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Abstract: An important component of the AVHRR PATMOS-x climate date record (CDR)—or any
satellite cloud climatology—is the performance of its cloud detection scheme and the subsequent
quality of its cloud fraction CDR. PATMOS-x employs the NOAA Enterprise Cloud Mask for this,
which is based on a naive Bayesian approach. The goal of this paper is to generate analysis of the
PATMOS-x cloud fraction CDR to facilitate its use in climate studies. Performance of PATMOS-x
cloud detection is compared to that of the well-established MYD35 and CALIPSO products from the
EOS A-Train. Results show the AVHRR PATMOS-x CDR compares well against CALIPSO with most
regions showing proportional correct values of 0.90 without any spatial filtering and 0.95 when a
spatial filter is applied. Values are similar for the NASA MODIS MYD35 mask. A direct comparison
of PATMOS-x and MYD35 from 2003 to 2014 also shows agreement over most regions in terms of
mean cloud amount, inter-annual variability, and linear trends. Regional and seasonal differences are
discussed. The analysis demonstrates that PATMOS-x cloud amount uncertainty could effectively
screen regions where PATMOS-x differs from MYD35.

Keywords: clouds; cloud detection; satellite remote sensing; satellite climate data records

1. Introduction

The Pathfinder Atmospheres Extended (PATMOS-x) is a NOAA project focused mainly on the
generation of cloud and related satellite-derived climate data records (CDRs). According to the
National Research Council [1], a CDR is a time series of measurements of sufficient length, consistency,
and continuity to determine climate variability and change. After decades of studies, clouds still
constitute one of the largest uncertainties in projecting future climate change [2]. Therefore, it is
essential to establish a cloud CDR for assessing current climate and better understanding the roles
of clouds in the earth-atmosphere system. PATMOS-x aims to be a dataset that can contribute to
reducing this uncertainty. The Advanced Very High Resolution (AVHRR) version of PATMOS-x is
hosted by the NOAA National Centers for Environmental Information (NCEI) [3]. The first generation
AVHRR/1 flown onboard TIROS-N was launched in 1978 and later on other NOAA satellites. It had
four bands centered at 0.63, 0.83, 3.7, and 11 pm. The second generation AVHRR/2 had an additional
channel centered at 12 um, and the latest generation AVHRR/3 has added one more channel centered
at 1.6 pm. The AVHRR/3 is onboard both NOAA’s and EUMETSAT’s Metop satellites. The AVHRR
PATMOS-x spans 1978 to the present and is updated daily. Other versions of PATMOS-x applied to
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other sensors are also being developed and are being served by the Climate Data Portal (CDP) at the
University of Wisconsin-Madison/Cooperative Institute for Meteorological Satellite Studies (CIMSS).
While PATMOS-x was the only AVHRR climatology participating in the Global Energy and Water
Experiment (GEWEX) Cloud Climatology Assessment [4], other AVHRR climatologies now exist or
are under development. One such data set is that from the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT) Climate Monitoring Satellite Application Facility (CM-SAF)
called Clouds, Albedo, and Radiation dataset from AVHRR data (CLARA-A1) [5].

This paper focuses on the cloud fraction CDR of PATMOS-x. The cloud detection components in
PATMOS-x include the pixel-level cloud probability from the naive Bayesian cloud detection scheme
and the derived four-level cloud mask [6]. It is important to point out there are many methods used to
detect clouds and many have been applied to the AVHRR [7-9], and the results shown here may differ
from other AVHRR cloud climatologies. In addition, PATMOS-x includes a cloud fraction derived
over a 3 x 3 pixel array with a corresponding measure of uncertainty. The cloud fraction CDR is
often applied directly in the study of multi-decadal climate change. For example, the recent GEWEX
cloud climatology [4] included PATMOS-x results in its cloud fraction comparisons, and cloud fraction
patterns have been used to track the evolution of deep convection in the Tropics [10]. The PATMOS-x
cloud fraction CDR has also been used in studies of Dust [11], regional cloudiness variations [12-14],
and the global diurnal cycles of cloudiness [15].

In addition to being necessary for the creation of the cloud fraction CDR, the process of cloud
detection is important because PATMOS-x has been designed to serve as a basis for subsequent CDR
generation. For example, the NCEI AVHRR Aerosol CDR uses PATMOS-x observations and cloud
detection to generate its CDR [16], as does the NCEI HIRS Cloud CDR [17]. The NCEI Advanced
Microwave Sounding Unit (AMSU-B) Fundamental CDR also uses PATMOS-x results to characterize its
scan asymmetry corrections. This analysis may provide guidance to those and other users dependent
on PATMOS-x cloud detection and cloud fractions for generation of their own CDRs.

The goal of this paper is to provide the remote sensing community an assessment of the
performance of the PATMOS-x cloud fraction CDR compared to two well-regarded cloud fraction
standards provided by NASA EOS A-Train. The A-Train constellation includes a group of satellites
tasked with observing several aspects of the earth-atmosphere system. These satellites closely follow
one another along the same orbital track, allowing for co-location with high temporal and spatial
consistency. The first A-Train cloud fraction source is the NASA Aqua/MODIS Science Team cloud
mask (MYD35) [18,19]. The MYD35 algorithm has been developed for over 20 years and has been
applied to many applications and validated extensively [4,20,21]. The second is derived from the cloud
layer products from the Cloud—Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument
flown on the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
mission [22]. CALIOP is a space- borne lidar and provides direct detection of cloud within the narrow
lidar beam, allowing it to be free from many assumptions about surface or atmospheric properties.
It is important to note that these comparisons are only relevant for AVHRR data that flew in orbits
similar to those of the EOS A-Train. These results also cannot be used to predict the performance for
early AVHRR sensors, which suffered from high amounts of noise and other radiometric issues.

