from another sensor or time to reconstruct remote sensing images.
Their method assumed that directions of edges and texture are similar in both the reference image
and the reconstruction image, and therefore, they built a gradient similarity-constrained cost item
to regularize the reconstruction image. Hao et al. [3] proposed a reconstruction model of a remote
sensing image using priors of the auxiliary image from another sensor or time. The model employed
priors from both the transform domain and spatial domain. Furthermore, the sparsity priors in the
transform domain come from the target image, and the gradient priors in the spatial domain come
from the reference image. The algorithm is based on the Bregman split method to optimize the
hybrid regularization. Peng et al. [8,9] proposed a total variation approach with an auxiliary image
to recover a multispectral image. The reference image provides texture and edge similarities to the
degraded image by the regulating strength and direction of smoothness in an anisotropic way, and
the amount of prior information is adaptively estimated with normalized local mutual information.
Similar techniques are implemented in the partial differential equations for denoising of remote
sensing images. These methods have the potential for higher reconstruction performance when aided
references are present.

2.2. Generalized RSI Reconstruction

For ensuring image quality, additional prior information from images is needed. There are
generalized remote sensing image reconstruction methods to improve image quality, to increase
application potential and to implement digital image processing. The compressed sensing (CS) theory
has gained much attention as a fundamental and newly-developed methodology in the information
field. The CS theory states that the image that has a sparse representation in a certain domain can be
recovered from a reduced set of measurements largely below Nyquist sampling rates [10–12]. However,
Fowler [13] proposed a reconstruction strategy, compressive-projection principal component analysis
(CPPCA), which recovers the hyperspectral image dataset using principal component analysis (PCA).
Specifically, the CPPCA recovers both the coefficients associated with the PCA transform and an
approximation to the PCA transform basis itself. Ly et al. [14] extended the concept of partitioned
reconstruction to the spectral dimension of a hyperspectral dataset and incorporated into CPPCA
the paradigm of segmented PCA, in which a dataset is segmented into multiple spectral partitions,
and PCA is applied in each segment independently. Since multiple predictions drawn for a pixel
vector of interest were made from spatially-neighboring pixel vectors within an initial non-predicted
reconstruction, Chen et al. [15] proposed a two-phase hypothesis-generation procedure based on the
partitioning and merging of spectral bands according to the correlation coefficients between bands to
fine-tune the hypotheses.

The transforms that allow the image to have a sparse representation are named sparsifying
transforms. One of the most commonly-used sparsifying transforms is finite difference [16], which
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is more often known as total variation (TV) regularization for image recovery. The popularity of TV
regularization lies in its desirable properties, such as convexity, simplicity and its ability to preserve
edges. For example, Xiaohua et al. [17] proposed a novel Inverse Synthetic Aperture Radar (ISAR)
imaging framework combining a local sparsity constraint and a nonlocal total variation (NLTV). The
sparsity is a prior form in which the number of strong scattering points is smaller than that of pixels in
the image plane. It plays the role of the classification of the strong scattering points from the clutter
background. Xiyan et al. [18] considered the fusion problem as the colorization of each pixel in the
panchromatic image and, thus, introduced a term concerning the gradient of the panchromatic image
in the function of total variation to preserve edges. Peng et al. [9] indicated that the distributions of
pixel intensity of the multimodal image of different CCD sensors differ greatly form each other, and
the directions of their edges are very similar. Then, the edge information and these similar structures
are used as the important priors or constraints in the total variation image restoration.

On the other hand, similar patches are grouped such that patches in each group share a similar
underlying structure to form a low-rank approximation. The low rank induces penalties related to
simultaneous sparse coding (SSC), group sparsity and structured sparsity by employing the low-rank
characteristic of nonlocal patches in sparse representation. Hongyan et al. [19] introduced a new
hyperspectral imagery restoration method based on the low-rank matrix recovery, which suggested
that a clean hyperspectral imagery patch can be regarded as a low-rank matrix. Wei et al. [20] proposed
a method that integrates the nuclear norm, TV regularization and the `1 norm into a unified framework.
The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted
to explore the spatial piecewise smooth structure of the hyperspectral imagery. Usually, nonconvex
approaches, like `p (0 < p < 1) or the nuclear `1 norm minimization will guarantee a better recovery
by directly attacking the `0 minimization problem [21,22].

An important research area is the sparse representation method with dictionary learning (DL),
which builds an adaptive basis from particular image instances for sparse approximations [23].
Qiegen et al. [16] propose a novel gradient-based dictionary learning method for image recovery
that effectively integrates the popular total variation (TV) and dictionary learning technique into the
same framework. Specifically, they train dictionaries from the horizontal and vertical gradients of the
image and then reconstruct the desired image using the sparse representations of both derivatives.
The dictionary learning strategy alleviates the drawback of a fixed basis (finite difference, wavelet, etc.)
that a given basis might not be universally optimal for all images [24], but at the cost of non-convexity
and non-linearity [25]. Most existing DL methods adopt a two-step iterative scheme, where the sparse
approximations are found with the dictionary fixed, and the dictionary is subsequently optimized
based on the current sparse coefficients [26].

