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Abstract: There is great potential value in linking geographically dispersed multitemporal
observations collected by lay volunteers (or “citizen scientists”) with remotely-sensed observations of
plant phenology, which are recognized as useful indicators of climate change. However, challenges
include a large mismatch in spatial scale and diverse sources of uncertainty in the two measurement
types. These challenges must be overcome if the data from each source are to be compared and
jointly used to understand spatial and temporal variation in phenology, or if remote observations
are to be used to predict ground-based observations. We investigated the correlation between
land surface phenology derived from Moderate Resolution Imaging Spectrometer (MODIS) data
and citizen scientists’ phenology observations from the USA National Phenology Network (NPN).
The volunteer observations spanned 2004 to 2013 and represented 25 plant species and nine
phenophases. We developed quality control procedures that removed observations outside of
an a priori determined acceptable period and observations that were made more than 10 days after
a preceding observation. We found that these two quality control steps improved the correlation
between ground- and remote-observations, but the largest improvement was achieved when the
analysis was restricted to forested MODIS pixels. These results demonstrate a high degree of
correlation between the phenology of individual trees (particularly dominant forest trees such as
quaking aspen, white oak, and American beech) and the phenology of the surrounding forested
landscape. These results provide helpful guidelines for the joint use of citizen scientists’ observations
and remote sensing phenology in work aimed at understanding continental scale variation and
temporal trends.
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1. Introduction

The phenology of deciduous trees and shrubs is sensitive to inter-annual variation in climate
and therefore is considered a useful indicator of the impact of climatic change on forest processes [1].
Scientific understanding of these impacts has benefited from long-term monitoring of forest phenology
at a range of spatial scales [2–4]. Monitoring of individual organisms has enabled the development
of successful models that can predict phenology from seasonal climatic conditions [5–7]. At regional
to global extents, satellite remote sensing data have effectively been used to capture the land surface
phenology over time [8]. However, land surface phenology at this scale is viewed as the cumulative
response of many individual organisms within each remote sensing pixel in combination with other
land surface changes (e.g., soil moisture changes) [9], and is therefore fundamentally different than
field-based observations of individuals [10–12].
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For some areas of inquiry, geographically distributed phenology observations of individual
plants in natural ecological settings are required, and remote sensing is a reasonable avenue to
pursue such data. One such area concerns the examination of intraspecific genotype-phenotype
relationships across environmental gradients. Accurate phenotyping of plants in their environment
remains a grand challenge, and currently limits the rapid advance of the genotype-phenotype mapping
required to understand local adaptation of plants to environment and locale-specific plant responses to
environmental stress [13–15]. Response to this need can only be made through techniques that annually
simultaneously collect phenophase observations over broad geographic areas. Remote sensing is one
such method, but despite decades of work studying phenology from both ends of the spatial-scale
spectrum (e.g., [8,12,16]), there remains considerable skepticism that moderate resolution remote
sensing phenology provides a useful context for understanding the phenology of individual plants [17].
To address this challenge, paired observations from ground-based observations and remotely sensed
imagery must be acquired across these broad geographic areas, and across multiple growing seasons.
However, collection of such extensive field-based observations is often unrealistic for traditional
science research teams of a few scientists and students.

A potential solution to the problem of collecting geographically dispersed, multitemporal
observations of phenology is to harnesses the power of many volunteer observers, or “citizen scientists”.
The growing field of citizen science directly immerses lay people in the process of research to help
advance science-based knowledge. Citizen scientists are well suited to contribute to landscape and
ecosystem ecology studies because they can make observations across broad temporal and spatial
scales [18–20]. When coupled with standardized protocols, thousands of volunteers could be recruited
to accurately phenotype many individual plants in their environment over the course of decades [21].
Several large programs have been initiated internationally to support volunteers in plant phenology
investigations and serve as data sources for many research projects; in the United States, these include
Nature’s Notebook (NN) managed by the USA National Phenology Network and Project Budburst
managed by the National Ecological Observation Network.

Citizen science efforts offer multiple benefits including contributing to research findings;
enhancing volunteers’ science skills and knowledge; and addressing social-ecological outcomes such
as enhanced habitat, established protected areas, and improved relationships between communities
and management agencies [22]. Despite such benefits, this approach is often underutilized in part due
to concerns about quality of data collected by volunteers such as under-detection and lack of precision
in measurements [23,24]. For example, variation in observer accuracy has been measured between
trained volunteers and professionals [25] and between younger and older student volunteers [26],
as well as across gradients in the size of the organism being observed [27], and by phenophase and
species [28]. However, other studies have demonstrated that with appropriate training and experience
volunteers, even those with limited formal science education, can produce data similar to professional
scientists (e.g., [29–31]). For example, NN volunteers correctly identified plant phenophase 91% of the
time when compared with expert observations [28]. The efficacy of volunteers’ efforts is also apparent
in the extensive and diverse scientific publications resulting from their labors [19], including those
focused on plant phenology (e.g., [32,33]).

