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Abstract: Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon
their statistical features of uncertainty through variance inflation, and the compounding of duplicate
information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive
and very strong, has been hindered by computational intensity associated with the massive number
of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed.
Recent advances in spatial statistical estimation theory support the extraction of information and
the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial
autocorrelation. This paper summarizes an effective methodological approach to achieve this end,
illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation
experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive
model is modeled with a beta-beta mixture approach and is further investigated with three different
sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain
sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast
in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better
quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

Keywords: spatial autocorrelation; spatial variability; NDVI; NBR; Florida Everglades

1. Introduction

Spatial autocorrelation prevails in virtually all georeferenced data, tending to be moderate and
positive for socio-economic/demographic data (i.e., correlations between 0.4 and 0.6), and positive and
very strong for remotely sensed data (i.e., correlations between 0.85 and 0.95). One well known impact
of positive spatial autocorrelation is variance inflation (VIF; e.g., [1]) which, in turn, impacts uncertainty
quantification and assessment of remotely sensed data. However, although popular versions of spatial
regression techniques have existed since 1972 [2] as spatial statistical tools, and since 1988 [3] as spatial
econometric tools, remote sensing researchers continue to shy away from them and use non-spatial
regression techniques (e.g., [4]; as of 21 January 2016, this article had 447 Google Scholar citations,
and 216 Web of Science citations). Principal drawbacks of these implementations vis-à-vis massively
large georeferenced datasets, such as remotely-sensed images, include that they: (1) involve nonlinear
regression, which requires multiple iterations, each essentially executing a linear regression, to calculate
parameter estimates; and (2) require calculating the eigenvalues of an n-by-n spatial weights matrix in
order to compute the normalizing constant for an auto-normal probability model.

One recent spatial statistical advance replaces the nonlinear regression solution with a condensed
(i.e., by reducing the number of parameters upon which the function depends from three to one)
normal equation solution [5]. This substitution works extremely well for remotely-sensed data because
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they contain extremely strong positive spatial autocorrelation; because of the form of the auto-normal
likelihood function [6], this new solution still needs some tweaking for negative spatial autocorrelation
situations, which are rarely encountered for remotely-sensed data. Meanwhile, because the extreme
eigenvalues of a spatial weights matrix define the feasible range of the spatial autocorrelation
parameter, a relatively simple implementation can be achieved with only them. They are ˘1 for a
row-standardized spatial weights matrix and, hence, do not need to be calculated. However, the
remaining n–2 eigenvalues are unknown, although they can be very accurately approximated [5] (p. 2417).

The purpose of this paper is to outline methodology for quantifying uncertainty in remotely-sensed
data that relates to spatial autocorrelation latent in these data. Doing so should aid in the extraction of
information and distilling of knowledge from such data. An illustration of this methodology uses both
simulation experiments and a remotely-sensed image of the Florida Everglades, United States (US).

2. The Florida Everglades Data

The empirical dataset employed for illustrative purposes in this paper is a 1 January 2002 Landsat 7
Enhanced Thematic Mapper Plus (ETM+) image of the Florida Everglades forming a 7649-by-8581
(n = 65,636,069 pixels) rectangular region rotated clockwise on the horizontal axis (Figure 1). This image
has been orthorectified and converted to the UTM 17-N projection, and includes spectral bands B1–B7;
its spatial resolution is 28.5 m for bands B1–B5 and B7, and 57 m for B6 [7]. Pixels with nonzero spectral
reflectance values total 41,611,007 (82.38%), whereas 8,935,349 pixels with a zero value (17.68%) form a
white border around the remotely-sensed image.
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Figure 1. A composite of the Florida Everglades remotely-sensed image respectively using bands B1,
B2, and B3 for red, green, and blue colors. The red lines demarcate the study area.