Exact reconstruction of sparse reconstruction can be achieved by nonlinear algorithms, such as
orthogonal matching pursuit (OMP) [27], the iterative shrinkage algorithm [28], the Bregman split
algorithm [29] and the alternative direction multiplier method [30]. Recent advances have shown that
replacing the `0 norm with a nonconvex surrogate function can obtain better sparse representation
recovery performance. Weisheng et al. [6] proposed a spatially-adaptive iterative singular value
thresholding (SAIST) method by revealing the assumption that the basis is orthogonal, and the SSC
problem can be rewritten in a low-rank view in some special cases. Shuyuan et al. [31] proposed
a multi-task learning and K-SVD-based super resolution image restoration method that learned a
redundant dictionary from some example image patches.

2.3. Reconstruction Model Based on Reference Images

As in psychological research of the visual cortex, energy distribution in the wavelet coefficient
can be identified as the unique features of texture characterization, so we have extra texture features
of the reference image and target image. Let α(i, j) denote the wavelet coefficient, F`1_energy denote
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the `1 norm-based energy, Fsd denote the standard deviation and Faad and Fentropy denote the average
absolute deviation and entropy.

Fl1_energy (α) =
1

MN

M

∑
i=1

N

∑
j=1
|α(i, j)| (1)

Fsd (α) =

(
1

MN

M

∑
i=1

N

∑
j=1

(α(i, j)− ᾱ)2

)1/2

(2)

Faad (α) =
1

MN

M

∑
i=1

N

∑
j=1
|α(i, j)− ᾱ| (3)

Fentropy (α) = −
1

MN

M

∑
i=1

N

∑
j=1
|α(i, j)|2 log |α (i, j)|2 (4)

where α(i, j) is the wavelet coefficient and ᾱ is the mean value of the wavelet coefficient. Research
shows that the combination of these characteristics results in a better performance. Therefore, in this
study, the empirical combination with the `1 energy norm F`1_energy, the standard deviation Fsd, the
average absolute deviation Faad and the entropy Fentropy of every wavelet coefficient sub-patch were
computed to form the texture feature vector F. As for the reference image, we obtain the texture feature
vector Fre f in the same way and compute the metric distance to objectively measure the similarity
of these two texture feature vectors. The literature shows that not only the texture feature, but also the
similarity measurement influence the accuracy of texture feature extraction. Two feature vectors from
target images and reference images are as follows:

Fk =
[

Fl1_energy (αk) , Fsd (αk) , Fadd (αk) , Fentropy (αk)
]

(5)

Fre f _k =
[

Fl1_en

(
αre f _k

)
, Fsd

(
αre f _k

)
, Fadd

(
αre f _k

)
, Fen

(
αre f _k

)]
(6)

where Fk denotes the wavelet coefficient sub-blocks of the target image and Fre f _k denotes the wavelet
coefficient sub-blocks of the reference image. As for the relationship of the kth sub-block of in the
reference image and target image, the Canberra distance is adopted to calculate their similarity:

wk = Canb
(

Fk, Fre f _k

)
=

u

∑
h=1

∣∣∣Fkh − Fre f _kh

∣∣∣
|Fkh|+

∣∣∣Fre f _kh

∣∣∣ (7)

In the formulation above, h represents the divergence of these two feature vectors, and the
denominator normalizes the divergence. Therefore, the similarity measurement can avoid the scale
effects, and the constrained item is formed as follows:

U

∑
k=1

wk

∥∥∥αk − αre f _k

∥∥∥2

2
< ξ (8)

where ξ is a small constant, U = M × N/ (m× n) is the number of the sub-blocks of the wavelet
coefficients and wk denotes the distance between the wavelet coefficient k-th block of the texture
features in the target image and the reference image. More similar texture feature vectors correspond
to blocks of wavelet coefficients that are more alike.
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The reconstruction object formula of the compressive sensing with the reference information
model can be presented as:

α = arg min ‖α‖1,s.t


‖y− φψα‖2

2 < δ
U
∑
k

wk

∥∥∥αk − αre f _k

∥∥∥2

F
< ξ

(9)

where ‖y− φψα‖2
2 is the `2 data fidelity term and ‖α‖1 represents the regularization term denoting

prior knowledge. There are many optimization methods to solve the above `1 minimization problem,
such as the iterative shrinkage algorithm [28], the Bregman split [29] and the alternative direction
multiplier method [30]. However, recent advances have shown that replacing the l1 norm with the
nonconvex surrogate function can obtain better CS recovery performance. For example, the methods
proposed by Fazel [32], Gasso [33], Chartrand [34] and Trzasko [35] have proved that in certain
situations, the nonconvex surrogate function is able to recover the sparsity coefficient more efficient.