Despite the potential value of citizen science and remotely-sensed phenology observations to
support research across environmental gradients, few studies have carefully examined challenges
of linking these two very different yet extensive and spatially-explicit datasets. Here, we sought
to understand and address these challenges by assessing the degree of correspondence between
citizen science ground-based observations and remote-sensing observations provided by the Moderate
Resolution Imaging Spectrometer (MODIS) vegetation dynamics product. We focused on volunteer
data collected as part of the NN program. The work required the assembly of NN volunteer
observations for a wide range of deciduous trees and shrubs, including establishment of best practices
for removing anomalous observations. For a selection of two model species, we looked in detail at the
comparison between NN and MODIS across all years and phenophases recorded and evaluated the
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impact of the data management steps. Our work will address the potential for synergistic use of MODIS
phenology with citizen science observations for many purposes, including the rapid phenotyping of
plants in their natural environment across space and time.

2. Materials and Methods

2.1. Assembling Citizen Science Observations of Phenology

The National Phenology Network (NPN) maintains and promotes NN as a national online tool
for amateur naturalists and professionals to voluntarily record phenology observations. Each NN
observation includes records of multiple phenophase states exhibited by a life form on Earth. For this
work, we used the NN database to acquire all relevant woody plant phenophases collected before
1 January 2014. Because phenophase names used by NN have changed slightly over time, and
to increase the number of observations in any given category, we combined related phenophases.
The resulting phenophases used for this work were (1) breaking leaf buds; (2) open flowers; (3) full
flowering; (4) end of flowering; (5) pollen; (6) fruits; (7) leaves; (8) colored leaves; and (9) fallen leaves.
For each plant-phenophase combination volunteers are asked to record either ‘yes’ (the phenophase is
apparent), ‘no’ (the phenophase is not apparent), or ‘I don’t know’. On average, volunteers observe
~3 plants at any one site, but this number can be higher. Volunteers are encouraged to make regular
observations of their selected plant(s). Observations made before a phenophase has developed are
recorded as ‘no’ in that a phenophase was not observed. Clearly, observers who visit an individual
more frequently will not only make more ‘no’ records, but will also have a better chance to record
an earlier date for the first occurance of any given phenophase (i.e., reduce the time between the last
‘no’ record and the first ‘yes’ record).

We extracted a list of observations from the NN database spanning a range of deciduous
forest-dwelling species (https://www.usanpn.org/results/data). The resulting list of records was
subsequently refined through a two-step process:

1. We sorted by the number of sites where each species was observed and selected all species that
were observed at more than 30 sites.

2. We sorted by the number of individuals observed at each site, and selected all observations made
at sites with five or more species observed.

This resulted in a list of observations representing 25 species (Table 1). These 25 species were
deemed satisfactorily broad in distribution; yet, by constraining to sites with five or more species
per site, we ensured that the distributions also overlapped, reducing the importance of geographic
range on the degree of phenotypic variation within species. Most selected species were forest-dwelling
trees that are often dominant in the stands they occupy. However, shorter, understory trees (e.g., Acer
negundo, Cercis canadensis, Cornus florida) and shrubs (e.g., Forsythia ˆ intermedia, Syringa vulgaris) were
also represented, allowing the consideration of the importance of crown position and plant size on the
relationship between volunteer ground observations and MODIS phenology.

Table 1. Study species meeting criteria described in the methods.

Species Common Name Life Form

Acer negundo boxelder Lower canopy tree
Acer rubrum red maple Upper canopy tree

Acer saccharum sugar maple Upper canopy tree
Betula papyrifera paper birch Upper canopy tree
Cercis canadensis eastern redbud Lower canopy tree

Cornus florida flowering dogwood Lower canopy tree
Cornus sericea redosier dogwood Shrub

Fagus grandifolia American beech Upper canopy tree
Forsythia ˆ intermedia forsythia Shrub
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Table 1. Cont.