While the bulk of this paper deals with the performance of the AVHRR, PATMOS-x also
supports measurements from the MODIS and Visible and Infrared Imaging Radiometer Suite (VIIRS)
polar-orbiting sensors. In the last section we use MODIS—which has all of the AVHRR channels and
almost all of the VIIRS channels—to simulate cloud detection using the available spectral information
from each sensor. This allows for the isolation of the impact of additional spectral channels offered
by MODIS and VIIRS relative to AVHRR. Table 1 provides the spectral channels used by the NOAA
Enterprise mask in PATMOS-x on each sensor. Unless stated, the AVHRR results always refer to
the AVHRR/3b channel set. Lastly, this paper will quantify the sensitivity of cloud detection to the
assumed prior cloud fraction used in the naive Bayesian algorithm.
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Table 1. Spectral channels used in the PATMOS-x cloud mask and the presence on each sensor used in
this study. DNB: Day Night Band.

Nominal Wavelengths (um) of Channels Used in PATMOS-x Cloud Mask

Sensor
0.65 0.86 1.38 1.6 3.75 6.7 8.5 11 12 DNB
AVHRR/3a V(day)  +/ (night) v Y
AVHRR/3b i i v Y V
MODIS v v v v v v v v v
VIIRS v v v v v v v v v

2. Materials and Methods

As stated above, this paper compares the PATMOS-x cloud detection relative to the MODIS
MYD35 C6 cloud mask and to the CALIPSO/CALIOP cloud layer product version 3. There are four
input data sets used here. The first is from the CALIPSO/CALIOP instrument. The second is the
MODIS Level-1b data, and the third are the NASA MODIS cloud detection results. The fourth are the
actual NOAA-19 AVHRR results, which are included to help provide context for the MODIS-derived
AVHRR results. The main output from this study is the analysis of the PATMOS-x results generated
from the MODIS Level-1b compared to the NASA MODIS and CALIPSO/CALIOP cloud detection
results. An intermediate step in the CALIPSO/CALIOP analysis is co-location with MODIS Level-1b.
This CALIPSO/CALIOP analysis was also applied to the NOAA-19 AVHRR data. All of these data
and the co-location process are described in this section. The CALIPSO/CALIOP analysis was done
for all data from 2013. The multi-year comparisons were carried out on every third day from 2003 to
2014. The thinning of every third day was done to fit within hardware and storage constraints. This
temporal thinning is assumed to not impact the global and long-term averages.

2.1. CALIPSO/CALIOP Data

The NASA CALIPSO/CALIOP cloud detection products are generated at several different spatial
resolutions. For this study, the Level-2 1-km cloud layer products [22] are used. The 1-km CALIOP
products have a comparable spatial resolution to the MODIS retrievals and span the entire Troposphere.
CALIOP products at coarser resolution are also available, but these products are much more sensitive
to the presence of upper Tropospheric Cloud than the MODIS retrievals. In our experience, the 1-km
resolution products appear to be best suited for this analysis. Clouds absent from the 1-km product
are likely to be undetectable by the MODIS observations. A CALIOP result is classified as cloudy if the
number of detected cloud layers exceeds zero.

2.2. MODIS Data

For convenience, PATMOS-x is run on the 5-km 5-min sub-sampled AQUA /MODIS Levellb
data (MYDO02SSH C6), which is a standard product available from NASA LAADSWEB [23] Note
that TERRA /MODIS is not included here as it is a morning satellite and not part of the A-Train.
The MODIS sub-sampled data are derived from the Level 1B 1-km data by extracting information
from every fifth pixel, starting at the third one, both along and across track. Essentially, this means the
center of every 5 x 5 pixels. All results shown here are generated on MYD02SSH data, including those
simulated for AVHRR and VIIRS. This is possible because MODIS provides all of the channels used
for cloud detection for AVHRR and VIIRS [24]. In this paper, the MYD35 results were provided by
MYDATML2 data, which is also sub-sampled at 5-km. The same pixels present in the MYD02SSH data
are present in MYDATML2 data. Any and all MODIS data used in this study are the 5-km sub-sampled
data provided by MYD02SSH and MYDATML?2 Cé. Given its convenient size, quality, and length
of record, MYDO02SSH is a critical climate data product and the performance of cloud fraction CDRs
generated from it warrant study.
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2.3. PATMOS-x Data

PATMOS-x uses algorithms from NOAA Enterprise Operational Suite. The term “Enterprise” is
now used at NOAA because of NOAA'’s plan to apply the same algorithm codes to multiple sensors
in an effort to provide more consistent services to its customers. Therefore, the same PATMOS-x
cloud detection algorithm operates on all sensors. This capability is exploited here to provide insight
into the PATMOS-x cloud fraction CDR by using MYDO02SSH data. PATMOS-x can restrict the use
of channels and therefore can simulate the results from VIIRS and AVHRR when processing MODIS
data. PATMOS-x was also modified to read the MYD35 cloud mask. This setup allows us to directly
compare the PATMOS-x mask to the MYD35 mask without any assumption on co-location and
avoidance of viewing geometry differences [25]. While this assumption ignores the spatial resolution
and radiometric differences of the AVHRR and MYDO02SSH, it allows for an isolation of the impact
of the spectral channels. Throughout this paper, the authentic PATMOS-x AVHRR data generated
from NOAA-19 AVHRR will also be used in these comparisons to provide a check on the reality of the
MODIS-derived AVHRR results.

The primary product analyzed here is the cloud fraction. PATMOS-x uses a pixel’s cloud fraction
computed over the surrounding 3 x 3 pixel array. The cloud mask for each pixel is converted to
binary mask, and the mean of binary mask over the 3 x 3 pixel array is the cloud fraction. Therefore,
the pixel-level cloud amounts are multiplied by 1/9. For the MYD35 cloud amounts, the exact same
procedure is followed. The four-level MYD35 mask is converted to a binary mask and averaged over
the surrounding 3 x 3 pixel array.

PATMOS-x was run and generated the standard Level-2b data, which are global fields with a
spatial resolution of 0.1° [3]. The Level-2b data are generated from each satellite node (ascending and
descending). For AQUA /MODIS, the ascending node is primarily daytime and the descending node
is primarily nighttime. The Level-2b data are then averaged in space and time to give Level-3 data
with a spatial resolution of 2.5° and averaged temporally over each meteorological season. The Level-3
data are the basis of the MODIS comparisons.