To simplify the sampling experiments whose results are summarized in this paper, a 4800-by-5200
(n = 24,960,000 pixels) rectangular region parallel to the horizontal axis was extracted for analysis
purposes (demarcated by red lines in Figure 1). The sampling experiments use two spectral indices,
the normalized difference vegetation index (i.e., NDVI = (B4 ´ B3)/(B4 + B3)) and the normalized
burn ratio (i.e., NBR = (B4 ´ B7)/(B4 + B7)) Both indices range from ´1 to 1, and have a variance that,
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conceptually, can range from 0 to 1. Large positive NDVI values indicate dense vegetation land cover,
whereas large negative values indicate deep water. Large positive NBR values indicate high severity
burn, whereas large negative values indicate high post-fire regrowth. The criterion used to select these
two indices is their levels of spatial autocorrelation: NBR tends to be around 0.85 (the Everglades
image analyzed in this paper has a spatial autocorrelation of 0.874), the common lower bound for
many remotely-sensed images, and NDVI tends to be around 0.95 (the Everglades image analyzed in
this paper has a spatial autocorrelation of 0.955), the common upper bound for many remotely-sensed
images (each of these empirical results is an average of three different approximation method results).

Two of the sampling experiments whose results are summarized in this paper utilized 400-by-400
sub-regions of the Florida Everglades image; the 4800-by-5200 study region can be subdivided into
156 mutually exclusive and collectively exhaustive coterminous sub-regions of this size. Selection of
this size is based upon the smaller size remotely sensed images commonly analyzed. For example,
Griffith [5] identifies a Yellowstone Park (US) image with dimensions 450-by-350 (i.e., n = 257,500 pixels),
and an Adirondack Park (US) image with dimensions 511-by-503 (i.e., n = 257,033 pixels). The 400-by-400
dimensions also were utilized in the simulation experiments.

3. Spatial Regression Model Based Sampling Variability of the Spatial
Autocorrelation Parameter

Spatial regression models are widely adapted to model a spatially-autocorrelated response
variable. Specifically, the simultaneous spatial autoregressive (SAR) specification and the spatial
autoregressive response (AR) specification are popular counterparts of linear regression under the
Gaussian assumption. These specifications are utilized in this paper since distributional properties of
their spatial autocorrelation parameter have been known in the literature (e.g., [8]). This paper treats
the response variable (e.g., NDVI, NBR) case of pure spatial autocorrelation, recognizing that findings
can be extended to cases that include covariates (which most likely will reduce the degree of residual
spatial autocorrelation). The SAR specification essentially is identical to the AR specification for pure
spatial autocorrelation. This simple SAR model specification may be written as:

Y “ p1´ ρqµ1` ρWY` ε (1)

where Y denotes the n-by-1 vector of response variable (e.g., NDVI, NBR) values, µ is the population
mean of variable Y, ρ is the spatial autocorrelation parameter (which ranges between ´1 and 1
in this situation, and quantifies a signal in the data), W is the n-by-n spatial weights matrix (i.e.,
a quantification of the configuration of pixels), and ε is an n-by-1 vector of random error values (i.e.,
noise), which jointly are assumed to be normally distributed Np0, σ2Iq. The entries in matrix W are
defined with the row-standardized rook adjacency rule: wij = 1/ni if pixels i and j share a non-zero
length common boundary, and 0 otherwise; wii = 0, where ni denotes the number of neighbors
pixel i has.

Ord [8] establishes the asymptotic variance of the maximum likelihood estimator of ρ (
ˆ
ρ), which

furnishes the most common standard error used to evaluate estimates of this parameter. His result
reduces to:
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where TR denotes the matrix trace operator, superscript T denotes the matrix transpose operator, and
λj (j = 1, 2, . . . , n) denotes the eigenvalues of matrix W (λ1 = 1, and λn = ´1) in descending order. If the
null hypothesis is zero spatial autocorrelation, which commonly is posited, then Equation (2) reduces to:
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for a regular square tessellation forming a P-by-Q complete rectangular region (e.g., a remotely-sensed
image with P rows and Q columns). Equation (3) can be further re-arranged as:

ASYσρ̂ “

d

72
36PQ` 23pP`Qq ` 36

(4)

a quantity that describes the variability of ρ̂ regardless of whether exact eigenvalues, approximate
eigenvalues, or Monte Carlo simulated eigenvalues (see Appendix A) are used to calculate the Jacobian
term or its approximation, but because of its magnitude, this quantity is of little value for quantifying
uncertainty for remotely-sensed images whose ρ̂ tends to be 0.85 to 0.95, or more. Rather, it suggests
that the large sample sizes associated with remotely-sensed data render rather precise ρ̂ s: if ρ̂ “ 0.95
for a 400-by-400 image, then 95% of the time ρ should be contained in the interval [0.943, 0.957].