Species Common Name Life Form

Fraxinus americana white ash Upper canopy tree
Hamamelis virginiana American witchhazel Lower canopy tree

Liquidambar styraciflua sweetgum Upper canopy tree
Liriodendron tulipifera tuliptree Upper canopy tree
Populus tremuloides quaking aspen Upper canopy tree

Prunus persica peach Lower canopy tree
Prunus serotina black cherry Upper canopy tree

Prunus virginiana chokecherry Shrub
Quercus alba white oak Upper canopy tree

Quercus rubra northern red oak Upper canopy tree
Rosa rugosa rugosa rose Shrub

Sambucus nigra black elderberry Shrub
Symphoricarpos albus common snowberry Shrub

Syringa vulgaris common lilac Shrub
Syringa ˆ chinensis Red Rothomagensis lilac Shrub

Tilia americana American basswood Upper canopy tree

The NPN considers two of the species in our selected data to be calibration species: quaking aspen
(Populus tremuloidies) and Red Rothomagensis lilac (Syringa ˆ chinensis) (NPN website). Calibration
species have broad distributions and are ecologically or economically important. For these species,
we included all observations (i.e., skipped steps 1 and 2 above for these species) and conducted extra
analyses such as producing scatter plots. One advantage of using P. tremuloidies as a study species is
that it occurs in clonal stands that are potentially large enough to be directly observed in moderate
resolution imaging spectrometry. To these observations, we added observations of Populus balsamifera.
While P. balsamifera is less common in the contiguous United States than is P. tremuloidies, it can also
be found in dense clonal stands. Both Populus species have another distinct advantage for study in
that their genomes have been sequenced, and studies relating continental variation in genotype to
phenotype have been conducted. These studies have shown that populations from northern climates
are locally adapted to require a lower (shorter) intrinsic heat requirement (i.e., growing degree days) to
spur release from ecodormancy [14]. Syringa ˆ chinensis (Red Rothomagensis lilac) was selected for
study due to the long history of lilac in work on phenology [5], the large number of NN observations
available, and its contrast to the Populus species in terms of growth form (tree vs. shrub) and flower size
(S.ˆ chinensis has a large showy flower that is easy for volunteers to observe). Observers may do better
at accurately assessing phenophase status in a plant with showy flowers, as opposed to deciduous
forest trees, where the flowers are quite smaller and possibly more distant from the observer.

Processing of the NN data began by searching the observation list for repeat observations of the
same plant within each growing season. For each year, we identified the first ‘yes’ record for each
phenophase (i.e., the phenophase onset), and recorded this date along with the date of the previous ‘no’
observation. We then created two quality control steps on the NN dataset to reduce the observations
to a list that could be compared against annual MODIS observations:

Rule #1. We removed outlier observations by setting a priori thresholds to the date range in which
acceptable observations could be made. This step was motivated by the observation that
some NN phenophases that could be characterized as “spring phenophases” (e.g., flowers)
were recorded as occurring in autumn, and “autumn phenophases” (e.g., colored leaves)
were recorded as occurring in spring. The date range for acceptable observations in spring
varied by species and phenophase, but was never earlier than DOY 50 or later than DOY 200.
For autumn phenophases we accepted observations between DOY 200 and DOY 365.

Rule #2. All phenophase onset records were removed that were not preceded by a ‘no’ observation
within the previous ~10 days. This effectively removed all observations made by volunteers
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who were not regularly visiting their plants and did not submit records to NN that were
frequent enough to ensure a timely observation of an emerging phenophase. The specific
threshold was identified by calculating the number of observations remaining after successive
shortening of this window. The best threshold balances the need to use as many observations
as possible with the need for regular observations of the same plant (Figure 1). The threshold
number of days was 10 for most species; however, for some species this was lengthened after
examining the effect on sample size (Table S1).
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Figure 1. The relationship between the number of observations retained and the threshold minimum
number of days between the first ‘yes’ record and the previous ‘no’ record.

2.2. MODIS Phenology Product and Post-Processing

The MODerate Resolution Imaging Spectrometer (MODIS) Vegetation Dynamics product
(MCD12Q2), which is provided annually, was downloaded for all of North America. Data were
mosaicked and reprojected (nearest neighbor resampling) to a Geographical Coordinate System and
exported in a GEOTiff file format. For each year, four phenology dates are provided by MCD12Q2,
these are the dates of Onset of Greenness Increase (OGI), Onset of Greenness Maximum (OGMax),
Onset of Greenness Decrease (OGD), and the Onset of Greenness Minimum (OGMin) [34]. MCD12Q2
also includes a quality assurance/quality control (QAQC) layer indicating pixels for which a phenology
estimate from the remote sensing time series was not calculated. This layer was used to remove all NN
observations falling on “No Data” pixels in any given year.