2.4. Colocation of MODIS and CALIPSO/CALIOP

One of the primary analyses here uses co-locations in space and time of the PATMOS-x and
the CALIPSO/CALIOP cloud fraction results. Because all data were generated from the same
MODIS input, the co-location was done once. A nearest neighbor approach was used to select
the closest MODIS pixel for each CALIPSO point. No optical depth or cloud height filters were used.
The CALIPSO pixels were classified as cloudy if the number of cloud layers was greater than zero.
The CALIPSO cloud fraction was computed as the mean of all the binary CALIPSO mask values used
in the comparison. A parallax correction to CALIOP cloud layer results was performed using the
CALIOP cloud height and viewing geometry of MODIS.

Figure 1 shows a schematic illustration of this process. The image on the left shows the
MYDO02SSH/CALIPSO co-location and the image on the right shows the AVHRR /CALIPSO co-location.
The larger grids represent the native 1-km pixel rids from both sensors. As these figures illustrate,
MYDO02SSH represents a direct sampling of every fifth pixel from MYD021KM. The AVHRR Global
Area Coverage (GAC) sampling differs with each GAC being comprised of the mean of four 1-km
AVHRR pixels with the spacing shown in Figure 1. The CALIPSO results are generated at a spatial
scale that matches the dimension of the area represented by a 3 x 3 pixel array of either MYDO02SSH or
AVHRR/GAC data. As stated above, this is how the PATMOS-x Cloud Fraction CDR is generated. For
MYDO02SSH, the CALIPSO data is averaged over the 11 CALIPSO pixels centered on the co-located
CALIPSO pixel. For AVHRR/GAC, the CALIPSO data is averaged over the seven CALIPSO pixels
centered on the co-located CALIPSO pixel. The line of rectangles represents the 1-km CALIOP cloud
layer product. In Figure 1, the orange pixels denote the co-located CALIPSO pixels and the yellow
pixels denote those used in the CALIPSO cloud fraction computation. For the AVHRR co-locations,
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data time differences greater than 5 min were excluded. No time filter is needed for the MYD02SSH
and CALIPSO comparisons.
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Figure 1. Schematic illustration of the co-location process of MYD02SSH (a) and AVHRR/GAC (b)
with the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Larger square grid represents the 1-km
(MYDO021KM or AVHRR/HRPT) pixels. The red ellipse represent one co-location point. Grey pixels
are the MYD02SSH or AVHRR/GAC pixels that contribute to the cloud fraction computation. Orange
pixels denote 1-km CALIOP Cloud Layer values that are determined by the co-location process. Yellow
pixels are the CALIPSO/CALIOP pixels that contribute to the cloud cloud fraction for this co-location.

3. Results and Discussion

The purpose of this effort is to provide current and future users of the PATMOS-x CDR knowledge
of characteristics of the cloud fraction CDR behavior. The techniques described above allow a direct
comparison of the PATMOS-x results to those from MYD35 and CALIPSO. This section will first show
a comparison of PATMOS-x to MYD35 and analyze the regional differences in key quantities. Then,
we use CALIPSO results to provide a quantitative analysis of both PATMOS-x and MYD35. The
PATMOS-x cloud fraction uncertainty estimates will also be verified. Lastly, an analysis is performed
to show how the spectral content of other sensors impacts the PATMOS-x cloud fraction.

3.1. Comparison of MODIS PATMOS-x to NASA MODIS MYD35

As stated above, the NASA AQUA /MODIS sensor has all the channels provided by the NOAA
AVHRR. Applying the PATMOS-x cloud detection to MODIS observations allows a direct comparison
to the NASA MODIS cloud detection products (MYD35). In this section, we compare the performance
by season, averaged over the period 2003—2014. This discussion will point out the relative differences
between MYD35 and PATMOS-x, and the following section will provide more quantitative measures
of the MYD35 and PATMOS-x compared to CALIPSO/CALIOP. Again, all PATMOS-x results are
generated using the corresponding AVHRR channels on MODIS, run through the PATMOS-x algorithm.
All data has been mapped to an equal angle grid with a resolution of 2.5°. Figure 2 shows the
comparison of MYD35 and PATMOS-x for winter season, including day and night data. There are six
panels in Figure 2 and they are designed to give a concise summary of the comparison. Panel (a) shows
the mean global cloud amount for PATMOS-x. As described in [3], the PATMOS-x cloud fraction is
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computed over the 3 x 3 pixel array. Each pixel in the 3 x 3 array is cloudy if the naive Bayesian
cloud probability for that pixel exceeds 0.5; Panel (b) shows the difference (PATMOS-x-MYD35) cloud
amount map; Panel (c) shows the mean cloud detection uncertainty as provided by the PATMOS-x
naive Bayesian algorithm; Panel (d) shows the anomaly correlation of the MYD35 and PATMOS-x
time-series. Values of 1.0 indicate grid-cells where the year-to-year variations between MYD35 and
PATMOS-x are similar. Inspection of the mean differences in Panel (b) and the anomaly correlations in
Panel (d) allow one to separate differences that are systematic biases and those that are not; Panel (e)
shows the linear trend applied to the PATMOS-x seasonal time-series. It is not corrected from ENSO
or other known atmospheric oscillations; Panel (f) shows a scatterplot of the linear trend values from
each grid-cell for MYD35 and PATMOS-x. In summary, these panels are meant to provide a convenient
and efficient summary of the performance of PATMOS-x relative to MYD35 on a mean, inter-annual,
and decadal basis.
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Figure 2. Comparison of AVHRR PATMOS-x and MYD35 for winter 2003-2014 for day and night (all).
Panel (a) shows the mean cloud fraction at 2.5° resolution; Panel (b) shows the PATMOS-x-MYD35
difference; Panel (c) shows the PATMOS-x uncertainty from the naive Bayesian cloud detection scheme;
Panel (d) shows the anomaly correlation of PATMOS-x and MYD35. Panel (e) shows the PATMOS-x
linear trend, and Panel (f) shows a scatterplot of the PATMOS-x and MYD35 linear trends.
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As Figure 2 shows, there is generally more cloud over ocean in the MYD35 than PATMOS-x.
Comparison of Panel (b) with (a) shows this occurring in areas of low cloud amount (<0.5). Comparison
with Panel (d) shows that these differences occur in regions with high values of anomaly correlations,
and this would indicate that these differences are systematic biases (occur each year). There are also
significant cloud fraction differences in winter in Siberia and Canada. Unlike the oceanic differences,
these differences occur in regions with lower values of anomaly correlation and high values of
uncertainty. Therefore, these differences between PATMOS-x and MYD35 point to true differences
in the cloud detection performance. For example, MYD35 C6 does appear to have an issue of falsely
detecting cloud over snow-covered land during the day [26], and the comparisons shown here are
consistent with that. Also, the differences might be contributed from different snow /ice ancillary
maps used by MYD35 and PATMOS-x, but this question lies beyond the scope of this paper. While
the likely cause of this issue is known, the analysis against CALIPSO in the next section will also
provide insight into differences that are not already diagnosed. Lastly, in the bottom two panels are
an analysis of the linear trends constructed for the time-series in each grid-cell. Panel (e) shows the
linear trend from PATMOS-x. The linear trend from MYD35 was visually very similar. To make this
point, Panel (f) shows a scatterplot of trends from MYD35 and PATMOS-x; Panel (f) shows that trends
agree in magnitude and sign for most of the globe. This agreement is significant, since one of the most
important uses of the PATMOS-x CDR is for multi-decadal climate analysis. For these studies, the
stability of multi-decadal variation (for which the linear trend is a surrogate) is more important than
the absolute values of the cloud fraction. As discussed later, PATMOS-x uses a prior cloud probability
in its formulation, and this raises concern that the PATMOS-x cloud fraction trends may be influenced
by this prior value. MYD35 has no such prior cloud probability constraint. The agreement in the trends
between PATMOS-x and MYD35 is a reassuring sign that the PATMOS-x trends are indeed valid, and
not overly controlled by the choice of prior cloud probability.