3. Generalized Nonconvex Low-Rank Approximation Model

A nonconvex low-rank model for CS recovery exploits the nonlocal structured sparsity via
low-rank approximation for image reconstruction. Under the assumption that each exemplar patch
of xi ∈ Cn (size

√
n×
√

n at position i) is able to find plenty of similar patches in its neighborhood
area, a large number of k-nearest-neighbor searches have been implemented for each exemplar patch
in a local window, namely:

Hi =
{

ij

∥∥∥xi − xij

∥∥∥ < T
}

(10)

where T is a pre-defined threshold value and Hi denotes the assemblage of positions relating to the
patches similar to xi. Under the assumption that these image patches have similar structures, the
data-formed data matrix xi has a low-rank property. A data matrix Xi =

[
xi0 , xi1 , . . . , xim−1

]
, Xi ∈ Cn×m

is acquired after the search, which is decomposed into Xi = Li + Wi, where Li denotes the low-rank
matrix and Wi denotes the Gaussian noise. Then, the low-rank problem can be solved as:

Li = arg min
Li

rank(Li), s.t. ‖Xi − Li‖2
F ≤ σ2

ω (11)

where ‖ · ‖2
F denotes the Frobenius norm and σ2

ω denotes the variance of additive Gaussian noise.
The rank minimization almost is an NP-hard problem; hence, we use the nuclear norm ‖ · ‖∗
(sum of singular values) to replace a series of convex surrogate functions of the rank to obtain an
approximated solution. Using the nuclear norm, the rank minimization problem can be efficiently
solved by the technique of singular value thresholding (SVT).

In this paper, we consider a smooth, but non-convex surrogate of the rank rather than the
nuclear norm. Specifically, according to [32], the rank minimization problem with regard to Li can be
approximately solved by minimizing the following function:

Li = arg min
Li

S (Li, ε) , s.t. ‖Xi − Li‖2
F ≤ σ2

ω (12)

where ‖•‖2
F denotes the Frobenius norm, σ2

ω denotes the variance of additive Gaussian noise,

S (Li, ε)=G det
((

LiLT
i
)1/2

+ εI
)

=G det
(

UΣ1/2U−1 + εI
)

=G det
(

Σ1/2 + εI
)

, ε is a small constant

value, Σ denotes the eigenvalue matrix of LiLi
T , i.e., LiLi

T = UΣU−1, and Σ1/2 is a diagonal matrix
whose diagonal elements are the singular values of the matrix Li. By taking a proper parameter λ,
Equation (12) can be transformed into:

Li = arg min
Li

‖Xi − Li‖2
F + λS (Li, ε) (13)
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For each exemplar image patch, we can approximate the matrix Xi with a low-rank matrix Li
by solving Equation (13). Many nonconvex surrogate functions have been proposed to achieve
a better approximation to the `0 norm [36], including the logarithm function (Log) [37], the `p

norm (Lp) [38], Geman (Geman) [39], Laplace (Lap) [35] and the exponential type penalty (Etp) [40].
In addition, there are several discontinuous functions, such as the smoothly-clipped absolute deviation
(Scad) [41], Capped `1 (Cappedl1) [42] and the minimax concave penalty (Mcp) [43]. The definitions
and super-gradients of these surrogate functions have similar monotonous trends, as displayed
in Table 1 and Figure 1.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Some popular nonconvex surrogate functions of the `1 norm (left) and their super-gradients
(right). (a) Log penalty; (b) `p norm (Lp) penalty; (c) Geman penalty; (d) Laplace (Lap) penalty;
(e) Exponential type penalty (Etp) penalty; (f) Smoothly-clipped absolute deviation (Scad) penalty;
(g) Capped `1 (Cappedl1) penalty; (h) Minimax concave penalty (Mcp) penalty.
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Table 1. Generalized nonconvex surrogate functions.

Nonconvex Surrogate Functions Formulation Gθ (x) , x ≥ 0, θ > 0 Super-Gradient∇Gθ (x)

Log θ
log(γ+1) log (γx + 1) γθ

(γx+1) log(γ+1)

Lp θxp, 0 < p < 1
{

∞, x = 0,
θpxp−1, x > 0.

Geman θx
x+γ

θγ

(x+γ)2

Lap θ
(

1− exp
(
− x

γ

))
θ
γ exp

(
− x

γ

)
Etp θ

1−exp(−γ)
(1− exp (−γx)) θγ

1−exp(−γ)
exp (−γx)

Scad


θx, x < θ,
−x2+2γθx−θ2

2(γ−1) θ, x ≤ γθ,
θ2(γ+1)

2 , x > γθ.


θ, if x < θ,
γθ−x
γ−1 , λ < x ≤ γθ,

0 , if x > γθ.

Cappedl1
{

θx, x < γ,
θγ, x ≥ γ.


θ, if x < γ,
[0, θ] , if x = γ,
0, if x > γ.

Mcp

{
θx− x2

2γ , if x < γθ,
1
2 γθ2, if x ≥ γθ.

{
θ − x

γ , if x < γθ,
0, if x ≥ γλ.

4. Problem Definition

In multispectral remote sensing applications, the target images’ and the reference images’ intensity
distributions are different, but their edge directions and texture information are often similar. One of
the reference images can be used as a prior image in the reconstruction process. This section gives the
generalized nonconvex low-rank approximation algorithm for CS recovery exploiting the nonlocal
structured sparsity via low-rank approximation for remote sensing image reconstruction. Let x ∈ CN

denote the target images, where x is sparsely expressed as x = ψα with a sparse signal α, and y ∈ CM

denotes the observed data; the measurement matrix φ ∈ CM×N (M < N) maps x to y. The remote
sensing image reconstruction problem is to reconstruct x. Figure 2 shows the relationship between high
resolution target images and low resolution observed images. The different low and high resolution
images contain different time series or different bands. In some cases, we use one or two different time
series or different bands as the reference image and the other as the unknown target image.