The geographic location of each NN site was identified in the MODIS phenology data, defining
a focal MODIS pixel for each NN record. An initial comparison of the NN and MODIS phenology
records for the focal pixel revealed that non-forest land cover within some focal pixels resulted in
highly variable phenology estimates that did not correlate well with NN observations (more detail in
results). Therefore, we developed a third component of quality control that used the MODIS land cover
product (MCD12Q1) to identify all forested pixels (classified as one of the following: Deciduous Needle
leaf forest, Deciduous Broadleaf forest, and Mixed forest) occurring within the 9 pixels surrounding
and including the focal MODIS pixel. If no forested pixel was identified, the site was dropped from
the analysis. If between 1 and 9 forested pixels were identified, we calculated the median MODIS
phenology date for each of the four MODIS phenophases. These median values were used in all
subsequent analyses.
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2.3. Statistical Analyses

Our overall strategy was to build linear regression models comparing NN phenophase onset
dates with MODIS phenology dates. Because measurement uncertainty was assumed in both the
effect (MODIS) and response (NN records) variables, we used type 2 regression (major axis regression).
For each species, we considered models constructed between a wide range of NN phenophases and
MODIS phenology markers, and used data across all available years. While some variable combinations
might be considered unlikely to correlate (e.g., NN flowering phenophases with MODIS onset of
greenness increase), we wanted to avoid making important decisions on which variables to include in
the analysis based on pre-conceived notions of what would and what wouldn’t correlate. This inclusive
approach also recognizes that there may be consistent offsets between NN phenophases that would
strengthen relationships with MODIS despite no logical pathway through which MODIS could be
directly observing the phenophase. Further, despite reference to greenness transitions in the names of
each MODIS phenology marker, these markers are influenced by changes in land surface phenology
(broadly speaking), which could increase or decrease the correlation between NN phenophases and
MODIS. This being said, we decided not to compare phenophases consistently occurring in autumn
(Colored leaves and Fallen leaves) with MODIS spring phenology dates.

Because the NN phenophases were not all recorded with the same temporal frequency, the
number of observations in each regression model was highly variable. We limited the analysis to only
those regressions that were significant at the p < 0.05 level. We further evaluated the influence of the
number of observations on the NN-MODIS correlation. We found that the mean model correlation
(across all significant regressions) was influenced by a small number of regressions formed from just
3–5 observations reporting very high model performance (e.g., R2 > 0.95). While these were significant
regressions (p < 0.05), we were not interested in drawing conclusions from such a small sample size.
Therefore, we decided to limit the analysis to those models where the number of observations ě10.

After excluding NN-MODIS correlations with fewer than 10 observations, we compared the
distribution of R2 values across different levels of organization. Box plots were generated to explore
variation in NN-MODIS correlation by species, NN phenophase, MODIS phenophase, and canopy
position (upper canopy vs. lower canopy trees). TukeyHSD was used to identify significant differences
between regression statistics grouped by phenophase, species, and lifeform. Further analysis of the
performance of the two calibration species (poplar and lilac) included inspection of scatter plots and
additional analyses to determine the effect of key processing steps. Finally, for the two models of
poplar leaves and lilac full flowering, we calculated prediction intervals, thus providing uncertainty
estimates for using MODIS to predict NN volunteer observations. All analyses were completed in the
R statistical programing language.

3. Results

3.1. Model Performance for Poplar and Lilac

Regression models between MODIS and NN phenophases improved in response to each of
quality control procedures. The case for NN observations of poplar leaves was characteristic of this
improvement (Figure 2). Before any quality control on the NN observations (but including the removal
of observations with no MODIS phenology due to clouds or other MODIS phenology algorithm
failures), we found that the correlation between MODIS and NN observations was not significant
(R2 = 0.014; p = 0.052). The removal of NN observations outside of the a priori identified phenophase
temporal window (Rule #1) improved the correlation (R2 = 0.19; p < 0.001). Further improvement
was achieved by restricting the data to records of ‘yes’ with a preceding ‘no’ record within an a priori
determined period (Rule #2) (R2 = 0.29; p < 0.001). However, the largest incremental improvement in
the model R2 was achieved by limiting the analysis to the median MODIS phenology of forested pixels
adjacent to and including the pixel containing the NN observation (R2 = 0.67; p < 0.001). This large
improvement was seen for lilac, as well with the final model of NN observations of lilac full flowering
exceeding the correlation of poplar (R2 = 0.73; p < 0.001).
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Figure 2. Scatter plots of MODIS OGI vs. NN leaves observations for poplar at different stages
of analysis. (A) Before any quality control; (B) after excluding observations outside the acceptable
temporal window; (C) after excluding ‘yes’ records without a preceeding ‘no’ record within the previous
10 days; and (D) after adopting the median MODIS OGI for forested pixels surrounding each site as
the MODIS measure of OGI.