Figure 3 shows the same analysis presented in Figure 2 applied to summer seasons. Comparisons
for spring and fall were also made, but they provided no unique information and are therefore not
shown. In summer, the Northern Land Masses are nearly free of snow, which greatly improves the
cloud detection skill. This is confirmed by the decreased values of uncertainty in Panel (c) over the
Northern Land Masses. The oceanic differences observed in winter remain in the summer. Over land,
the cloud fraction differences are the largest over desert regions, and these differences are larger in
summer than winter. The anomaly correlation values for the grid-cells with these differences are high,
which again points to the differences being systematic and not influencing the year-to-year or decadal
variations. Another difference with the winter results is the change in Antarctic results. In summer,
the Antarctic region is mainly free of solar illumination, and the skill in cloud detection drops [27].
For most of Antarctica, PATMOS-x shows much more cloud than MYD35. This region, though, is
characterized by high uncertainties, and therefore disagreements are expected. The trends shown in
Panels (e) and (f) show the same high level of agreement seen in summer for most regions. While not
shown, the grid-cells with trend differences occur in regions with low anomaly correlations and in the
predicted high uncertainties.
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Figure 3. Comparison of AVHRR PATMOS-x and MYD35 for summer 2003-2014 for day and night (all).
Panel (a) shows the mean cloud fraction at 2.5° resolution; Panel (b) shows the PATMOS-x-MYD35
difference; Panel (c) shows the PATMOS-x uncertainty from the naive Bayesian cloud detection scheme;
Panel (d) shows the anomaly correlation of PATMOS-x and MYD35. Panel (e) shows the PATMOS-x
linear trend, and Panel (f) shows a scatterplot of the PATMOS-x and MYD35 linear trends.

3.2. Comparison of MODIS PATMOS-x to NASA CALIPSO CALIOP

The CALIPSO/CALIOP sensor in the EOS A-Train provides a direct measure of the presence of
cloud and has been used extensively to validate other cloud detection techniques. CALIOP is a lidar
and provides nearly direct detection of cloud and other atmospheric scatterers with little dependence
on solar illumination or surface characteristics. In this section, the 1 km cloud layer product from
CALIOP is used to provide a direct estimate of cloud fraction to better assess the PATMOS-x cloud
fraction. Figure 1 and the associated text describe the physical meanings of these two cloud fractions.
While there will certainly be differences due to the spatial scales of the PATMOS-x and CALIPSO cloud
fractions, there is no better direct and instantaneous comparison from a space-borne sensor at this time.

It is important to note that both the PATMOS-x and MYD35 results have been tuned to optimize
their performance. As described in [2], the PATMOS-x naive Bayesian approach was derived from the
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same type of CALIPSO/CALIOP observations used here but for the years 2007 and 2009. MYD35 has
also used CALIPSO/CALIOP co-locations to help augment the manual derivation of cloud detection
thresholds. In both of these algorithms, the threshold values (MYD35) or curves (PATMOS-x) are
determined over large areas and long time periods. Therefore, we are confident that the results for this
one year are representative for other years. As stated earlier, CALIPSO/CALIOP represents the best
global validation source and using it as a reference in cloud fraction comparisons is still relevant, even
though both PATMOS-x and MYD35 are tuned to CALIPSO/CALIOP.

The results in this section include the values of cloud fraction and the values probability correct
(PC). Using the standard cross-comparison matrix shown in Table 2, PC = (a + d)/(a + b + ¢ + d).

Table 2. The comparison matrix used to define the PC metrics used in this analysis.