The spatial autocorrelation parameter can be transformed to the range p1` ρq{2.
This transformation results in a random variable (RV) that exhibits many properties of an overdispersed
beta random variable (BRV), which is defined with two parameters α and β (which appear as exponents
in the BRV probability density function, and control the shape of its frequency distribution). Simulation
experiments suggest that the parameters α and β of this BRV are such that α` β « n, the number
of pixels (i.e., the sample size), and more specifically that α “ pn and β “ p1´ pqn, 0 ă p ă 1,
with p (i.e., the percentage of a sample size) increasing as spatial autocorrelation increases from ´1
to 1. The parameter p governs the sampling variability for a given nature and degree of spatial
autocorrelation, constituting the source of overdispersion. Since it is equivalent to a percentage, p also
has many properties of a BRV. The parametric mixture yields a beta-beta random variable (BBRV).
Equation (4) allows the beta distributional parameters for p to be calibrated: α “ 80512{

?
1´ ρ and

β “ 80512
?

1´ ρ{p1` ρq for a 400-by-400 image (the value 80,512 was calculated by equating the
theoretical variance for ρ = 0 with the BBRV variance, and then solving for the single BBRV parameter).
Figure 2 furnishes example sampling distributions for the specimen 400-by-400 image size studied in
this paper, for ρ = ´0.85, ´0.5, 0, 0.5, and 0.95. Variation in height in these distributions (Figure 2a)
indicates the shrinking variance with increasing |ρ|. For example, for ρ = 0.95, a high concentration of
ρ̂ results in the tallest height of the distribution among the five levels. Figure 2b–d portray zoom-ins
of the sample sampling distributions for ρ = 0, 0.5, and 0.95. Table 1 summarizes selected statistics
for these types of distributions. These tabulated results corroborate the BBRV specification: the
sampling distribution average equals the population parameter; the extra-beta variation is accounted
for; negative skewness attributable to the upper bound of 1 exists, and positive skewness attributable
to the lower bound of ´1 exists; and, peakedness equivalent to that for a normal curve is present.
Consequently, sound asymptotic standard errors can be calculated for any size remotely sensed image
with this BBRV approximation; all that is needed is n and the value from Equation (4).

Table 1. Beta-beta random variable (BBRV) summary statistics for a 400-by-400 image.

ρ Source Mean of Estimates pρ̂q Standard Error Skewness Kurtosis

0
BBRV 0.00 0.00353 0 3.00

simulation 0.00 0.00354 0.02 2.99

0.5
BBRV 0.50 0.00310 ´0.01 3.00

simulation 0.50 0.00289 0.02 2.89

0.95
BBRV 0.95 0.00093 ´0.03 3.00

simulation 0.95 0.00088 ´0.10 3.12

NOTE: the simulation experimental design included 1000 replications; NOTE: BBRV parameter values were
obtained with the Mathematica 10.2 Parameter Mixture Distribution function, and then verified with SAS
simulations involving 1,000,000 random draws.
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Figure 2. Specimen ρ̂ sampling distributions for a 400-by-400 image. (a) across the range of ρ values,
[´1, 1]; (b) zoom-in of the ρ = 0 sampling distribution; (c) zoom-in of the ρ = 0.5 sampling distribution;
and (d) zoom-in of the ρ = 0.95 sampling distribution.

Results reported in this section allow statistical significance testing to be undertaken with regard
to repeated sampling. This would be equivalent to acquiring simultaneous multiple images of the
same section of the Earth’s surface. In practice, it would be roughly equivalent to, say, hourly or daily
images of the same section of the Earth’s surface. Not surprisingly, these standard errors are extremely
small for realistically-sized remotely-sensed images, ranging between 0.0009 and 0.0035 (Table 1) for
the 400-by-400 dimensions treated in this paper. Most likely, this is not the primary type of uncertainty
that is of interest to spatial scientists and other remote sensing researchers.

4. Sampling Experiment Designed Based Sampling Variability of the Spatial
Autocorrelation Parameter

The preceding section addresses model-based inference for ρ̂. Its uncertainty quantification
weakness is that it furnishes a measure of precision for estimates using repeated images for the same
Earth surface region (the population, with a single remotely-sensed image constituting a sample from
this population). However, spatial scientists and researchers often are concerned about whether or not
the same value of ρ̂ would be obtained if its estimation employs different P-by-Q size images, ones
that may or may not overlap.