The quality control procedures employed removed 76% of the NN observations of poplar and
lilac combined. Enforcing the a priori window of acceptable observations had the smallest impact
on sample size, reducing the observations of poplar by 11% and lilac by 3%. Restricting the number
of days between observations to less than an a priori determined threshold accounted for a 30% and
37% reduction for poplar and lilac, respectively. The largest effect on sample size was the removal
of non-forested pixels. Here, 57% and 70% of remaining NN observations (i.e., remaining after the
previous two quality control steps) were identified as located in non-forested areas and were removed
from the analysis. The number of remaining poplar and lilac observations was 73 and 90, whittled
down from original values of 272 and 495, an overall reduction of 73% and 82%, respectively.

These statistics for NN observations of poplar leaves and lilac full flowering paralleled statistics
for the other phenophases of these species. Final model performance for poplar and lilac ranged from
R2 = 0.32 (poplar Breaking leaf Buds; Figure 3) to R2 = 0.73 (lilac full flowering; Figure 4). Across
these models, we also observed a large range in the number of observations, with NN observers
of poplar trees more commonly making leaf-related phenophases than flower-related phenophases.
The opposite was true for observations of lilac, but the difference was smaller. Despite differences in the
slope and R2, calculated prediction intervals for poplar leaves and lilac full flowering were ˘15 days.
We made these calculations after making the NN observation the response variable and switching to
least squares regression; therefore, ˘15 days is the uncertainty of using a MODIS OGI observation to
predict an NN volunteer observation within 750 m (1.5 MODIS pixels) of any MODIS pixel.
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Figure 3. Scatter plots comparing MODIS OGI with the (A) Breaking leaf buds; (B) Leaves; (C) Open
flowers; (D) Full flowering; (E) Pollen; and (F) Fruits NN phenophases for poplar (quaking aspen and
balsam poplar combined).
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Figure 4. Scatter plots comparing MODIS OGI with the (A) Breaking leaf buds; (B) Leaves; (C) Open
flowers; (D) Full flowering; and (E) End of flowering NN phenophases for lilac.

3.2. Species and Phenophase Model Variability

After all quality control steps were completed on data from all species-phenophase combinations,
the final database included 4637 pairs of NN and MODIS records. This included multiple records of
the same plant (e.g., records of flowers and leaves on one plant are recorded as two separate records).
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For each species-phenophase combination, observations spanned one to five years, one to 27 sites, and
one to 106 observations. All NN spring phenophases were used in models with both MODIS spring
phenophases (OGI and OGMax), and all NN autumn phenophases were used in models with both
MODIS autumn phenophases (OGD and OGMin). This resulted in 228 models. Of these, 105 were
significant (p < 0.05) (Table S2). The R2 of significant models ranged from 0.10 to 1.0. We observed that
the model R2 decreased with increasing number of observations (R2 = 0.32; p < 0.001), but models with
a very small sample size (e.g., <10 observations) and a high R2 influenced this result. After limiting
the analysis to regressions with a sample size ě10 (76 models; Table S2), the distribution of R2 values
ranged from 0.1 to 0.95 and peaked near 0.4 (Figure 5) and there was no remaining correlation between
sample size and model R2 (p = 0.236).
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Figure 5. Histogram of R2 values for significant models with observations ě10.

We grouped the model results by phenophase (NN and MODIS), species, and canopy position
and tested for differences between group means. There was no difference in the mean R2 between
models formed using each of the 4 MODIS phenophases, either across all phenopheses or within
any one NN phenophase (p > 0.05). However, the number of significant models for each of the four
MODIS phenophases was 28, 24, 7 and 20 for OGI, OGMax, OGD, OGMin, respectively. The low
number of significant models for OGD suggests poorer performance overall for this measure of MODIS
phenology. Additionally, for five of the nine NN phenophases (Leaves, open flowers, full flowering,
end of flowering, and fruits), MODIS OGI produced the highest R2. Across species, there was a wide
variability in R2 values, with mean R2 ranging from 0.23 to 0.89 (Figure 6). TukeyHSD tests showed no
significant differences between species mean R2 (p > 0.05), but nine species returned no significant
models with a sample size ě10. Across all NN phenophases, mean R2 values ranged from 0.32 to 0.71
(Figure 7). The highest mean correlation (across all species) was exhibited by the ‘Fruits’ phenophase
(R2 = 0.71), and the lowest was exhibited by fallen leaves (R2 = 0.32). There were no significant
differences between model performances for the different NN phenophases.