Low resolution 
image

High resolution
image

Reference 
image

x1 x2 x3

y3y2y1

t1/band1 t2/band2 t3/band3

Figure 2. Relationship between the high resolution image and the low resolution image.

In this section, a compressed sensing model with reference images integrating low-rank
regularization and wavelet textural constraints is proposed and solved with the conjugate gradient
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algorithm and single value threshold (SVT). Figure 3 shows the framework of the proposed GNLR-RI
method. The reconstruction object formula of the generalized nonconvex low-rank approximation
with reference information model can be presented as:

(
α̂, L̂i

)
= arg min

α,Li

η ∑
i

{∥∥R̃iψα− Li
∥∥2

F + λS (Li, ε)
}

, s.t.


‖y− φψα‖2

2 < δ
U
∑
j

wj

∥∥∥αj − αre f _j

∥∥∥2

F
< ξ

(14)

where R̃ix =
[
Ri0 x, Ri1 x, . . . , Rim−1 x

]
= Xi denotes the patch matrix similar to the patch xi.

The variable R denotes the location of the similarity patches; ∑
i

Riψα represents the patch average

result. The minimization of the objective constraint function turns into non-constraint optimization.

(
α̂, L̂i

)
= arg min

α,Li

‖y− φψα‖2
2 +

U
∑
j

wj

∥∥∥αj − αre f _j

∥∥∥2

F
+ η ∑

i

{∥∥R̃iψα− Li
∥∥2

F + λS (Li, ε)
}

(15)

Target image X
band 4

Low-rank 
approximation

Replaced by

Proposed model 
GNLR-RI method

Wavelet 
coefficient

Canberra 
distance w

Regularization 
constraint

Output 
reconstructed image

Reference  
image  band 8

Figure 3. Framework of the proposed GNLR-RI method.

4.1. Solving the Proposed Model

As it is difficult to get a closed solution from Equation (15) directly, the optimization process is
divided into three steps.

αk+1 = arg min
α
‖y− φψα‖2

2 +
U

∑
j

wj

∥∥∥αj − αre f _j

∥∥∥2

F
(16)

L̂i = arg min
Li

∑
i

{∥∥R̃iψα− Li
∥∥2

F + λS (Li, ε)
}

(17)

αk+1 = arg min
α,Li

‖y− φψα‖2
2 + η ∑

i

∥∥R̃iψα− Li
∥∥2

F (18)

For the first step, the reference image wavelet information is `2 norm regularization; thus, the
conjugate gradient algorithm is used to solve it. By setting the derivatives of the objective formula in
Equation (16) with respect to the sparse coefficient α to zero, we can obtain:

−2ψTφT
(

y− φψαk+1
)
+ 2

U

∑
j

wj

(
αj − αre f _j

)
= 0 (19)



Remote Sens. 2016, 8, 499 10 of 20

ψTφTφψαk+1 = ψTφTy +
U

∑
j

wj

(
αj − αre f _j

)
(20)

and where α =
U
∑
j

wjαj, we can employ the conjugate gradient algorithm to solve Equation (20).

For the second step, the solution of Li can be obtained by solving the following
minimization problem:

Li = arg min
Li

η
∥∥R̃ix− Li

∥∥2
F + λS (Li, ε) (21)

where R̃ix =
[
Ri0 x, Ri1 x, . . . , Rim−1 x

]
= Xi denotes the patch matrix similar to the patch xi.

By substituting Equation (11) into Equation (21), Li can be rewritten as:

min
Li
‖Xi − Li‖2

F +
λ

η

n0

∏
j=1

G
(
σj (Li) + ε

)
(22)

where σj is the j-th singular value of Li. Let f (σ) =
n0
∏
j=1

G(σj + ε), which can be solved by using a local

minimization method. With the first order Taylor expansion, f (σ) can be approximated as:

f (σ) = f
(

σ(k)
)
+
〈
∇ f

(
σ(k)

)
, σ− σ(k)

〉
(23)

where σ(k) denotes the value of σ in the k-th iteration. This can be worked out by solving the following
equation iteratively,

L(k+1)
i = arg min

Li

‖Xi − Li‖2
F + λ

η

n0
∑

l=1


n0
∏
j=1

(
σ
(k)
j +ε

)
σ
(k)
l +ε

∇G

(
n0
∏
j=1

(
σ
(k)
j + ε

))
σl

 (24)

After the constants in Equation (24) are ignored, Equation (22) is rewritten into:

L(k+1)
i = arg min

Li

1
2
‖Xi − Li‖2

F + τΨ
(

Li, ω(k)
)

(25)

where τ = λ/2η and Ψ
(

Li, ω(k)
)
= ∑n0

l=1 σlω
(k)
l .ω(k)

l = ∇G

(
n0
∏
j=1

(
σ
(k)
j + ε

)) n0
∏
j=1

(
σ
(k)
j + ε

)
/
(

σ
(k)
l + ε

)
denotes the weighted nuclear norm. According to the proximal operator of the weighted nuclear
norm, the solution in the (k + 1)th iteration can be obtained as:

L(k+1)
i = U

(
Σ̃− τdiag

(
ω(k)

))
+

VT (26)

where UΣ̃VT denotes the SVT of Xi, (x)+ = max {x, 0}.
For the third step, after the solution of all Li is obtained, the following minimization problem

can be solved to reconstruct the wavelet coefficient matrix by using the conjunction gradient
algorithm (CG):

−2ψTφT
(

y− φψαk+1
)
+ 2η ∑

i
ψT R̃T

i

(
R̃iψαk+1 − Li

)
= 0 (27)

By setting the derivatives of the objective formula in Equation (27) with respect to the sparse coefficient
α to zero, we can obtain:(

ψTφTφψ + ∑
i

ψT R̃T
i R̃iψ

)
αk+1 = ψTφTy + ∑

i
ψT R̃T

i Li (28)
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Noting that the value of ∑
i

R̃T
i R̃i represents the number of overlapping patches and ∑

i
R̃iLi

represents the patch average result, we can employ the conjugate gradient algorithm to solve
Equation (28).

Now, this image reconstruction algorithm is summarized here, is called GNLR-RI and represents
the eight nonconvex surrogate functions mentioned above. The detailed description of the proposed
method is listed in Algorithm 1. The difference between the NLR-CS-baseline and the GNLR-RI mainly
lies in the approximation scheme of the `1 norm and the representation of texture features. Therefore,
during the reconstruction process, the low-rank operation strongly encourages the similarity of the
patches between the target image and the reference image.

Algorithm 1: GNLR-RI.

Input: Sparse coefficient of reference image αre f

Initialization: Set target wavelet coefficient α to zero; ωi = [1, 1, . . . , 1]T , Λ(1), µ(1) = 0λ, η, p, τ =
λ
/

2η, β, K, J and α
While convergence criterion not met, do
1. Compute the texture feature vectors F, Fre f of target wavelet coefficient α and reference wavelet
coefficient αre f using Equations (5) and (6).

2. Add the constrained term
U
∑

k=1
wk

∥∥∥αk − αre f _k

∥∥∥2

2
to the compressed sensing target objective function.

3. Add the low-rank approximation based on the reference image term.
4. Solve the optimization problem Equation (20) via the conjunction gradient algorithm.
5. Iteration: For (k > K0), do

1) Form a matrix Xi making up similar patches of x(k) and set L(0)
i = Xi

2) For j = 1, 2, . . . , J, do
a) If (k > K0), update the weights

ω
(k)
l = ∇G

(
n0

∏
j=1

(
σ
(k)
j + ε

)) n0

∏
j=1

(
σ
(k)
j + ε

)/(
σ
(k)
l + ε

)

b) Compute Li via Equation (26) and output αi = α
(j)
i when j = J.

End for
End for

6. Solve the optimization problem Equation (28) via the conjunction gradient algorithm.
End while
Output : X̂ = X(K)

.

5. Experiment Results

During the experiments, single-channel and multichannel satellite images from MODIS, Landsat 7,
Landsat 8 and Google Earth are used as the simulated data to test the performance of our proposed
reconstruction framework. (1) Landsat 7 and Landsat 8 provide PAN images at 15-m spatial resolution
and 30-m spatial resolution. (2) MODIS provides images at 500-m resolution. (3) Google Earth provides
three-channel color tested images. For the Landsat 7 and Landsat 8 image data, Band 4 with 30-m
resolution is the near-infrared band with a better spectrum characteristic in which a body of water
has a clear outline, and Band 8 is panchromatic with 15-m resolution; thus, Band 4 is chosen as the
target image, and Band 8 is chosen as the reference image, which is down-sampled into 30-m spatial
resolution to group similar blocks injected into the reconstructed image to compensate the smoothed
areas nonlinearly. For the MODIS data, we use Band 4 as the target image and Band 3 as the reference
image to evaluate the proposed algorithm.

Furthermore, our proposed algorithm is compared to the well-known reconstruction-based
models NLR-CS-baseline [7], orthogonal matching pursuit (OMP) and compressive sampling
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matching pursuit (CoSaMP) [24] by evaluating the experimental results quantitatively and visually.
NLR-CS-baseline uses the standard nuclear norm, which is the l1 norm minimization. CoSaMp and
OMP reconstructs signal by using a very small number of points.

Furthermore, our proposed algorithm is compared to the well-known reconstruction-based
models NLR-CS-baseline [7], orthogonal matching pursuit (OMP), compressive sampling matching
pursuit (CoSaMP) [27], multi-hypothesis predictions combined with block-based compressed sensing
with smoothed projected Landweber reconstruction (MH-BCS-SPL) [44], recovery via collaborative
sparsity (RCoS) [45] and adaptively-learned sparsifying basis via L0 minimization (ALSB) [46] by
evaluating the experimental results quantitatively and visually. NLR-CS-baseline uses the standard
nuclear norm, which is the L1 norm minimization. CoSaMp and OMP reconstruct the signal by using
a very small number of points. The multi-hypothesis prediction is used to generate a residual in
the domain of the compressed-sensing random projections in MH-BCS-SPL. RcoS compels local 2D
sparsity and nonlocal 3D sparsity simultaneously in an adaptive hybrid space-transform domain to
utilize the intrinsic sparsity of natural images and to confine the CS solution space. ALSB enforces the
intrinsic sparsity of natural images substantially by sparsely representing overlapped image patches
using the adaptively-learned sparsifying basis in the form of the L0 norm.