Three sampling experiments were designed to quantify the variability of ρ̂ across a geographic
landscape, and then implemented with the Florida Everglades remotely-sensed image. The first
sampling experiment partitions the 4800-by-5200 pixels image into 156 mutually exclusive and
collectively exhaustive 400-by-400 sub-regions. The second experiment involves a randomly selected
set of 156 400-by-400 sub-regions that were allowed to overlap. The third experiment involves
increasing domain sampling, and began with an 400-by-800 central set of pixels, and successively
increased them by 200 pixels in each of the four directions (i.e., 800-by-1200, 1200-by-1600, . . . ,
4800-by-5200), resulting in 12 ρ̂ estimates.

4.1. Coterminous Samples

The 4800-by-5200 Florida Everglades geographic landscape was divided into 12-by-13 (i.e., 156)
mutually exclusive and collectively exhaustive 400-by-400 sub-regions. Figure 3 depicts the geographic
distributions of the ρ̂ s across these sub-regions. Figures 4 and 5 indicate that the image contains two
different populations: land and ocean (Figure 1). The ocean yields negative spatial autocorrelation:
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32 sub-regions for NDVI, and 33 sub-regions for NBR. The respective ρ̂ averages are 0.66 and 0.62,
substantially less than their image-wide counterparts (Only 0.23% of the rook’s adjacency connections
are lost by analyzing the 156 sub-regions. The sub-region means display moderate-to-strong positive
spatial autocorrelation: for NDVI, Moran Coefficient (MC) = 0.83, and Geary Ratio (GR) = 0.12,
which indicate strong positive spatial autocorrelation; for NBR, MC = 0.68, and GR = 0.25, which
indicate moderate-to-strong positive spatial autocorrelation). The respective standard errors are
0.03511 (“ 0.43857{

?
156) and 0.03422 (“ 0.42744{

?
156), substantially greater than their model-based

counterparts. These results may be inflated because this sampling experiment is similar to cluster
sampling. But each sub-region being the same size removes one source of bias in cluster sampling.
Because of the mixture of two populations (landscape wide, this is conspicuous for the NDVI values,
but not for the NBR values; Figure 5), this uncertainty quantification is unhelpful: the landscape-wide
NDVI ρ̂ is not in the 95% confidence interval [0.591, 0.729], and the landscape-wide NBR ρ̂ is not in the
95% confidence interval [0.553, 0.687]. This approach also is impractical because so many subregions
would need to be analyzed in order to obtain this quantification.
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Figure 5. Histograms of spectral index values for the Florida Everglades 4800-by-5200 pixels image.
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Restricting attention to the positive ρ̂ values, the respective estimates are 0.88 and 0.83, which are
much closer to their landscape-wide counterparts. In addition, the sampling variance also decreases,
with respective standard errors becoming 0.00976 and 0.01268. These latter values are much closer
to their model-based counterparts, but are still noticeably greater than roughly 0.0006. A spatial
scientist or other remote sensing researchers may find the 95% confidence intervals, 0.931 < ρ < 0.969
for NDVI (i.e., markedly strong positive spatial autocorrelation) and 0.805 < ρ < 0.855 for NBR
(i.e., strong positive spatial autocorrelation), helpful because their respective landscape-wide spatial
autocorrelation parameter values are such that NDVI’s falls into its interval, and NBR’s is close to its
interval. This uncertainty quantification also allows ocean results to be differentiated from land results,
but remains impractical because so many sub-regions would need to be analyzed in order to obtain it.
The challenge that remains is to be able to compute these standard errors analytically, perhaps with
guidance from cluster samples sampling theory (The ρ̂ s are an inverse function of their subregion
standard deviations, a specification that offers a way to establish a random variable whose variance
may be useful here (see [9])).