PATMOS-x or MYD35

CALIPSO Clear Cloudy
Clear a b
Cloudy c d

As Figure 1 shows, a comparison of the PATMOS-x cloud fraction from MYDO02SSH and
AVHRR/GAC is susceptible to spatial sampling issues. PC is computed by converting the cloud
fractions to a binary clear or cloudy mask and comparing the agreement of these values using the
formulism in Table 2. When computing PC, two spatial filters were applied. The first one attempts
to remove all spatial sampling differences by excluding points where the PATMOS-x and CALIPSO
(P/C) values were not completely clear (cloud fraction = 0%) or completely cloudy (cloud fraction
= 100%). These results are labelled as the 0/100 filter in the following tables. This filter demands
homogeneity over 10-km for MYD02SSH and roughly 7-km for AVHRR/GAC. The other filter makes
no attempt to remove spatial issues. In the second filter, the binary mask is clear if the cloud fraction
is less than 50% and cloudy if the binary mask is greater than or equal to 50%. These results are
labelled as to 50/50 filter. In terms of data loss, the 50/50 Filter excludes nothing, but the 0/100 Filter
excludes roughly a third of the data. We expect truth to lie between the results of these two filters.
While the 0/100 results are optimistic, they should allow for a differentiation of the true failings of
the spectral cloud tests from the ambiguity caused by spatial sampling differences. When showing
MYD35 and CALIPSO (M/C) results, the same two filters were applied. Comparisons of PATMOS-x
relative to MYD35 (P/M) are also shown for both filter settings. Because these data are from the same
pixels, there are no spatial sampling issues in the P/M results.

The following comparisons were computed for every day of the year 2013. The results are
separated by day and night. While the CALIPSO cloud layer algorithm is not dependent on solar
illumination, the same cannot be said for the PATMOS-x and MYD35 cloud detection algorithms. Solar
illumination is a major factor in the selection of spectral tests in both the MYD35 and PATMOS-x
approaches. The CALIOP instrument does have a day/night difference in performance due to the noise
from solar contamination, but this is not accounted for here. The results are stratified by surface type,
and the seven surface types used in the PATMOS-x naive Bayesian Training are employed here [6]. The
Antarctic surface type includes Greenland. The distinction between ocean and other water surfaces
is taken from the land-sea dataset used in the MODIS C6 [28] processing. The water surface type
includes all inland waters and some coastal waters.

Table 3 presents the results for the daytime analysis of 2013 and shows several characteristics
worth noting. First, the P/C and M/C PC values agree within 2% for all surface types and are all
above 95% with some values approaching 100% when the 0/100 filter is applied. The A/C and P/C
cloud fractions generally agree within 1%. The 50/50 results are uniformly lower than the 0/100
results by as much as 13%. This is expected because the 50/50 results include all of the partly cloudy
situations. Again, the P/C and M/C results are very consistent. The A/C values are generally 2%
lower than the P/C results, except for the Arctic where the A/C value is 8% lower. The cause of this
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difference may be due to the inferior radiometric performance of AVHRR in cold regions compared to
MODIS or the difference in the angular sampling in the AVHRR and MODIS CALIPSO co-locations.
It is problematic that the A /C results beat the P/C results by 3% in the Antarctic. The cloud fractions
in Table 3 are computed using all results without any filter. The PATMOS-x and MYD35 results agree
within 3% for most surfaces, with the largest exception being snow-covered land, where the MYD35
cloud fraction is 6% higher. The CALIPSO cloud fractions are generally 5% higher than PATMOS-x or
MYD35 with the exception of snow-covered land, where MYD35 exceeds CALIPSO by 2%.

Table 3. Variation in CALIPSO-derived verification metrics. CALIPSO 1 km Cloud Layer products from
2013 were used for this analysis. In the table headers, CAL refers to CALIPSO, PM refers to the AVHRR
PATMOS-x scheme run on MYD02SSH and MYD refers MYD35. P/C refers to PATMOS-x compared
to CALIPSO. M/C refers to MYD35 compared to CALIPSO. P/M refers to PATMOS-x compared to
MYD35. A/C refers to NOAA-19/AVHRR/GAC compared to CALIPSO. The regions are those used in
the PATMOS-x naive Bayesian training. These results are for daytime observations for all seasons.

Cloud Fractions PC 0/100 Filter PC 50/50 Filter
CAL PM MYD A/C P/IC M/C PM A/C P/IC M/C PM

Global 66 63 64 98 99 99 99 89 91 90 95
Ocean 70 67 70 99 100 100 100 89 91 91 97
Water 67 65 65 99 100 99 100 91 93 93 97
Land 60 54 55 98 99 99 99 86 88 88 95
Snow 73 69 75 96 96 98 97 88 88 89 86
Arctic 78 72 72 91 95 96 99 82 90 90 91
Antarctic 79 78 74 98 99 98 98 94 91 89 90
Desert 36 31 28 99 99 99 100 93 90 89 94

Region

The nighttime 2013 comparisons to CALIPSO are shown in Table 4. In general, cloud detection at
night is more uncertain than during the day, and this is reflected in the PC values in Table 3 compared
to Table 4. The global PC values dropped by 2% to 6%. The relative agreement between P/C and
M/C values remain (with some exceptions) for both spatial filters The A/C shows the same pattern
of Arctic degradation and Antarctic improvement relative to P/C, as seen during the day. At night,
the snow PC values for A/C are lower than P/C, and this might be due to AVHRR performance at
cold temperatures. The M/C values in Antarctic are much higher (7%-10%) compared to P/C. This
might be explained by the additional spectral tests in the MYD35 algorithm that are designed for
high-latitude nighttime cloud detection. The nighttime cloud fractions show more disagreement for
the frozen surfaces than during the day. For example, the PATMOS-x and MYD35 Arctic values are
10% lower than CALIPSO, and MYD35 nighttime Antarctic cloud fraction is 19% lower than CALIPSO
and 14% lower than PATMOS-x. PATMOS-x nighttime land fractions appear to be 10% lower than both
CALIPSO and MYD35. However, the PC values for P/C are similar to M/C for this surface type. An
overriding conclusion from Table 3 is that the additional spectral information used in MYD35 does not
dramatically alter the mean performance relative to the AVHRR spectral information. Undoubtably, the
spectral information improves the performance, but this analysis indicates this improvement occurs in
a relatively small amount of the data.