5.1. Evaluation of the Low Rank Penalty Function and Different Nonconvex Surrogate Functions

First, we justify the necessity of adding the low-rank approximation method. For convenience,
the objective function Equation (15) recovering the L1 norm without reference information is denoted
as L1-WRI. The reconstruction method introduced the reference information constraint with L1 norm
Equation (9) denoted as L1-RI. The objective function Equation (15) that employed the nonconvex
surrogate logarithm function is denoted as GNLR-RI-Log. Figure 4 demonstrates the results of these
three methods. The proposed algorithm that combines these and introduces low-rank approximation
provides better performance.

(a) (b) (c)

Figure 4. The reconstruction image of three methods. (a) L1-without reference information (WRI);
(b) L1-RI; (c) GNLR-RI-Log.

Second, in this section, the reference images of Landsat 7 and Landsat 8 are down-sampled to the
same scale of the target images, and the MODIS images are the same scale with 256 × 256, where 256 is
the length and width of the input image. Common indices, such as the peak signal to noise ratio (PSNR)
and root mean square error (RMSE) are adopted to give a quantitative assessment. Table 2 shows PSNR
(dB)/RMSE with different generalized nonconvex surrogate functions. The reconstructed images with
different nonconvex functions are displayed in Figure 5. It can be observed that continuous nonconvex
surrogate functions, such as Log, Lp, Geman, Lap and Etp, have the same performance as piecewise
nonconvex surrogate functions, such as Scad, Cappedl1 and Mcp.
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Table 2. PSNR (dB)/RMSE with different generalized nonconvex surrogate functions.

Functions Landsat 8 MODIS Landsat 7

Log 32.655/3.263 27.843/3.274 25.616/11.477
Lp 32.804/5.463 26.068/3.266 25.569/11.259

Geman 32.655/5.434 26.194/3.253 25.964/10.922
Lap 32.714/5.387 27.193/3.312 25.580/10.843
Etp 32.803/5.466 27.310/3.282 25.681/11.499

Scad 32.667/5.435 26.223/3.293 25.958/11.319
Cappedl1 32.695/5.478 27.081/3.305 25.757/11.271

Mcp 32.752/5.499 26.251/3.268 25.863/11.018

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Reconstructed images with different nonconvex surrogate functions. (a) GNLR-Log;
(b) GNLR-Lp; (c) GNLR-Geman; (d) GNLR-Lap; (e) GNLR-Etp; (f) GNLR-Scad; (g) GNLR-Cappedl1;
(h) GNLR-Mcp.

In this subsection, we focus on usual nonconvex penalties proposed for recovering sparsity in
Figure 1. As all of the penalty functions share common properties, concave and monotonically
increasing on [0, ∞), thus their super-gradients are nonnegative and monotonically decreasing.
Our proposed general solver is based on this key observation. One of the nonconvex penalties
that circumvents Lasso weak points is the SCAD penalty, which has the unbiasedness properties.
Among all other penalty functions that lead to sparsity, a popular one is the Lp pseudonorm when
0 < p < 1. The main interest of this penalty resides in its quasi-smooth approximation of the L0
sparsity measure as p tends toward the null value. It can provide sparser solutions than Lasso. For
the log penalty, we shift the coefficients by a small quantity to avoid an infinite value when the
parameter vanishes.

5.2. Performance Comparison for Single-Channel Compressed Sensing

In this subsection, one of the nonconvex surrogate logarithm functions (GNLR-RI-Log) is selected
to test the performance of the single-channel experiment. The correlation coefficient (CC) and structural
similarity (SSIM) are added to give a quantitative assessment of the reconstruction results. Table 3
shows the performance indexes PSNR (dB), RMSE, CC and SSIM of the Log function with different
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images and patch sizes. Figure 6 demonstrates image recovery quality intuitively of different images.
It can be observed that the proposed method, GNLR-RI-Log, can reconstruct the images more precisely
and obtain good group similarity by extracting structural information from the reference image.
Obviously, the results illustrate that we should select an appropriate patch size in the procedure of
processed images to derive optimal reconstruction quality.

Table 3. The performance indexes PSNR (dB), RMSE, correlation coefficient (CC) and structural
similarity (SSIM) of the Log function with different images and patch sizes.