4.2. Random Subregion Samples

Next, 156 random sub-regions were selected, such that their centers came from the central
4400-by-4800 sub-region of the Florida Everglades image, which is defined by the southwest coordinate
(2101, 1401) and the northeast coordinate (6500, 6200). The UTM coordinates for the southwest and
northeast corners are (494,289.8, 2,806,723) and (619,689.8, 2,943,523), respectively. Figure 6a portrays
the geographic distribution of the centroids of these sub-regions; their spacing/density distribution is
a Poisson RV (Figure 6b). The ocean yields negative spatial autocorrelation: 24 random sub-regions for
NDVI, and 27 random sub-regions for NBR. The respective ρ̂ averages are 0.69 and 0.64, respectively,
very similar to their coterminous quadrat counterparts. The respective standard errors are 0.03203
(“ 0.40003{

?
156) and 0.03162 (“ 0.39494{

?
156), again very similar to their coterminous quadrat

counterparts, and substantially greater than their model-based counterparts.
Restricting attention to the positive ρ̂ values, the respective estimates are 0.85 and 0.81, which

are much closer than equivalent coterminous quadrat values to their landscape-wide counterparts.
In addition, the sampling variance also decreases, with respective standard errors becoming 0.0320
and 0.0316. These means are much closer to their model-based counterparts, but these standard
deviations are noticeably greater than their coterminous quadrat counterparts. A spatial scientist or
other remote sensing researchers may find the 95% confidence intervals, 0.824 < ρ < 0.876 for NDVI
and 0.787 < ρ < 0.833 for NBR, less helpful because neither landscape-wide spatial autocorrelation
parameter value falls into its respective interval. This uncertainty quantification seems less useful
than the preceding coterminous quadrat based one. Therefore, the challenge appears to be designing
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an analytical method to compute standard errors relating to mutually exclusive and collectively
exhaustive coterminous quadrat sub-regions.
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Figure 6. Features of the random sample of sub-regions. (a) the geographic distribution of the
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Removing the coterminous constraint on the data, an experiment was performed involving
156 samples of size 160,000, where the sample pixels were randomly selected from the set of
24,960,000 pixels with equal probability but without replacement; the spatial lag term was calculated
with the four surrounding pixels, and hence was selected as part of a bivariate sample. The Jaocbian
term is not correct here. Nevertheless, the average ρ̂ s obtained with ordinary least squares (OLS)
are 1.006 and 0.995, respectively, for NDVI and NBR; the first is not a feasible value (not only does
this arithmetic average exceed 1, but all 156 estimates exceed 1). Retaining the original Jacobian
term yields, respectively, ρ̂ s of 0.958 and 0.869 (these equal their respective estimates for the full
4800-by-5200 image). Their corresponding standard errors are 0.00056 and 0.00105, which, again,
suggests that repeated sets of 156 random samples of size 160,000 will yield sound complete image
parameter estimates.

Consequently, random sub-regions furnish useful measures of uncertainty, but random pixels
do not. Unfortunately, in practice, such repeated sampling places a considerable data collection
and computational burden on a spatial analyst. Once more, the challenge that remains is to be able
to compute these standard errors analytically, again perhaps with guidance from cluster samples
sampling theory.

4.3. Increasing Domain Subregions

A third possible approach to quantifying uncertainty of ρ̂ is to study how this estimate changes
with increasing geographic landscape size (i.e., scale; Figure 7a). Figure 7b portrays the change in the
Everglades NDVI and NBR ρ̂ s with an increasing domain. Their respective unweighted averages
are 0.929 and 0.842 (Table 2), again indicating some bias. Meanwhile, their respective standard errors
are 0.02353 and 0.01635, which are smaller than those obtained with coterminous or random cluster
sampling. These standard errors are still substantially larger than their counterpart values furnished
by Equation (4).

Therefore, an increasing domain furnishes somewhat useful measures of uncertainty.
Unfortunately, in practice, this approach also places a considerable data collection and computational
burden on a spatial analyst. As before, the challenge that remains is to be able to compute these
standard errors analytically.
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Figure 7. An increasing domain sampling design. (a) the increasing size landscapes; and (b) ρ̂ with an
increasing distance from the core region (Ring 0).

Table 2. Increasing domain results.

Ring Dimension
Jacobian Approximation ρ̂

Alpha Delta NDVI NBR

inner core 400-by- 800 0.1618076 1.1697864 0.919 0.808
1 800-by-1200 0.1618659 1.1704490 0.909 0.832
2 1200-by-1600 0.1618877 1.1706978 0.903 0.848
3 1600-by-2000 0.1618994 1.1708305 0.893 0.846
4 2000-by-2400 0.1619066 1.1709135 0.903 0.838
5 2400-by-2800 0.1619116 1.1709704 0.922 0.835
6 2800-by-3200 0.1619152 1.1710118 0.936 0.828
7 3200-by-3600 0.1619182 1.1710438 0.945 0.836
8 3600-by-4000 0.1619204 1.1710687 0.950 0.848
9 4000-by-4400 0.1619221 1.1710888 0.953 0.855
10 4400-by-4800 0.1619236 1.1711054 0.956 0.862