Although the success of the different NN phenophases to correlate with MODIS varied between
and within species, there were 11 species-phenophase combinations that resulted in models with
R2 > 0.70 (Table S2) and 20 models with R2 > 0.60. Observations in this larger group of models
(R2 > 0.60) included most of the phenophases, but missing were observations of open flowers. Leaves
accounted for the highest proportion of models with R2 > 0.60. The regression with the largest number
of observations was red maple leaves, which resulted in a model with R2 = 0.51. However, some of the
most impressive models were formed using NN observations of leaves of other forest trees that often
dominate forest stands, such as white oak (R2 = 0.71) and American beech (R2 = 0.73). Additionally,
in some cases these observations of leaves formed strong relationships with several different MODIS
phenophases (Table S2). The distribution of R2 values for tree species grouped by canopy position
exhibited no significant differences between groups (p > 0.05; Figure 8) with the exception of redosier
dogwood, which exhibited a higher R2 than flowering dogwood, paper birch or sugar maple (p < 0.05).
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Figure 6. Boxplot showing mean and variance of R2 values resulting from all models between NN
observations and MODIS with ě10 observations. Models are grouped by species; missing catagories
(denoted with an ‘x’) result from the lack of any significant models with ě10 observations. There were
no significant differences (Tukey HSD) between any pair of species with the exception of species with
no significant models, and between redosier dogwood (high R2) and three species with low mean R2

(flowering dogwood, paper birch, and sugar maple) (p < 0.05).
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Figure 7. Boxplot showing mean and variance of R2 values resulting from all models between NN
observations and MODIS phenology with observations ě10. Models are grouped by NN phenophase.
There are no significant differences between any pair of NN phenophases (Tukey HSD).
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Figure 8. Boxplot showing mean and variance of R2 values resulting from all models between NN
observations and MODIS phenology with ě10 observations. Models are grouped by life form. As the
letters above each box show, the mean model R2 for tall trees was higher than that for short trees.

4. Discussion

4.1. Comparing Observations across Scales

As discussed in the Introduction, the relatively large areas covered by each MODIS pixel
(250,000 m2) means the phenology of many individual plants residing in potentially very different
habitats is integrated within each MODIS phenology observation. Many NN observations are made
in sub-urban or even urban settings, and as discussed, we found that in many cases there were no
forested MODIS pixels near these locations. The exercise of calculating the median phenology of
all forested MODIS pixels successfully improved all of the regression model results reported here.
This success is consistent with the idea that forested pixels represent the NN observations of tree
and shrub phenology (even those plants growing outside of forests) more-readily than mixed land
use pixels. Certainly microclimatic differences between urban, sub-urban and forested settings will
influence the phenology of plants [35], but our work shows that field observations made in mixed
land-use settings would still be useful for understanding climatic controls on spring phenology of
nearby forest stands.

The phenology of forested MODIS pixels, as opposed to mixed-landuse pixels, correlated more
highly with NN observations for a wide variety of species and phenophases. This is perhaps a bit
unexpected in that greenness transitions were used to define all four MODIS phenophases, and we
would expect a priori that the NN leaves phenophase would be more directly comparable to land
surface phenology, upon which greenness transitions are the dominant influence. Lilac was perhaps
the best example of a strong correlation between a flowering phenophase and MODIS phenology.
Lilacs largely grow in locations that are convenient to observe (e.g., suburban yards), yet when forested
MODIS pixels are located adjacent to these locations (an occurrence that happened just 30% of the time),
we observed a strong correlation between full flowering phenology and MODIS phenology (R2 = 0.73).
Overall, these results clearly support the continued use of lilac as a calibration species for volunteer
observations of phenology, and despite the very different type of observation (e.g., flowering vs. land
surface phenology), the strong correlation of these data provide validation of both observation types.

Previous work that has compared ground and remote sensing observations of phenology has
emphasized that large remote sensing pixels represent the phenology of many species, each responding
to different climatic cues [8,10,36]. It has also been found that remote sensing phenology is sensitive
to the algorithm used [8] and efforts to link remote sensing phenology with models that predict
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phenology from meteorological data are highly sensitive to landscape variability inherent to temperate
forests [37]. Why is it then that we found several species-phenophase combinations that correlated
well with MODIS phenology? Benefits gained through careful data quality control should certainly be
recognized (discussed below), but we also recognize that the phenology of certain species might better
represent the average forest phenology at a particular location. This makes the most sense for dominant
forest trees, such as white oak (R2 = 0.75) and American beech (R2 = 0.74), which logically contribute
a large proportion of the signal to MODIS phenology observations. However, other less-dominant
species that produced good correlations should also be considered good proxies for forest phenology in
the landscapes they occupy. While good model performance might be serendipitous in some cases (i.e.,
when hundreds of models are formed, Type I errors potentially increase), it might also be valuable to
examine if there are climatic origins to these patterns and if there are particular species that respond to
similar climatic cues as the forest canopy as a whole. Such a result would not necessarily be surprising
considering work indicating that the phenology of many species are behaving similarly to global
change over time [38].