Images Patch Sizes PSNR RMSE CC SSIM

(1) 2 × 2 24.006 17.930 0.958 0.898
(1) 4 × 4 24.128 17.780 0.958 0.897
(1) 6 × 6 24.212 17.777 0.958 0.896
(1) 8 × 8 24.287 17.937 0.957 0.896

(2) 2 × 2 30.469 8.908 0.980 0.844
(2) 4 × 4 30.615 8.709 0.980 0.832
(2) 6 × 6 30.552 8.816 0.979 0.828
(2) 8 × 8 30.806 8.823 0.979 0.832

(3) 2 × 2 24.404 11.264 0.925 0.802
(3) 4 × 4 24.485 11.470 0.921 0.782
(3) 6 × 6 24.936 11.295 0.922 0.790
(3) 8 × 8 23.919 11.822 0.914 0.773

(4) 2 × 2 24.128 17.780 0.958 0.897
(4) 4 × 4 24.212 17.777 0.958 0.896
(4) 6 × 6 24.287 17.937 0.957 0.896
(4) 8 × 8 30.469 8.908 0.980 0.844

(a) (b) (c) (d)

Figure 6. The reconstruction image of Landsat 7 and Landsat 8. (a–d) Reconstruction Image (1–4).
(a) Reconstruction Image 1; (b) Reconstruction Image 2; (c) Reconstruction Image 3; (d) Reconstruction
Image 4.
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5.3. Multichannel Reconstruction with References

For the multichannel, Bands 4/5/6 of Landsat 8 data and Bands 1/2/3 of Google Earth data
are set as simulated images to be reconstructed in the multichannel reconstruction subsection.
Reference images are derived from related Band 8 of Landsat 8 and related gray one of Google
Earth. Commonly-used metrics for multichannel images, such as spectral angle mapper (SAM),
RASE, relative dimensionless global error (ERGAS) and Q4, are evaluated to check the availability of
quantitative remote sensing, since PSNR is not the only index that reflects the reconstruction effect.
Note that the ideal result is one for Q4, while it is zero for SAM, RASE and ERGAS. Table 4 shows that
GNLR-RI-Log has more advantages with Google Earth data than Landsat 8 data. It can be observed
that for Landsat 8 data, our method GNLR-RI-Log works better than NLR-CS-baseline, OMP, CoSaMp
and RCoS in terms of PSNR, while it performs worse than MH-BCS-SPL and ALSB. Except ERGAS,
for the other three indexes, SAM, RASM and Q4, GNLR-RI-Log obtains comparable and better results
than most of the competing methods. On the other hand, for the Google Earth data, GNLR-RI-Log
produces more moderate results and performs best among the competing methods in terms of PSNR,
SAM, RASM, ERGAS and Q4.

Table 4. Reconstruction evaluation of Landsat 8 Bands 4/5/6 with Band 8 as the reference and
Google Earth Bands 1/2/3 with the gray one as the reference. SAM, spectral angle mapper; ERGAS,
relative dimensionless global error; OMP, orthogonal matching pursuit; CoSaMP, compressive sampling
matching pursuit; CS, compressed sensing; MH-BCS-SPL, multi-hypothesis predictions combined with
block-based compressed sensing with smoothed projected Landweber reconstruction; RCoS, recovery
via collaborative sparsity; ALSB, adaptively-learned sparsifying basis.

Landsat 8 Bands 4/5/6 Google Earth Bands 1/2/3

PSNR SAM RASM ERGAS Q4 PSNR SAM RASM ERGAS Q4
OMP 17.644 0.092 0.162 0.041 0.986 19.741 0.018 0.059 0.015 0.944

CoSaMP 17.327 0.074 0.146 0.037 0.989 19.462 0.017 0.054 0.014 0.954
NLR-CS-baseline 17.294 0.195 0.434 0.109 0.865 30.055 0.010 0.062 0.016 0.930

MH-BCS-SPL 27.568 0.162 0.165 0.041 0.985 31.963 0.010 0.071 0.018 0.917
RCoS 18.412 0.140 0.511 0.128 0.820 23.495 0.025 0.219 0.054 0.607
ALSB 28.753 0.138 0.144 0.036 0.989 32.821 0.028 0.064 0.016 0.932

reference band 8 gray
GNLR-RI-Log 22.459 0.023 0.223 0.762 0.951 41.967 0.009 0.018 0.005 0.995

5.4. Parameter Evaluation

Similar to the detail-preserving regularity scheme, this subsection evaluates the sensitivity of
the proposed method to parameter settings by varying one parameter at a time while keeping the
rest fixed at their nominal values. In the reference information constrained reconstruction algorithm,
there are two free parameters, λ and η, in the reconstructed object formula Equation (17). Bands 4/8
of Landsat 8 and Bands 2/3 and 3/4 of MODIS data were tested in this subsection. PSNR, RMSE,
CC and SSIM values versus the parameters λ and η are plotted in Figure 7. It is obvious that more
fine-tuning of the parameters may lead to better results, but the results with the parameter settings are
consistently promising. By manually changing the parameters λ and η, some experiments are used to
analyzing their variation tendency in Table 5.
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(a) (b) (c) (d)

Figure 7. Results of the proposed method with different values of parameters λ and η tested in Bands
4/3 of MODIS. (a) PSNR versus λ and η; (b) RMSE versus λ and η; (c) CC versus λ and η; (d) SSIM
versus λ and η.

Table 5. PSNR (dB) with different parameters in different images.