outer 4800-by-5200 0.1619248 1.1711194 0.958 0.869

5. Discussion

Two points merit discussion. First, because remotely-sensed data comprising spectral measures
contains considerable redundant information, quantified by the spatial autocorrelation parameter of a
spatial regression model, the equivalent amount of independent information is of interest. Second,
because direct and indirect effects associated with a spatial process generate layer upon layer of
stochastic noise similar to compounding of monetary interest, the degree of variance inflation affiliated
with spatial data is of interest.

5.1. Effective Sample Size

One impact of ρ̂ on uncertainty measures is the exaggeration of a sample size, n, which needs to
be reduced to its effective sample size, n˚, the equivalent sample size for the amount of nonredundant
information contained in georeferenced data. Griffith [10] (p. 743) furnishes the following estimate of n˚:

n˚ “ n
„

1´
1

1´ e´1.92369
n´ 1

n
p1´ e´2.12373ρ̂`0.20042

?
ρ̂q



(5)

Equation (5) is only for ρ̂ ě 0.
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Table 3 summarizes selected effective sample size results for the Florida Everglades
remotely-sensed image. Summaries are based upon fewer than 156 coterminous quadrat results
because estimates of ρ̂ for the water areas are negative. NDVI contains a higher level of spatial
autocorrelation than NBR, and consequently tends to yield a smaller n˚. The random quadrat
and increasing domain samples are reasonably consistent, with relatively small sample variation.
The general finding here is that n˚ is roughly 5% of n: the 400-by-400 pixel quadrats contain about as
much nonredundant information as 8000 independent pixels, and the entire set of 24,960,000 pixels in
the image contains about as much nonredundant information as 1,248,000 independent pixels.

Table 3. Effective sample size percentage, 100 n*/n, for the Florida Everglades remotely-sensed image.

Summary Statistic Coterminous Quadrats Random Quadrats Increasing Domain

NDVI NBR NDVI NBR NDVI NBR

Mean 5.48 8.21 3.06 8.36 2.67 6.45
Standard deviation 8.33 10.96 0.03 0.06 0.94 0.78

Minimum 0.97 0.40 2.98 8.22 1.52 5.19
Maximum 64.42 85.40 3.14 8.50 4.14 8.11

# sample quadrats 124 123 156 156 12 12

NOTE: coterminous and random quadrats form 400-by-400 (n = 160,000) square regions; increasing domain
quadrats begin with 400-by-800, and increase, by increments of 400 in both dimensions, to 4800-by-5200.

5.2. The Variance Inflation Factor (VIF)

A VIF is also of concern when assessing uncertainty, especially with ρ̂ values near 0.9.
The bias-adjusted maximum likelihood estimate of the variance is given by:

pY´ µ̂1qTpI´ ρ̂WqTpI´ ρ̂WqpY´ µ̂1q{pn´ 2q (6)

The VIF is given by:

VIF “
n´ 1
n´ 2

pY´ µ̂1qTpI´ ρ̂WqTpI´ ρ̂WqpY´ µ̂1q{rpY´ µ̂1qTpY´ µ̂1qs (7)

Table 4 summarizes VIF results for the Everglades data. The NDVI VIF tends to be a factor of
about 5, whereas the NBR VIF tends to be a factor of about 4. In other words, confidence intervals
calculated with variance estimates from the unadjusted remotely sensed data tend to be about twice as
wide as they should be. The implication is considerably more uncertainty attributable to sampling
error than appears to exist, if latent spatial autocorrelation is overlooked.

In summary, two features of data commonly used to quantify uncertainty, namely sample size
and variability, are distorted by the presence of non-zero spatial autocorrelation. This distortion
becomes considerable with the high levels of positive spatial autocorrelation commonly found in
remotely-sensed data. Therefore, accounting for spatial autocorrelation in remotely-sensed data
contributes to a better extraction of information and distilling of knowledge from such data.

Table 4. The square root of VIF factors for the Florida Everglades remotely-sensed image.