4.2. Recommendations for Phenology-Focused Citizen Science Efforts

Strong correlations between citizen scientists’ observations and MODIS provide confidence that
both datasets have undergone sufficient quality control and assessment. This confidence is required
before any further work with the data is attempted, such as evaluating trends over time in response to
climate change. The quality control steps used here resulted in removing over 50% of NN observations,
and the removal of non-forested pixels from the analysis had the largest effect on sample size and
model performance. However, restricting observations to locations where adjacent forested pixels
could be identified is only necessary when comparison with MODIS is a research goal. To enable future
comparisons with remote sensing data, we recommend focusing future citizen science observations
on the collection of data in fairly homogenous landscapes (e.g., from within interior forests) rather
than diverse environments characterized by field-edges or sub-urban neighborhoods. This would be
particularly useful for plants often found in forested landscapes. For example, in the NN protocol,
volunteers are encouraged to select trees and shrubs for observation that are separated from buildings
and roads, but not necessarily in forested areas. Citizen science efforts in general may be biased as
volunteers may be more likely to collect data from more accessible locations, including those adjacent
to roads and in residential landscapes [19]. Therefore, although the proximity to a forested pixel is
directly relevant to the comparison with remote sensing, there are additional benefits that might be
realized beyond this specific goal.

The quality control step of removing likely erroneous observations reported outside of a typical
seasonal period had the smallest effect on sample size but a proportionally larger effect on model
performance. Observations removed in this step are either erroneous (i.e., the phenophase was
recorded incorrectly) or represent phenophase transitions that are due to atypical climatic conditions
(e.g., an extremely warm autumn that causes leaf emergence). In an analysis of trends over time,
neglecting this quality control step would risk the detection of a non-existent trend. However, if the
detection of atypical conditions were the goal, this quality control step would not be best practice,
because it would obviously mask the occurrence of the very events under study.

Requiring a maximum 10-day separation between the first ‘yes’ record and the previous ‘no’
record of each phenophase also increased the quality of the data obtained and is therefore highly
recommended. Similarly, the authors of [19] suggest eliminating data from those who do not submit
regularly, as well as those who lack experience. This data quality step is supported by recent research
that emphasizes the value of repeated visits at regular intervals to ensure high-quality phenology
data [39]. Stricter protocols, such as tracking phenology every 1–2 days, will provide more standardized
data and possibly increased data quality but will make it difficult to recruit and retain volunteers.
Training may help with such implementation; for example, the authors of [31] emphasized the
importance of targeted and ongoing training, as well as regular feedback, to improve volunteers’
experience and reliability. Another possible solution is more relaxed requirements for most participants



Remote Sens. 2016, 8, 502 13 of 16

with more labor-intensive standardized sample for a small, but geographically dispersed, committed
subset [19]. In any case, ongoing guidance and reminders are likely necessary to emphasize the
importance of ‘no’ phenophase observations, as volunteers do not immediately realize its importance
without explanation [33].

4.3. Could MODIS Be Used for High Throughput Phenotyping?

The observation that the MODIS phenology of forested pixels is correlated with volunteer
observations of plants growing within or outside of forests suggests that MODIS phenology might be
useful for predicting the phenology of individual plants. This is an important revelation because it
opens the possibility of using remote sensing to identify plant phenotypes strongly related to climate
change. The best correlations we observed included several important forest tree species, such as
white oak, American beech, red maple, and poplar species. These relationships are approaching
those necessary for predictions. For example, we calculated a prediction interval for the onset of the
poplar leaves phenophase of ˘15 days. The origin of variability within this interval is difficult to
associate with any one mechanism, but we suspect it arises from uncertainty in volunteer observations
of plant phenology, the algorithm used to fit a phenology curve to the MODIS data, and uncertainty in
the underlying greenness observations themselves. For example, we conducted a simple stochastic
simulation and found that if we round the date of occurrence of 100 random phenophase onset
records to the nearest ten (e.g., DOY 115, 120, 124, and 128 would become DOY 110, 120, 120, and 120,
respectively) we arrive at a prediction interval of ˘11 days. If we further assume that in 10% of these
cases the volunteer missed observing the phenophase on the first try, the prediction interval increases
to ˘15 days. On the other side of the coin, bootstrapped resampling of remote sensing vegetation data
with repeated phenology curve fitting results in 95% confidence intervals of ˘7 days [35]. As data
density decreases (as would be the case with clouds or poor sun-sensor geometry), this measure of
uncertainty increases. Therefore, there are clearly many sources of uncertainty in each data type that
must be quantified and systematically addressed before routine predictions of sufficient accuracy will
be possible [8,12].