The results in Tables 3 and 4 differ from those shown in GEWEX Cloud Climatology Assessment
Report. In that report, the global cloud amounts given from CALIPSO was 73% and the PATMOS-x
(AVHRR) and MODIS (MYD35) cloud amounts were 68% and 69%, respectively. There are several
potential reasons for this. First, the data in GEWEX are not corrected for latitude, and therefore sample
the higher latitudes more than lower latitudes due to the sampling characteristics of sub-synchronous
satellites flying in the EOS-A-train. Also, the GEWEX CALIPSO data was generated from the 5-km
resolution CALIPSO/CALIOP Cloud Layer products. The 5-km product is more sensitive, and would
detect more cloud than the 1-km product used here. These numbers are not meant to serve as absolute
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reference values. They are simply a metric for the comparison of the three data sources in the context
of this analysis.

Table 4. Variation in CALIPSO-derived verification metrics. CALIPSO 1 km Cloud Layer products
from 2013 were used for this analysis. The regions are those used in the PATMOS-x naive Bayesian
training. These results are for nighttime observations for all seasons.

Cloud Fraction PC 0/100 Filter PC 50/50 Filter
CAL PAT MYD A/C P/C M/C PM A/C P/IC M/C P/M

Global 72 66 69 95 96 97 96 84 88 88 89
Ocean 76 71 75 98 99 99 99 85 90 90 93
Water 77 72 77 98 98 99 99 90 91 92 92
Land 61 52 62 90 97 97 96 81 91 91 89
Snow 77 60 67 86 90 91 90 76 79 81 78
Arctic 77 66 67 89 95 90 92 78 85 81 84
Antarctic 76 71 57 82 73 85 66 72 67 74 59
Desert 23 17 24 96 97 97 96 89 93 90 90

Region

The PATMOS-x to MYD35 (P/M) comparisons are also included in Tables 3 and 4. Since
PATMOS-x was generated on MYD02SSH, the comparisons are of exactly the same pixels and no
spatial sampling difference exists. For the daytime land surface types, the 50/50 P/M values are 7%
higher than the P/C or P/M values. One could imagine that daytime land with surface heating-driven
convection would present the most small-scale cloudiness (and associated spatial sampling issues).
Small scale cloud is also ubitiquous over the open oceans in both the day and night, and these surfaces
also show larger PC values for P/M than for P/C or M/C. These differences could potentially be used
to estimate the degradation in the PC values relative to CALIPSO due to spatial sampling differences in
the 50/50 PC results in Tables 3 and 4. While this indicates the 50/50 PC values maybe underestimated,
this correction was not applied.

3.3. Verification of the PATMOS-x Cloud Fraction Uncertainty

One of the main advantages of the probabilistic approach used in PATMOS-x is the uncertainty
measure it provides. For each pixel, the naive Bayesian approach gives a cloud probability of the
presence of cloud. PATMOS-x uses a cloud probability threshold of 0.5 for the separation of the binary
clear and cloudy distinctions. The uncertainty for a cloudy pixel is assumed to be 1.0 minus cloud
probability, and the uncertainty for clear pixels is the cloud probability value. In PATMOS-x, these are
averaged over the same 3 x 3 pixel array used to compute cloud fraction. The cloud fraction uncertainty
values are included in the PATMOS-x data to provide users additional information to further screen or
to apply error bars to their analysis. The 0/100 filter PC values in the previous section also provide
another measure of uncertainty which is relative to CALIPSO results. The CALIPSO uncertainty is
computed as 100 minus PC, where the PC values are given in Tables 3 and 4. A natural question is
how these two uncertainties relate. Panel (a) of Figure 4 shows a scatterplot of the PATMOS-x cloud
fraction uncertainty on the x-axis and the CALIPSO uncertainty on the y-axis. Each point is the mean
over 1 of the 7 surface types shown in Tables 3 and 4. As Panel (a) of Figure 4 shows, the variation is
linear but the slope is not unity. The CALIPSO cloud fraction uncertainty is roughly 1.6 times the value
predicted by PATMOS-x. It is important to remember that the PATMOS-x cloud detection was tuned to
CALIPSO [2]. It is not obvious (to the authors) what constraints the tuning places on this relationship;
Panel (b) shows the same analysis except the y-axis shows the 100-PC values computed relative to
MYD35 instead of CALIPSO. The slope in Panel (b) is similar to that in Panel (a). This indicates that
the slope is robust. The important point of this analysis is that users of PATMOS-x who would like a
more realistic value of cloud fraction uncertainty can simply multiply the values in the PATMOS-x
CDR by 1.6.
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Figure 4. Comparison of the PATMOS-x cloud fraction uncertainty climate date record (CDR) to the
direct measurements of cloud fraction difference from (a) CALIPSO and (b) MYD35. The 0/100 spatial
filter was applied.

3.4. Sensitivity of PATMOS-x Cloud Fraction to Prior Cloud Amount Assumptions

One additional source of uncertainty in the PATMOS-x cloud fraction CDR is the prior cloud
probability value in the naive Bayesian formulation. The prior cloud probability values are simply the
assumed mean cloud fraction for each of the surface types. The actual values used are given in [2] and
are close to the mean of the day and night CALIPSO values in Table 3. In the case of no information,
the naive Bayesian cloud detection will return the prior cloud probability values. In the case where
none of the cloud detection tests are definitely clear or cloudy, the prior cloud probability can influence
the final posterior cloud probability. In this section, we run the PATMOS-x cloud detection scheme in
the AVHRR/3b configuration on MYDO025SH, but we increase the prior cloud probabilities by 10%
and these results are labeled PATMOSx_10.