Summary Statistic Coterminous Quadrats Random Quadrats Increasing Domain

NDVI NBR NDVI NBR NDVI NBR

Mean 2.45 2.20 2.12 1.83 2.90 1.89
Standard deviation 0.77 0.98 0.82 0.81 0.59 0.13

Minimum 1.02 1.00 1.00 1.00 2.21 1.65
Maximum 4.69 5.40 4.59 5.07 3.94 2.13

# sample quadrats 124 123 156 156 12 12
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6. Conclusions and Implications

Uncertainty associated with remotely-sensed data should be cast in terms of its latent spatial
autocorrelation, denoted here by ρ̂. Since this measure tends to be in the range [0.85, 0.95] for most
remotely-sensed data, it indicates that these data contain considerable redundant information which,
in turn, means the presence of substantial VIFs. The standard method of quantifying any additional
uncertainty introduced by estimating ρ appears to be negligible, as indicated by Equation (4) for ρ = 0
(which essentially is irrelevant for remotely sensed data), and indicted by both Equation (3) and the
BBRV mixture proposed in this paper for ρ ‰ 0.

Most geographic landscapes suggest that Equation (3) fails to furnish an adequate quantification
of uncertainty for ρ̂; its variability in a geographic landscape is substantially greater than values
produced by Equation (3). The various analyses summarized in this paper for the Florida Everglades
remotely-sensed image corroborate this contention. This inconsistency arises from the inferential
basis for Equation (3): repeated images of the same region of the Earth’s surface. Treating different
regions introduces another source of variability into ρ̂. This is the uncertainty of interest to most
spatial analysts. Would a slightly larger/smaller image, an image shifted slightly to the east and/or
north, or an image from a different part of a larger geographic landscape yield essentially the same ρ̂?
The variability detected in analyses summarized in this paper reveals quantities many times larger
than those rendered by Equation (3).

The remaining challenge is to formulate an analytical specification of this type of variability.
Evidence presented in this paper suggests that cluster sample sampling theory may furnish insights
into what this specification should be. The final formula should be a function of ρ̂, the variance of
the spectral index being studied, the variance of the spatial autocorrelation filtered data (i.e., what is
equivalent to independent and identically distributed values), and the sample size, n. Establishing
such a formula will support a better extraction of information and distilling of knowledge from
remotely-sensed data by, especially, accounting for their latent spatial autocorrelation.

Finally, spatial regression should be utilized in studies that utilize remote sensing data. Regression
is extensively used to model various phenomena such as land use and land cover [4,11], NDVI [12,13],
urban heat island [4], and landslide susceptibility [14], but spatial autocorrelation has been barely
accommodated in modeling remotely-sensed data. Remotely-sensed data has a strong positive spatial
autocorrelation in most cases: even one with a fragmented (e.g., land use) pattern with a coarse
resolution (e.g., 250 m of MODIS). Ignorance of spatial autocorrelation can result in unreliable results.

Author Contributions: Both authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

A simulation experiment was conducted to examine the uncertainty of the spatial autocorrelation
parameter estimates (ρ̂) for a series of regular tessellations with an increasing number of spatial units
(i.e., the number of pixels comprising a remotely sensed image). A total of 40 different regular square
tessellations were used, from a 10-by-10 to a 400-by-400 tessellation, using increments of 10. For each
of these tessellations, 1000 sets of random numbers were drawn from the standard normal distribution;
i.e., N(0,1). The spatial autocorrelation parameter for the SAR process (ρ) was estimated with the
Monte Carlo eigenvalue method developed by Barry and Pace [15] (these results were double-checked
with exact eigenvalues through the 100-by-100 tessellation, as well as with Griffith’s eigenvalue and
approximation Jacobian approximations [3]). This estimation is available in R: errorsarlm() function
in the spdep package with the “MC” option. Table A1 reports the results of ρ̂. The means of the
estimates are around zero; all estimates except those for the 10-by-10 tessellation are 0.00 when they
are rounded to hundredths. Their standard deviations tend to get smaller as the tessellation size gets
larger. The minimum and maximum values of the estimates also get smaller as the tessellation size
gets larger. That is, the uncertainty of ρ̂ gets smaller as the size of an image gets larger.
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Table A1. Estimates of the spatial autocorrelation parameter (ρ) for increasing tessellation size based
upon 1000 simulation replications and the standard normal distribution.