If MODIS data are ever to be used to predict phenology of individual trees, our results point
to some additional recommendations. Firstly, our work provides a list (Table S2) of species and
phenotypes for which high throughput phenotyping via MODIS would be the most fruitful. Making
this list are species like quaking aspen, which grows in large stands where it not only dominates at the
species level but also maintains clonal (and phenological) homogeneity [40]. Overall, it appears that
certain species are more representative of the average phenology of forests in the area, and therefore
might be targeted for future work that utilizes remote sensing observations to measure the phenology
of a single species over large geographic extents. Secondly, we recommend limiting predictions to
MODIS spring phenophases, due to stronger correlations with NN ground observations in this season.
In contrast, the onset of greenness decrease (an autumn phenophase) resulted in the fewest significant
models, performing much worse than spring phenophase measures. This is consistent with past
findings that spring phenophase observations correlate more strongly with ground-based observations
than do autumn phenophase observations [34]. In remote sensing data, the autumn transitions are
represented by a less rapid change in greenness that are harder to quantify [35], likely contributing to
this effect. It is also possible that low light conditions characteristic of autumn degrade the remote
sensing signal, thus reducing the quality of phenology observations.

While we only evaluated the correlation between NN and MODIS observations of phenology, we
suspect our conclusions would extend to other citizen science efforts and other satellite systems.
Remote sensing offers many options for measuring phenology that were not evaluated here.
For example, flowering can be directly observed if high-resolution multi- or hyper-spectral imagery
is available at the right time of year (e.g., [41]). Red leaf color, on the other hand, can be observed in
medium to moderate resolution multispectral data [35], and future work might evaluate the potential
of these remote observations to predict field-based observations. Active remote sensing systems, such
as light detection and ranging (LiDAR) and synthetic aperture RADAR, as well as passive microwave
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sensors, have the added capability to detect leaf presence and absence, without regard to leaf color
(e.g., [42,43]). By broadening the suite of remote sensing technologies brought to the problem, future
work has the potential to further refine our understanding of precision and accuracy in both volunteer
citizen science and remote sensing observations of phenology. These technologies might also aid in the
quantitative scaling between remote- and ground-based observations.

5. Conclusions

Large MODIS pixels will always be an integration of many individual plants and diverse land
cover, and this will limit compatibility with ground-based observations of phenology. However, we
found that phenology estimates made from pixels centered on contiguous forest were highly correlated
with ground-based citizen scientists’ observations, and that this result held for a wide variety of species
and phenophases. Correlated ground- and remote observations provide confidence in both observation
types, indicating success in the removal of outlier data as well as potentially supporting conclusions
related to climatic controls on phenology. This result highlights the importance of citizen science to
advance environmental research, while also opening possibilities for using forests as a proxy for the
phenology of individual plants and complementing previous work that focused comparisons of remote
sensing phenology with ground-based measures of average forest phenology. Additional components
of successful cross-scalar comparisons were found to be the removal of volunteer observations outside
of an acceptable window, and removing ‘yes’ records that were not preceded by ‘no’ records within
an acceptable time period. While there are remaining uncertainties to resolve, we remain optimistic that
remote sensing of phenology can be used in tandem with citizen scientists’ observations to characterize
plant phenology over a range of geographic scales. The applications that this pairing of techniques will
unlock is truly impressive and is poised in particular to make major contributions to understanding
the response of forest plants to future changes in climate.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/6/502/s1,
Table S1: Species-specific temporal thresholds for acceptable spring and autumn observations, and the threshold
number of days since a previous ’no’ observation; Table S2: Model results for all species-phenophase combinations,
including non-significant models and models constructed from less than 10 observations.
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The following abbreviations are used in this manuscript:

DOY Day of Year
MODIS Moderate Resolution Imaging Spectrometer
NN Natures Notebook
NPN National Phenology Network
OGD Onset of Greenness Decrease
OGI Onset of Greenness Increase
OGMax Onset of Greenness Maximum
OGMin Onset of Greenness Minimum
LiDAR Light Detection and Ranging
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