Figure 5 shows the impact on the PATMOS-x cloud fraction by changing the prior cloud probability
by 10%. The format and contents are identical to that used in Figures 2 and 3, except for Panel (e).
Panel (b) shows the difference in cloud fraction due to the 10% change in prior cloud probability. As
was the case in Figures 2 and 3, cloud amount differences are seen in oceanic regions with low cloud
fraction (<0.5). The increase in the prior cloud probability by 10% can cause increases of 10% in the
cloud fraction in these regions. Other noticeable changes are the increases in cloud amount in the Polar
Regions. These regions have higher uncertainties, and would therefore show more sensitivity to the
prior cloud probability assumption. In all, a 10% change in the prior cloud probability increases the
global cloud amount by 6%. The high values of the anomaly correction in Panel (d) indicate that the
changes in cloud fraction are systematic. The bottom two panels show the impact on the linear trends.
Panel (e) shows a difference map and Panel (d) shows a scatterplot. The trend difference shows the
largest differences occur in the areas of high uncertainty, which is consistent with the pattern of the
cloud fraction differences. There are trend differences with a pattern echoing the trend patterns seen in
Figures 2 and 3. However, the magnitude of these differences are much less than the absolute values
seen in Figures 2 and 3.
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Figure 5. Comparison of AVHRR PATMOS-x and AVHRR PATMOS-x with an increase in assumed
climatological cloud fraction (prior cloud probability) by 10% for 2003-2014 for day and night.
PATMOS-x refers to the standard AVHRR PATMOS-x run on MYD02SSH and PATMOSx_10 refers
to the results from increase in climatological cloud amount. Panel (a) shows the mean cloud fraction
at 2.5° resolution; Panel (b) shows the PATMOSx_10 and PATMOS-x difference; Panel (c) shows the
PATMOS-x uncertainty from the naive Bayesian cloud detection scheme; Panel (d) shows the anomaly
correlation of PATMOS-x and PATMOXs_10. Panel (e) shows the difference in the linear trends between
PATMOSx_10 and PATMOS-x, and Panel (f) shows a scatterplot of the PATMOS-x and PATMOSx_10
linear trends. Global cloud fraction for the two data sets are shown in the legend of Panel (a).

While this analysis certainly did reveal a non-negligible sensitivity of the PATMOS-x results to the
assumed prior cloud probability, the assumed error in the prior probability of 10% is likely too large.
If the results of Tables 3 and 4 are used, the difference in the global cloud fraction between MYD35,
PATMOS-x, and CALIPSO is less than 6%, with the difference being less for many surface types.
Therefore, the expected impact due to realistic errors in the mean prior probabilities is less than shown
in Figure 5. However, the difference in a particular small region’s mean prior cloud probability to that
of its surface type may be larger, and the change in the prior cloud probability across surface type
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boundaries may introduce artifacts in the spatial distribution of cloud fraction. No obvious artifacts
are seen in Figure 5, but this remains an issue to be investigated further. Most importantly, the linear
trend shown in Panel (e) shows no significant sensitivity to the prior cloud probability perturbation.

3.5. Sensitivity Based on Spectral Content

As stated above, the PATMOS-x cloud detection algorithm is designed to adjust to the channels
available. PATMOS-x can currently process 10 different spectral bands and use them in 16 different
tests. The tests involving the AVHRR channels are described in [6], and the additional tests are
described in [29]. In this section, we again use the MYDO02SSH data as a test-bed to explore the impact
of these channels on the PATMOS-x cloud detection performance. The DNB refers to the day-night
band, which is visible-near infrared nighttime channel on VIIRS. Note that the DNB tests are excluded
since MODIS does not have an analogous channel.

Figure 6 shows comparisons of the global cloud fraction for all seasons from 2003 to 2014. The
upper panel in Figure 6 shows the mean PATMOS-x cloud fraction using the MODIS channels in
Table 4. This result is not from MYD35 data but is generated by PATMSO-x using MYD02SSH data. In
describing these figures, it is worth noting the global pattern of cloud fraction uncertainty shown in
Figures 2 and 3. The upper right panel in Figure 6 shows the difference in MODIS and VIIRS cloud
fractions. The significant differences occur in the high latitudes, which coincide with the regions of
higher cloud detection uncertainty. VIIRS cloud fractions are higher in these regions. A cause of this
behavior is the skill provided by the 6.7 um water vapor channel in detecting clear polar region [30].
Without this channel, the very cold surfaces at high latitudes are sometimes classified as cloud. The
other notable difference is the Tibetan Plateau and the Andes.

0G0 0.20 040 0.0 0.80 160 —4.20 —in12 —.04 0.04 0.1% 0.20

- b s [ @lobal Mean = .00
WODIS — AYHRR_3b Cloud Fraction A¥HRR_3b — AYHRR_3a Cloud Fraction

—in20 —in12 —i.04 0G4 18} 020 —6.20 —in12 —.04 0.04 0.1% 0.20

Figure 6. Comparison of PATMOS-x generated annual mean cloud fractions run on MYD02SSH data
(2003-2014). The channel used in PATMOS-x for each sensor is given in Table 1. The upper left panel
(a) is the mean cloud fraction from MODIS; panel (b) is the cloud differences between MODIS and
VIIRS; panel (c) is the cloud fraction difference between MODIS and AVHRR/3B; panel (d) is the cloud
fraction difference between AVHRR/3B and AVHRR/3A. Global mean values are displayed in the
legends on the bottom for each figure.

The lower left panel in Figure 6 shows the difference between the AVHRR in the channel 3b
configuration compared to MODIS. The striking feature of this image is the general increase in cloud
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over the ocean reported by AVHRR/3b relative to MODIS. Comparison to the top left panel shows that
this occurs primarily in oceanic regions with cloud fractions <0.5. These regions are also dominated by
low cloud. The 6.7 and 1.38 pm tests predominately act to detect high cloud. In the naive Bayesian
logic, each test contributes to the final answer. The presence of tests that are not sensitive to low cloud
may reduce the final sensitivity of the cloud mask to low clouds. One can therefore hypothesize that
the absence of these high-cloud sensitive tests in the AVHRR/3b mask may increase the sensitivity to
low cloud. The switch AVHRR/3b configuration also decreases the cloud detection off of the coast of
Antarctica. The other features in the AVHRR/3b comparison are similar to the VIIRS comparison. The
lower right panel in Figure 6 shows the difference in global cloud fraction from the AVHRR/3a and
AVHRR/3b detection results. This panel shows that the switch of the AVHRR channel configuration
has little impact on the cloud detection over most of the globe. AVHRR/3b shows slightly more cloud
in some regions (i.c., The Sahel) where the surface characteristics of the 1.6 and 3.75 pm channels are
most uncertain and variable.