Tessellation Mean Std. Dev. Min Max TessellationMean Std. Dev. Min Max

10-by-10 ´0.0144 0.1299 ´0.4329 0.3742 210-by-210 ´0.0002 0.0068 ´0.0218 0.0215
20-by-20 ´0.0018 0.0683 ´0.2101 0.2079 220-by-220 ´0.0004 0.0063 ´0.0191 0.0259
30-by-30 0.0013 0.0448 ´0.1570 0.1384 230-by-230 ´0.0001 0.0062 ´0.0194 0.0233
40-by-40 ´0.0017 0.0343 ´0.1129 0.1175 240-by-240 0.0002 0.0058 ´0.0230 0.0193
50-by-50 ´0.0032 0.0263 ´0.0898 0.0985 250-by-250 0.0002 0.0056 ´0.0183 0.0203
60-by-60 ´0.0005 0.0233 ´0.0810 0.0655 260-by-260 0.0003 0.0054 ´0.0202 0.0170
70-by-70 ´0.0012 0.0203 ´0.0690 0.0629 270-by-270 ´0.0002 0.0052 ´0.0150 0.0143
80-by-80 0.0001 0.0178 ´0.0610 0.0544 280-by-280 0.0000 0.0050 ´0.0173 0.0175
90-by-90 ´0.0005 0.0153 ´0.0476 0.0678 290-by-290 ´0.0003 0.00482 ´0.0168 0.0132

100-by-100 0.0011 0.0142 ´0.0397 0.0471 300-by-300 0.0000 0.00478 ´0.0132 0.0151
110-by-110 ´0.0004 0.0126 ´0.0432 0.0435 310-by-310 ´0.0004 0.0045 ´0.0156 0.0136
120-by-120 ´0.0002 0.0121 ´0.0356 0.0313 320-by-320 ´0.0001 0.0043 ´0.0146 0.0134
130-by-130 ´0.0003 0.0109 ´0.0383 0.0360 330-by-330 0.0000 0.0042 ´0.0133 0.0150
140-by-140 ´0.0004 0.0103 ´0.0283 0.0342 340-by-340 0.0001 0.0041 ´0.0122 0.0116
150-by-150 ´0.0001 0.0093 ´0.0284 0.0285 350-by-350 0.0002 0.0040 ´0.0130 0.0141
160-by-160 ´0.0002 0.0086 ´0.0263 0.0230 360-by-360 ´0.0002 0.00383 ´0.0126 0.0141
170-by-170 ´0.0005 0.0084 ´0.0260 0.0327 370-by-370 ´0.0001 0.00377 ´0.0128 0.0124
180-by-180 0.0001 0.0078 ´0.0255 0.0280 380-by-380 0.0001 0.0036 ´0.0116 0.0118
190-by-190 0.0005 0.0077 ´0.0251 0.0259 390-by-390 0.0001 0.0036 ´0.0117 0.0132
200-by-200 ´0.0003 0.0071 ´0.0234 0.0278 400-by-400 ´0.0001 0.0035 ´0.0113 0.0124

The estimate ρ̂ also was examined with higher levels of spatial autocorrelation only for a
400-by-400 tessellation. A pure SAR random process was used to generate spatially autocorrelated
random number sets: i.e., with no covariates and a zero intercept. Due to the large size of a spatial
weights matrix for the tessellation (i.e., 4002-by-4002), the calculation of pI´ ρWq´1 is infeasible. Hence,
the matrix expansion of this inverse, the summation of a power series, pI` ρW` ρW2 ` . . .` ρWkq,
was used with k = 1000 to approximate it. Table A2 reports the estimation results for ρ = 0.0, 0.5,
0.85, 0.90, and 0.95. The means of the ρ̂ s are approximately the nominal levels, and their standard
deviations get smaller as the level of spatial autocorrelation gets larger.

Table A2. Estimates of the spatial autocorrelation parameter (ρ) for selected high levels of spatial
autocorrelation and a 400-by-400 tessellation based upon 1000 simulation replications and the standard
normal distribution.

ρ Mean of Estimates pρ̂q Std. Dev. Min Max

0.00 ´0.0001 0.0035 ´0.0113 0.0124
0.50 0.5000 0.0029 0.4915 0.5096
0.85 0.8501 0.0015 0.8453 0.8545
0.90 0.9007 0.0012 0.8965 0.9044
0.95 0.9533 0.0009 0.9497 0.9560
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