λ η
Landsat 8 MODIS

Band 4 Band 8 Band 2 Band 3

0.25 0.07 24.668 26.674 24.229 27.311
0.45 0.45 25.834 27.050 23.763 26.969
0.67 0.33 24.843 26.702 23.798 27.427
0.87 0.25 24.474 26.902 24.027 27.604

To make a fair comparison among the competing methods, we have carefully tuned their
parameters to achieve the best performance. The parameters of the other competing methods are
designed as follow: for OMP and CoSaMp, default parameters (if required as input arguments) are
used; for the NLR-CS-baseline algorithm, the main parameters are set as follows: patch size 6× 6 and
similar patches m = 45 are selected for each exemplar patch. For the MH-BCS-SPL method, we use an
empirical regularization parameter value λ, and the initial search window is set to w = 1. We have
also carefully tuned the parameters of the RCoS and ALSB algorithms for the purpose of hopefully
achieving the best possible performance.

5.5. Performances with Varied Noise Levels

In this subsection, we discuss the impact of noise on the reconstruction performance of the
proposed algorithm with a 0.1 sampling rate, which means observation data in the compressive
sensing. One of the nonconvex surrogate logarithm functions (GNLR-RI-Log) is selected to compare to
the NLR-CS-baseline, CoSaMP and OMP algorithms. Bands 4/8 of Landsat 8 and Bands 3/4 of MODIS
images were tested in the experiments with added Gaussian noise with a mean of zero and variance
of (0,4,8,12). As can be seen in Table 6, the proposed GNLR-RI-Log method performs much better than
the NLR-CS-baseline method in terms of noise added. Figure 8 shows the reconstruction results for a
sample rate of 0.1 and a noise level of σ = 6. It can be observed that our GNLR-RI-Log method can
reconstruct the images more precisely than NLR-CS-baseline, CoSaMP and OMP, compensate for the
over-smoothness and obtain good group similarities compared to the other algorithms by extracting
structural information from reference images.
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Table 6. The performance indexes PSNR (dB) with different reconstruction methods and noise levels.
Landsat 8 Band 4 (reference: Band 8) and MODIS Band 6 (reference: Band 7).

GNLR-RI-Log NLR-CS-baseline CoSaMP OMP GNLR-RI-Log NLR-CS-baseline CoSaMP OMP

σ = 0 32.863 23.502 28.754 28.021 31.225 22.025 24.803 24.274
σ = 4 32.786 23.499 28.202 27.664 31.279 22.023 24.610 24.122
σ = 8 32.615 23.496 26.798 26.879 30.994 22.022 23.974 23.717
σ = 12 32.639 23.483 25.103 25.651 30.874 22.015 23.0007 23.086

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The reconstruction results for a sample rate of 0.1 and a noise level of σ = 8.
(a–d) Reconstructing Landsat 8 images with GNLR-RI-Log, NLR-CS-baseline, CoSaMp and OMP;
(e–h) Reconstructing MODIS images with GNLR-RI-Log, NLR-CS-baseline, CoSaMp and OMP.
(a) GNLR-RI-Log; (b) NLR-CS-baseline; (c) CoSaMP; (d) OMP; (e) GNLR-RI-Log; (f) NLR-CS-baseline;
(g) CoSaMP; (h) OMP.

5.6. Computational Complexity

A good remote sensing reconstruction model is expected to be not only effective, but also
computationally efficient. The single-channel image is processed on an Intel(R) Core(TM) i7-6700
CPU @ 3.41 GHz with our MATLAB implementation (MATLAB 2015 with 64 bit). The computational
cost performances of some representative methods are shown in Table 7, where we use a 256× 256
single-channel image as the input. As can be seen in Table 7 where we abbreviate iteration to iter.,
in terms of execution time, reconstruction with GNLR-RI-Log is, as expected, faster than RCoS and
ALSB due to low-rank approximation. On the other hand, the execution times of RCoS and ALSB are
much slower than GNLR-RI-Log and MH-MS-BCS-SPL due to RCoS and ALSB learning the adaptive
sparsifying basis from a fraction of all patches. OMP and CoSamp are the fastest reconstruction
methods with their runtimes of 0.106 and 0.031 s per iteration, respectively. In summary, GNLR-RI-Log
achieves favorable performance in terms of both reconstruction accuracy and efficiency.

Table 7. Reconstruction time for a 256× 256 single-channel image.

Methods OMP CoSaMP NLR-CS-baseline MH-BCS-SPL RCoS ALSB GNLR-RI-Log

Runtime (s) 0.106/iter. 0.031/iter. 3.56/iter. 1.39/iter. 21.08/iter. 17.11/iter. 0.22/iter.
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6. Conclusions

This paper proposes a novel image reconstruction scheme that introduces wavelet coefficients of
reference images as reference information based on compressed sensing and generalized nonconvex
low-rank approximation. Nonlocal low-rank regularization enables us to exploit the similarity of
patches and the nonconvexity of metric rank minimization. In addition, the single value threshold
and conjugate gradient algorithms jointly offer a principled and computationally-efficient solution
to image reconstruction. This approach has the following characteristics: (1) the wavelet coefficient
acted as the texture feature constraint and extracted structural information from reference images to
reconstruct remote sensing images; (2) high-resolution images can be achieved via simultaneously
using compressed sensing and generalized nonlocal low-rank approximation. Some experiments are
made to evaluate the proposed method, and the results show that the proposed method can achieve
higher resolution than the state-of-the-art approaches. However, the proposed method has limited
performance for the regions and bands where the spatial correlation is not high. In the future, we
will further investigate it and use some change detection approaches to improve the performance
of our algorithm.
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