Table 5 shows the sensitivity of the CALIPSO PC metrics as a function of the different spectral
contents for each sensor. The results in Table 5 do confirm the belief that more spectral information
improves the global performance of the PATMOS-x cloud fraction. However, the variation in the PC
values is less than 3% for non-snow/ice covered surface types. Only in the Antarctic does PATMOS-x
run with MODIS channels have the highest PC value. For ocean, MODIS is in fact the worst performing,
but the variation in PC is small. This does raise the suspicion that the naive Bayesian formulation used
in PATMOS-x may not be optimally utilizing the additional spectral signatures offered by MODIS.
This decrease in performance in the ocean surface type is consistent with the decrease in oceanic cloud
amount in Figure 6¢. Except for the desert surface type, the NOAA-19/AVHRR/GAC PC values are
less than those seen for the MYDO02SSH /AVHRR. The differences are biggest for Arctic (8%). While
radiometric differences and the angular differences in co-locations exist, it is not clear if these can
explain all of these differences.

Table 5. Variation in Proportional Correct (PC) values (%) in comparison to CALIOP for the PATMOS-x
cloud detection scheme run on MYDO02SSH in 2013 for the sensor/channel configurations shown in
Table 4. The last row shows the same analysis applied to NOAA-19/AVHRR/GAC for 2013.

Proportional Correct (%) for P/C Using 50/50 Filter

Sensor
Global Ocean Water Land Snow  Arctic Antarctica Desert
AVHRR/3a 88 91 91 88 80 80 75 91
AVHRR/3b 89 91 93 89 82 83 77 91
MODIS 87 89 92 86 79 79 81 91
VIIRS 87 90 93 87 76 76 80 93
NOAA-19-AVHRR/3b 86 87 91 84 81 75 73 91

4. Conclusions

The goals of this paper were to use the CALIPSO and MYD35 products from the NASA EOS
A-Train to probe the performance of NOAA Enterprise cloud mask as used in the PATMOS-x Cloud
CDR. This information should help users of the PATMOS-x CDR understand the limits of the cloud
detection products. The MYD35 was chosen as a reference data set, since it has been established as a
climate quality cloud mask and used in many studies. CALIPSO was chosen since it provides the most
direct measure of cloud available from a satellite platform. This analysis was done entirely on MODIS
observations, which provided the additional capability of exploring the performance of the PATMOS-x
cloud mask applied to other sensors.

e For regions where the reported PATMOS-x cloud fraction uncertainty is less than 5%, the
PATMOS-x and MYD35 cloud fraction annual anomaly correlations are high and the linear
trends over 2003 to 2014 agree well.
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¢ Relative to CALIPSO, PATMOS-x and MYD35 global cloud fractions generally agree within 2%,
except for snow-covered land and nighttime Arctic and nighttime Antarctic surface types.

e Comparisons of the reported PATMOS-x cloud fraction uncertainty to direct estimates of
error relative to CALIPSO or MYD35 reveal that the PATMOS-x cloud fraction uncertainties
are 1.6 times too small but show a linear relationship.

e Being a naive Bayesian technique, the PATMOS-x cloud fraction is dependent on the assumed
surface-type-dependent climatological cloud fraction. Regions with low cloud and small cloud
fractions over the ocean showed the most sensitivity to the climatological clouds, as did regions
where the cloud fraction uncertainty was high (>10%).

e The cloud fraction trends from the naive Bayesian PATMOS-x approach agreed well with those
from the non-Bayesian MYD35 approach over most regions. This supports the idea that naive
Bayesian cloud detection approaches are suitable for multi-decadal satellite climate research.

e  The PATMOS-x AVHRR results show little sensitivity to the spectral switch from AVHRR Ch3a to
Ch3b. The PATMOS-x AVHRR cloud fractions are higher than those from MODIS and VIIRS in
oceanic regions with low cloud amounts. The PC values also show little impact, except for the
Antarctica region where the additional MODIS spectral information adds skill.

e In general, the PATMOS-x MYD02SSH/AVHRR results agree better with CALIPSO than the
PATMOS-x AVHRR generated from NOAA-19/AVHRR/GAC data. These differences were small
for most surface types. The larger differences occurred over snow and ice-covered surfaces where
the radiometric differences between the AVHRR and the MODIS sensors are the largest.

In summary, this paper should serve as a relevant reference for the performance of the cloud
detection used to make the AVHRR PATMOS-x CDR hosted by NCEIL. All evidence shown points to
comparability of the quality of the PATMOS-x cloud detection compared to MYD35 in terms of mean
values, inter-annual variability and decadal linear trends. The agreement between AVHRR/PATMOS-x
and MODIS over most regions and seasons will hopefully encourage the MODIS community to extend
their studies back into the 1980s and 1990s with the PATMOS-x CDR.
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Abbreviations

The following abbreviations are used in this manuscript:

AVHRR Advanced Very High Resolution Radiometer

AMSU Advanced Microwave Sounding Unit

Ce6 Collection 6 of the MODIS Science Team Products

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
CDR Climate Data Record

DNB Day Night Band

EOS Earth Observing System

EUMETSAT European Organization for the Exploitation of Meteorological Satellites
HIRS High Resolution Infrared Sounder

JPSS Joint Polar Satellite System
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LAADSWEB L1 and Atmosphere Archive and Distribution System

MODIS Moderate Resolution Imaging Spectroradiometer

MYD021KM Aqua MODIS 1-km Level-1b

MYD02SSH Aqua MODIS 5-km sub-sampled Level-1b

NASA National Aeronautics and Space Administration

NCEI National Centers for Environmental Information

NESDIS National Environmental Satellite Data and Information Service

NOAA National Oceanic and Atmospheric Administration

PATMOS-x Pathfinder Atmospheres Extended

PC Proportion Correct

POES Polar Orbiting Environmental Satellites

VIIRS Visible Infrared Imaging Radiometer Suite
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